3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
37 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/syscalls.h>
46 * The parameter save area on the stack is used to store arguments being passed
47 * to callee function and is located at fixed offset from stack pointer.
50 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
51 #else /* CONFIG_PPC32 */
52 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
55 struct pt_regs_offset {
60 #define STR(s) #s /* convert to string */
61 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62 #define GPR_OFFSET_NAME(num) \
63 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
64 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
65 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67 #define TVSO(f) (offsetof(struct thread_vr_state, f))
68 #define TFSO(f) (offsetof(struct thread_fp_state, f))
69 #define TSO(f) (offsetof(struct thread_struct, f))
71 static const struct pt_regs_offset regoffset_table[] = {
104 REG_OFFSET_NAME(nip),
105 REG_OFFSET_NAME(msr),
106 REG_OFFSET_NAME(ctr),
107 REG_OFFSET_NAME(link),
108 REG_OFFSET_NAME(xer),
109 REG_OFFSET_NAME(ccr),
111 REG_OFFSET_NAME(softe),
115 REG_OFFSET_NAME(trap),
116 REG_OFFSET_NAME(dar),
117 REG_OFFSET_NAME(dsisr),
122 * regs_query_register_offset() - query register offset from its name
123 * @name: the name of a register
125 * regs_query_register_offset() returns the offset of a register in struct
126 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
128 int regs_query_register_offset(const char *name)
130 const struct pt_regs_offset *roff;
131 for (roff = regoffset_table; roff->name != NULL; roff++)
132 if (!strcmp(roff->name, name))
138 * regs_query_register_name() - query register name from its offset
139 * @offset: the offset of a register in struct pt_regs.
141 * regs_query_register_name() returns the name of a register from its
142 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
144 const char *regs_query_register_name(unsigned int offset)
146 const struct pt_regs_offset *roff;
147 for (roff = regoffset_table; roff->name != NULL; roff++)
148 if (roff->offset == offset)
154 * does not yet catch signals sent when the child dies.
155 * in exit.c or in signal.c.
159 * Set of msr bits that gdb can change on behalf of a process.
161 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
162 #define MSR_DEBUGCHANGE 0
164 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
168 * Max register writeable via put_reg
171 #define PT_MAX_PUT_REG PT_MQ
173 #define PT_MAX_PUT_REG PT_CCR
176 static unsigned long get_user_msr(struct task_struct *task)
178 return task->thread.regs->msr | task->thread.fpexc_mode;
181 static int set_user_msr(struct task_struct *task, unsigned long msr)
183 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
184 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
188 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
189 static unsigned long get_user_ckpt_msr(struct task_struct *task)
191 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
194 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
196 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
197 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
201 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
203 task->thread.ckpt_regs.trap = trap & 0xfff0;
209 static int get_user_dscr(struct task_struct *task, unsigned long *data)
211 *data = task->thread.dscr;
215 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
217 task->thread.dscr = dscr;
218 task->thread.dscr_inherit = 1;
222 static int get_user_dscr(struct task_struct *task, unsigned long *data)
227 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
234 * We prevent mucking around with the reserved area of trap
235 * which are used internally by the kernel.
237 static int set_user_trap(struct task_struct *task, unsigned long trap)
239 task->thread.regs->trap = trap & 0xfff0;
244 * Get contents of register REGNO in task TASK.
246 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
248 if ((task->thread.regs == NULL) || !data)
251 if (regno == PT_MSR) {
252 *data = get_user_msr(task);
256 if (regno == PT_DSCR)
257 return get_user_dscr(task, data);
259 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
260 *data = ((unsigned long *)task->thread.regs)[regno];
268 * Write contents of register REGNO in task TASK.
270 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
272 if (task->thread.regs == NULL)
276 return set_user_msr(task, data);
277 if (regno == PT_TRAP)
278 return set_user_trap(task, data);
279 if (regno == PT_DSCR)
280 return set_user_dscr(task, data);
282 if (regno <= PT_MAX_PUT_REG) {
283 ((unsigned long *)task->thread.regs)[regno] = data;
289 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
290 unsigned int pos, unsigned int count,
291 void *kbuf, void __user *ubuf)
295 if (target->thread.regs == NULL)
298 if (!FULL_REGS(target->thread.regs)) {
299 /* We have a partial register set. Fill 14-31 with bogus values */
300 for (i = 14; i < 32; i++)
301 target->thread.regs->gpr[i] = NV_REG_POISON;
304 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
306 0, offsetof(struct pt_regs, msr));
308 unsigned long msr = get_user_msr(target);
309 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
310 offsetof(struct pt_regs, msr),
311 offsetof(struct pt_regs, msr) +
315 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
316 offsetof(struct pt_regs, msr) + sizeof(long));
319 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
320 &target->thread.regs->orig_gpr3,
321 offsetof(struct pt_regs, orig_gpr3),
322 sizeof(struct pt_regs));
324 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
325 sizeof(struct pt_regs), -1);
330 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
331 unsigned int pos, unsigned int count,
332 const void *kbuf, const void __user *ubuf)
337 if (target->thread.regs == NULL)
340 CHECK_FULL_REGS(target->thread.regs);
342 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
344 0, PT_MSR * sizeof(reg));
346 if (!ret && count > 0) {
347 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
348 PT_MSR * sizeof(reg),
349 (PT_MSR + 1) * sizeof(reg));
351 ret = set_user_msr(target, reg);
354 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
355 offsetof(struct pt_regs, msr) + sizeof(long));
358 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
359 &target->thread.regs->orig_gpr3,
360 PT_ORIG_R3 * sizeof(reg),
361 (PT_MAX_PUT_REG + 1) * sizeof(reg));
363 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
364 ret = user_regset_copyin_ignore(
365 &pos, &count, &kbuf, &ubuf,
366 (PT_MAX_PUT_REG + 1) * sizeof(reg),
367 PT_TRAP * sizeof(reg));
369 if (!ret && count > 0) {
370 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
371 PT_TRAP * sizeof(reg),
372 (PT_TRAP + 1) * sizeof(reg));
374 ret = set_user_trap(target, reg);
378 ret = user_regset_copyin_ignore(
379 &pos, &count, &kbuf, &ubuf,
380 (PT_TRAP + 1) * sizeof(reg), -1);
386 * When the transaction is active, 'transact_fp' holds the current running
387 * value of all FPR registers and 'fp_state' holds the last checkpointed
388 * value of all FPR registers for the current transaction. When transaction
389 * is not active 'fp_state' holds the current running state of all the FPR
390 * registers. So this function which returns the current running values of
391 * all the FPR registers, needs to know whether any transaction is active
394 * Userspace interface buffer layout:
401 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
402 * which determines the final code in this function. All the combinations of
403 * these two config options are possible except the one below as transactional
404 * memory config pulls in CONFIG_VSX automatically.
406 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
408 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
409 unsigned int pos, unsigned int count,
410 void *kbuf, void __user *ubuf)
416 flush_fp_to_thread(target);
418 #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
419 /* copy to local buffer then write that out */
420 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
421 flush_altivec_to_thread(target);
422 flush_tmregs_to_thread(target);
423 for (i = 0; i < 32 ; i++)
424 buf[i] = target->thread.TS_TRANS_FPR(i);
425 buf[32] = target->thread.transact_fp.fpscr;
427 for (i = 0; i < 32 ; i++)
428 buf[i] = target->thread.TS_FPR(i);
429 buf[32] = target->thread.fp_state.fpscr;
431 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
434 #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
435 /* copy to local buffer then write that out */
436 for (i = 0; i < 32 ; i++)
437 buf[i] = target->thread.TS_FPR(i);
438 buf[32] = target->thread.fp_state.fpscr;
439 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
442 #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
443 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
444 offsetof(struct thread_fp_state, fpr[32]));
446 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
447 &target->thread.fp_state, 0, -1);
452 * When the transaction is active, 'transact_fp' holds the current running
453 * value of all FPR registers and 'fp_state' holds the last checkpointed
454 * value of all FPR registers for the current transaction. When transaction
455 * is not active 'fp_state' holds the current running state of all the FPR
456 * registers. So this function which setss the current running values of
457 * all the FPR registers, needs to know whether any transaction is active
460 * Userspace interface buffer layout:
467 * There are two config options CONFIG_VSX and CONFIG_PPC_TRANSACTIONAL_MEM
468 * which determines the final code in this function. All the combinations of
469 * these two config options are possible except the one below as transactional
470 * memory config pulls in CONFIG_VSX automatically.
472 * !defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
474 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
475 unsigned int pos, unsigned int count,
476 const void *kbuf, const void __user *ubuf)
482 flush_fp_to_thread(target);
484 #if defined(CONFIG_VSX) && defined(CONFIG_PPC_TRANSACTIONAL_MEM)
485 /* copy to local buffer then write that out */
486 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
490 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
491 flush_altivec_to_thread(target);
492 flush_tmregs_to_thread(target);
493 for (i = 0; i < 32 ; i++)
494 target->thread.TS_TRANS_FPR(i) = buf[i];
495 target->thread.transact_fp.fpscr = buf[32];
497 for (i = 0; i < 32 ; i++)
498 target->thread.TS_FPR(i) = buf[i];
499 target->thread.fp_state.fpscr = buf[32];
504 #if defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
505 /* copy to local buffer then write that out */
506 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
509 for (i = 0; i < 32 ; i++)
510 target->thread.TS_FPR(i) = buf[i];
511 target->thread.fp_state.fpscr = buf[32];
515 #if !defined(CONFIG_VSX) && !defined(CONFIG_PPC_TRANSACTIONAL_MEM)
516 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
517 offsetof(struct thread_fp_state, fpr[32]));
519 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
520 &target->thread.fp_state, 0, -1);
524 #ifdef CONFIG_ALTIVEC
526 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
527 * The transfer totals 34 quadword. Quadwords 0-31 contain the
528 * corresponding vector registers. Quadword 32 contains the vscr as the
529 * last word (offset 12) within that quadword. Quadword 33 contains the
530 * vrsave as the first word (offset 0) within the quadword.
532 * This definition of the VMX state is compatible with the current PPC32
533 * ptrace interface. This allows signal handling and ptrace to use the
534 * same structures. This also simplifies the implementation of a bi-arch
535 * (combined (32- and 64-bit) gdb.
538 static int vr_active(struct task_struct *target,
539 const struct user_regset *regset)
541 flush_altivec_to_thread(target);
542 return target->thread.used_vr ? regset->n : 0;
546 * When the transaction is active, 'transact_vr' holds the current running
547 * value of all the VMX registers and 'vr_state' holds the last checkpointed
548 * value of all the VMX registers for the current transaction to fall back
549 * on in case it aborts. When transaction is not active 'vr_state' holds
550 * the current running state of all the VMX registers. So this function which
551 * gets the current running values of all the VMX registers, needs to know
552 * whether any transaction is active or not.
554 * Userspace interface buffer layout:
562 static int vr_get(struct task_struct *target, const struct user_regset *regset,
563 unsigned int pos, unsigned int count,
564 void *kbuf, void __user *ubuf)
566 struct thread_vr_state *addr;
569 flush_altivec_to_thread(target);
571 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
572 offsetof(struct thread_vr_state, vr[32]));
574 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
575 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
576 flush_fp_to_thread(target);
577 flush_tmregs_to_thread(target);
578 addr = &target->thread.transact_vr;
580 addr = &target->thread.vr_state;
583 addr = &target->thread.vr_state;
585 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
587 33 * sizeof(vector128));
590 * Copy out only the low-order word of vrsave.
596 memset(&vrsave, 0, sizeof(vrsave));
598 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
599 if (MSR_TM_ACTIVE(target->thread.regs->msr))
600 vrsave.word = target->thread.transact_vrsave;
602 vrsave.word = target->thread.vrsave;
604 vrsave.word = target->thread.vrsave;
607 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
608 33 * sizeof(vector128), -1);
615 * When the transaction is active, 'transact_vr' holds the current running
616 * value of all the VMX registers and 'vr_state' holds the last checkpointed
617 * value of all the VMX registers for the current transaction to fall back
618 * on in case it aborts. When transaction is not active 'vr_state' holds
619 * the current running state of all the VMX registers. So this function which
620 * sets the current running values of all the VMX registers, needs to know
621 * whether any transaction is active or not.
623 * Userspace interface buffer layout:
631 static int vr_set(struct task_struct *target, const struct user_regset *regset,
632 unsigned int pos, unsigned int count,
633 const void *kbuf, const void __user *ubuf)
635 struct thread_vr_state *addr;
638 flush_altivec_to_thread(target);
640 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
641 offsetof(struct thread_vr_state, vr[32]));
643 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
644 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
645 flush_fp_to_thread(target);
646 flush_tmregs_to_thread(target);
647 addr = &target->thread.transact_vr;
649 addr = &target->thread.vr_state;
652 addr = &target->thread.vr_state;
654 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
656 33 * sizeof(vector128));
657 if (!ret && count > 0) {
659 * We use only the first word of vrsave.
665 memset(&vrsave, 0, sizeof(vrsave));
667 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
668 if (MSR_TM_ACTIVE(target->thread.regs->msr))
669 vrsave.word = target->thread.transact_vrsave;
671 vrsave.word = target->thread.vrsave;
673 vrsave.word = target->thread.vrsave;
675 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
676 33 * sizeof(vector128), -1);
679 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
680 if (MSR_TM_ACTIVE(target->thread.regs->msr))
681 target->thread.transact_vrsave = vrsave.word;
683 target->thread.vrsave = vrsave.word;
685 target->thread.vrsave = vrsave.word;
692 #endif /* CONFIG_ALTIVEC */
696 * Currently to set and and get all the vsx state, you need to call
697 * the fp and VMX calls as well. This only get/sets the lower 32
698 * 128bit VSX registers.
701 static int vsr_active(struct task_struct *target,
702 const struct user_regset *regset)
704 flush_vsx_to_thread(target);
705 return target->thread.used_vsr ? regset->n : 0;
709 * When the transaction is active, 'transact_fp' holds the current running
710 * value of all FPR registers and 'fp_state' holds the last checkpointed
711 * value of all FPR registers for the current transaction. When transaction
712 * is not active 'fp_state' holds the current running state of all the FPR
713 * registers. So this function which returns the current running values of
714 * all the FPR registers, needs to know whether any transaction is active
717 * Userspace interface buffer layout:
723 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
724 unsigned int pos, unsigned int count,
725 void *kbuf, void __user *ubuf)
730 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
731 flush_fp_to_thread(target);
732 flush_altivec_to_thread(target);
733 flush_tmregs_to_thread(target);
735 flush_vsx_to_thread(target);
737 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
738 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
739 for (i = 0; i < 32 ; i++)
740 buf[i] = target->thread.
741 transact_fp.fpr[i][TS_VSRLOWOFFSET];
743 for (i = 0; i < 32 ; i++)
744 buf[i] = target->thread.
745 fp_state.fpr[i][TS_VSRLOWOFFSET];
748 for (i = 0; i < 32 ; i++)
749 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
751 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
752 buf, 0, 32 * sizeof(double));
758 * When the transaction is active, 'transact_fp' holds the current running
759 * value of all FPR registers and 'fp_state' holds the last checkpointed
760 * value of all FPR registers for the current transaction. When transaction
761 * is not active 'fp_state' holds the current running state of all the FPR
762 * registers. So this function which sets the current running values of all
763 * the FPR registers, needs to know whether any transaction is active or not.
765 * Userspace interface buffer layout:
771 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
772 unsigned int pos, unsigned int count,
773 const void *kbuf, const void __user *ubuf)
778 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
779 flush_fp_to_thread(target);
780 flush_altivec_to_thread(target);
781 flush_tmregs_to_thread(target);
783 flush_vsx_to_thread(target);
785 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
786 buf, 0, 32 * sizeof(double));
788 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
789 if (MSR_TM_ACTIVE(target->thread.regs->msr)) {
790 for (i = 0; i < 32 ; i++)
791 target->thread.transact_fp.
792 fpr[i][TS_VSRLOWOFFSET] = buf[i];
794 for (i = 0; i < 32 ; i++)
795 target->thread.fp_state.
796 fpr[i][TS_VSRLOWOFFSET] = buf[i];
799 for (i = 0; i < 32 ; i++)
800 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
806 #endif /* CONFIG_VSX */
811 * For get_evrregs/set_evrregs functions 'data' has the following layout:
820 static int evr_active(struct task_struct *target,
821 const struct user_regset *regset)
823 flush_spe_to_thread(target);
824 return target->thread.used_spe ? regset->n : 0;
827 static int evr_get(struct task_struct *target, const struct user_regset *regset,
828 unsigned int pos, unsigned int count,
829 void *kbuf, void __user *ubuf)
833 flush_spe_to_thread(target);
835 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
837 0, sizeof(target->thread.evr));
839 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
840 offsetof(struct thread_struct, spefscr));
843 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
845 sizeof(target->thread.evr), -1);
850 static int evr_set(struct task_struct *target, const struct user_regset *regset,
851 unsigned int pos, unsigned int count,
852 const void *kbuf, const void __user *ubuf)
856 flush_spe_to_thread(target);
858 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
860 0, sizeof(target->thread.evr));
862 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
863 offsetof(struct thread_struct, spefscr));
866 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
868 sizeof(target->thread.evr), -1);
872 #endif /* CONFIG_SPE */
874 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
876 * tm_cgpr_active - get active number of registers in CGPR
877 * @target: The target task.
878 * @regset: The user regset structure.
880 * This function checks for the active number of available
881 * regisers in transaction checkpointed GPR category.
883 static int tm_cgpr_active(struct task_struct *target,
884 const struct user_regset *regset)
886 if (!cpu_has_feature(CPU_FTR_TM))
889 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
896 * tm_cgpr_get - get CGPR registers
897 * @target: The target task.
898 * @regset: The user regset structure.
899 * @pos: The buffer position.
900 * @count: Number of bytes to copy.
901 * @kbuf: Kernel buffer to copy from.
902 * @ubuf: User buffer to copy into.
904 * This function gets transaction checkpointed GPR registers.
906 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
907 * GPR register values for the current transaction to fall back on if it
908 * aborts in between. This function gets those checkpointed GPR registers.
909 * The userspace interface buffer layout is as follows.
912 * struct pt_regs ckpt_regs;
915 static int tm_cgpr_get(struct task_struct *target,
916 const struct user_regset *regset,
917 unsigned int pos, unsigned int count,
918 void *kbuf, void __user *ubuf)
922 if (!cpu_has_feature(CPU_FTR_TM))
925 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
928 flush_fp_to_thread(target);
929 flush_altivec_to_thread(target);
930 flush_tmregs_to_thread(target);
932 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
933 &target->thread.ckpt_regs,
934 0, offsetof(struct pt_regs, msr));
936 unsigned long msr = get_user_ckpt_msr(target);
938 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
939 offsetof(struct pt_regs, msr),
940 offsetof(struct pt_regs, msr) +
944 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
945 offsetof(struct pt_regs, msr) + sizeof(long));
948 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
949 &target->thread.ckpt_regs.orig_gpr3,
950 offsetof(struct pt_regs, orig_gpr3),
951 sizeof(struct pt_regs));
953 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
954 sizeof(struct pt_regs), -1);
960 * tm_cgpr_set - set the CGPR registers
961 * @target: The target task.
962 * @regset: The user regset structure.
963 * @pos: The buffer position.
964 * @count: Number of bytes to copy.
965 * @kbuf: Kernel buffer to copy into.
966 * @ubuf: User buffer to copy from.
968 * This function sets in transaction checkpointed GPR registers.
970 * When the transaction is active, 'ckpt_regs' holds the checkpointed
971 * GPR register values for the current transaction to fall back on if it
972 * aborts in between. This function sets those checkpointed GPR registers.
973 * The userspace interface buffer layout is as follows.
976 * struct pt_regs ckpt_regs;
979 static int tm_cgpr_set(struct task_struct *target,
980 const struct user_regset *regset,
981 unsigned int pos, unsigned int count,
982 const void *kbuf, const void __user *ubuf)
987 if (!cpu_has_feature(CPU_FTR_TM))
990 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
993 flush_fp_to_thread(target);
994 flush_altivec_to_thread(target);
995 flush_tmregs_to_thread(target);
997 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
998 &target->thread.ckpt_regs,
999 0, PT_MSR * sizeof(reg));
1001 if (!ret && count > 0) {
1002 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
1003 PT_MSR * sizeof(reg),
1004 (PT_MSR + 1) * sizeof(reg));
1006 ret = set_user_ckpt_msr(target, reg);
1009 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
1010 offsetof(struct pt_regs, msr) + sizeof(long));
1013 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1014 &target->thread.ckpt_regs.orig_gpr3,
1015 PT_ORIG_R3 * sizeof(reg),
1016 (PT_MAX_PUT_REG + 1) * sizeof(reg));
1018 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
1019 ret = user_regset_copyin_ignore(
1020 &pos, &count, &kbuf, &ubuf,
1021 (PT_MAX_PUT_REG + 1) * sizeof(reg),
1022 PT_TRAP * sizeof(reg));
1024 if (!ret && count > 0) {
1025 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®,
1026 PT_TRAP * sizeof(reg),
1027 (PT_TRAP + 1) * sizeof(reg));
1029 ret = set_user_ckpt_trap(target, reg);
1033 ret = user_regset_copyin_ignore(
1034 &pos, &count, &kbuf, &ubuf,
1035 (PT_TRAP + 1) * sizeof(reg), -1);
1041 * tm_cfpr_active - get active number of registers in CFPR
1042 * @target: The target task.
1043 * @regset: The user regset structure.
1045 * This function checks for the active number of available
1046 * regisers in transaction checkpointed FPR category.
1048 static int tm_cfpr_active(struct task_struct *target,
1049 const struct user_regset *regset)
1051 if (!cpu_has_feature(CPU_FTR_TM))
1054 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1061 * tm_cfpr_get - get CFPR registers
1062 * @target: The target task.
1063 * @regset: The user regset structure.
1064 * @pos: The buffer position.
1065 * @count: Number of bytes to copy.
1066 * @kbuf: Kernel buffer to copy from.
1067 * @ubuf: User buffer to copy into.
1069 * This function gets in transaction checkpointed FPR registers.
1071 * When the transaction is active 'fp_state' holds the checkpointed
1072 * values for the current transaction to fall back on if it aborts
1073 * in between. This function gets those checkpointed FPR registers.
1074 * The userspace interface buffer layout is as follows.
1081 static int tm_cfpr_get(struct task_struct *target,
1082 const struct user_regset *regset,
1083 unsigned int pos, unsigned int count,
1084 void *kbuf, void __user *ubuf)
1089 if (!cpu_has_feature(CPU_FTR_TM))
1092 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1095 flush_fp_to_thread(target);
1096 flush_altivec_to_thread(target);
1097 flush_tmregs_to_thread(target);
1099 /* copy to local buffer then write that out */
1100 for (i = 0; i < 32 ; i++)
1101 buf[i] = target->thread.TS_FPR(i);
1102 buf[32] = target->thread.fp_state.fpscr;
1103 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1107 * tm_cfpr_set - set CFPR registers
1108 * @target: The target task.
1109 * @regset: The user regset structure.
1110 * @pos: The buffer position.
1111 * @count: Number of bytes to copy.
1112 * @kbuf: Kernel buffer to copy into.
1113 * @ubuf: User buffer to copy from.
1115 * This function sets in transaction checkpointed FPR registers.
1117 * When the transaction is active 'fp_state' holds the checkpointed
1118 * FPR register values for the current transaction to fall back on
1119 * if it aborts in between. This function sets these checkpointed
1120 * FPR registers. The userspace interface buffer layout is as follows.
1127 static int tm_cfpr_set(struct task_struct *target,
1128 const struct user_regset *regset,
1129 unsigned int pos, unsigned int count,
1130 const void *kbuf, const void __user *ubuf)
1135 if (!cpu_has_feature(CPU_FTR_TM))
1138 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1141 flush_fp_to_thread(target);
1142 flush_altivec_to_thread(target);
1143 flush_tmregs_to_thread(target);
1145 /* copy to local buffer then write that out */
1146 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1149 for (i = 0; i < 32 ; i++)
1150 target->thread.TS_FPR(i) = buf[i];
1151 target->thread.fp_state.fpscr = buf[32];
1156 * tm_cvmx_active - get active number of registers in CVMX
1157 * @target: The target task.
1158 * @regset: The user regset structure.
1160 * This function checks for the active number of available
1161 * regisers in checkpointed VMX category.
1163 static int tm_cvmx_active(struct task_struct *target,
1164 const struct user_regset *regset)
1166 if (!cpu_has_feature(CPU_FTR_TM))
1169 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1176 * tm_cvmx_get - get CMVX registers
1177 * @target: The target task.
1178 * @regset: The user regset structure.
1179 * @pos: The buffer position.
1180 * @count: Number of bytes to copy.
1181 * @kbuf: Kernel buffer to copy from.
1182 * @ubuf: User buffer to copy into.
1184 * This function gets in transaction checkpointed VMX registers.
1186 * When the transaction is active 'vr_state' and 'vr_save' hold
1187 * the checkpointed values for the current transaction to fall
1188 * back on if it aborts in between. The userspace interface buffer
1189 * layout is as follows.
1197 static int tm_cvmx_get(struct task_struct *target,
1198 const struct user_regset *regset,
1199 unsigned int pos, unsigned int count,
1200 void *kbuf, void __user *ubuf)
1204 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1206 if (!cpu_has_feature(CPU_FTR_TM))
1209 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1212 /* Flush the state */
1213 flush_fp_to_thread(target);
1214 flush_altivec_to_thread(target);
1215 flush_tmregs_to_thread(target);
1217 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1218 &target->thread.vr_state, 0,
1219 33 * sizeof(vector128));
1222 * Copy out only the low-order word of vrsave.
1228 memset(&vrsave, 0, sizeof(vrsave));
1229 vrsave.word = target->thread.vrsave;
1230 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1231 33 * sizeof(vector128), -1);
1238 * tm_cvmx_set - set CMVX registers
1239 * @target: The target task.
1240 * @regset: The user regset structure.
1241 * @pos: The buffer position.
1242 * @count: Number of bytes to copy.
1243 * @kbuf: Kernel buffer to copy into.
1244 * @ubuf: User buffer to copy from.
1246 * This function sets in transaction checkpointed VMX registers.
1248 * When the transaction is active 'vr_state' and 'vr_save' hold
1249 * the checkpointed values for the current transaction to fall
1250 * back on if it aborts in between. The userspace interface buffer
1251 * layout is as follows.
1259 static int tm_cvmx_set(struct task_struct *target,
1260 const struct user_regset *regset,
1261 unsigned int pos, unsigned int count,
1262 const void *kbuf, const void __user *ubuf)
1266 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1268 if (!cpu_has_feature(CPU_FTR_TM))
1271 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1274 flush_fp_to_thread(target);
1275 flush_altivec_to_thread(target);
1276 flush_tmregs_to_thread(target);
1278 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1279 &target->thread.vr_state, 0,
1280 33 * sizeof(vector128));
1281 if (!ret && count > 0) {
1283 * We use only the low-order word of vrsave.
1289 memset(&vrsave, 0, sizeof(vrsave));
1290 vrsave.word = target->thread.vrsave;
1291 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1292 33 * sizeof(vector128), -1);
1294 target->thread.vrsave = vrsave.word;
1301 * tm_cvsx_active - get active number of registers in CVSX
1302 * @target: The target task.
1303 * @regset: The user regset structure.
1305 * This function checks for the active number of available
1306 * regisers in transaction checkpointed VSX category.
1308 static int tm_cvsx_active(struct task_struct *target,
1309 const struct user_regset *regset)
1311 if (!cpu_has_feature(CPU_FTR_TM))
1314 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1317 flush_vsx_to_thread(target);
1318 return target->thread.used_vsr ? regset->n : 0;
1322 * tm_cvsx_get - get CVSX registers
1323 * @target: The target task.
1324 * @regset: The user regset structure.
1325 * @pos: The buffer position.
1326 * @count: Number of bytes to copy.
1327 * @kbuf: Kernel buffer to copy from.
1328 * @ubuf: User buffer to copy into.
1330 * This function gets in transaction checkpointed VSX registers.
1332 * When the transaction is active 'fp_state' holds the checkpointed
1333 * values for the current transaction to fall back on if it aborts
1334 * in between. This function gets those checkpointed VSX registers.
1335 * The userspace interface buffer layout is as follows.
1341 static int tm_cvsx_get(struct task_struct *target,
1342 const struct user_regset *regset,
1343 unsigned int pos, unsigned int count,
1344 void *kbuf, void __user *ubuf)
1349 if (!cpu_has_feature(CPU_FTR_TM))
1352 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1355 /* Flush the state */
1356 flush_fp_to_thread(target);
1357 flush_altivec_to_thread(target);
1358 flush_tmregs_to_thread(target);
1359 flush_vsx_to_thread(target);
1361 for (i = 0; i < 32 ; i++)
1362 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
1363 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1364 buf, 0, 32 * sizeof(double));
1370 * tm_cvsx_set - set CFPR registers
1371 * @target: The target task.
1372 * @regset: The user regset structure.
1373 * @pos: The buffer position.
1374 * @count: Number of bytes to copy.
1375 * @kbuf: Kernel buffer to copy into.
1376 * @ubuf: User buffer to copy from.
1378 * This function sets in transaction checkpointed VSX registers.
1380 * When the transaction is active 'fp_state' holds the checkpointed
1381 * VSX register values for the current transaction to fall back on
1382 * if it aborts in between. This function sets these checkpointed
1383 * FPR registers. The userspace interface buffer layout is as follows.
1389 static int tm_cvsx_set(struct task_struct *target,
1390 const struct user_regset *regset,
1391 unsigned int pos, unsigned int count,
1392 const void *kbuf, const void __user *ubuf)
1397 if (!cpu_has_feature(CPU_FTR_TM))
1400 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1403 /* Flush the state */
1404 flush_fp_to_thread(target);
1405 flush_altivec_to_thread(target);
1406 flush_tmregs_to_thread(target);
1407 flush_vsx_to_thread(target);
1409 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1410 buf, 0, 32 * sizeof(double));
1411 for (i = 0; i < 32 ; i++)
1412 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1418 * tm_spr_active - get active number of registers in TM SPR
1419 * @target: The target task.
1420 * @regset: The user regset structure.
1422 * This function checks the active number of available
1423 * regisers in the transactional memory SPR category.
1425 static int tm_spr_active(struct task_struct *target,
1426 const struct user_regset *regset)
1428 if (!cpu_has_feature(CPU_FTR_TM))
1435 * tm_spr_get - get the TM related SPR registers
1436 * @target: The target task.
1437 * @regset: The user regset structure.
1438 * @pos: The buffer position.
1439 * @count: Number of bytes to copy.
1440 * @kbuf: Kernel buffer to copy from.
1441 * @ubuf: User buffer to copy into.
1443 * This function gets transactional memory related SPR registers.
1444 * The userspace interface buffer layout is as follows.
1452 static int tm_spr_get(struct task_struct *target,
1453 const struct user_regset *regset,
1454 unsigned int pos, unsigned int count,
1455 void *kbuf, void __user *ubuf)
1460 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1461 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1462 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1464 if (!cpu_has_feature(CPU_FTR_TM))
1467 /* Flush the states */
1468 flush_fp_to_thread(target);
1469 flush_altivec_to_thread(target);
1470 flush_tmregs_to_thread(target);
1472 /* TFHAR register */
1473 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1474 &target->thread.tm_tfhar, 0, sizeof(u64));
1476 /* TEXASR register */
1478 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1479 &target->thread.tm_texasr, sizeof(u64),
1482 /* TFIAR register */
1484 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1485 &target->thread.tm_tfiar,
1486 2 * sizeof(u64), 3 * sizeof(u64));
1491 * tm_spr_set - set the TM related SPR registers
1492 * @target: The target task.
1493 * @regset: The user regset structure.
1494 * @pos: The buffer position.
1495 * @count: Number of bytes to copy.
1496 * @kbuf: Kernel buffer to copy into.
1497 * @ubuf: User buffer to copy from.
1499 * This function sets transactional memory related SPR registers.
1500 * The userspace interface buffer layout is as follows.
1508 static int tm_spr_set(struct task_struct *target,
1509 const struct user_regset *regset,
1510 unsigned int pos, unsigned int count,
1511 const void *kbuf, const void __user *ubuf)
1516 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1517 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1518 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1520 if (!cpu_has_feature(CPU_FTR_TM))
1523 /* Flush the states */
1524 flush_fp_to_thread(target);
1525 flush_altivec_to_thread(target);
1526 flush_tmregs_to_thread(target);
1528 /* TFHAR register */
1529 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1530 &target->thread.tm_tfhar, 0, sizeof(u64));
1532 /* TEXASR register */
1534 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1535 &target->thread.tm_texasr, sizeof(u64),
1538 /* TFIAR register */
1540 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1541 &target->thread.tm_tfiar,
1542 2 * sizeof(u64), 3 * sizeof(u64));
1546 static int tm_tar_active(struct task_struct *target,
1547 const struct user_regset *regset)
1549 if (!cpu_has_feature(CPU_FTR_TM))
1552 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1558 static int tm_tar_get(struct task_struct *target,
1559 const struct user_regset *regset,
1560 unsigned int pos, unsigned int count,
1561 void *kbuf, void __user *ubuf)
1565 if (!cpu_has_feature(CPU_FTR_TM))
1568 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1571 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1572 &target->thread.tm_tar, 0, sizeof(u64));
1576 static int tm_tar_set(struct task_struct *target,
1577 const struct user_regset *regset,
1578 unsigned int pos, unsigned int count,
1579 const void *kbuf, const void __user *ubuf)
1583 if (!cpu_has_feature(CPU_FTR_TM))
1586 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1589 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1590 &target->thread.tm_tar, 0, sizeof(u64));
1594 static int tm_ppr_active(struct task_struct *target,
1595 const struct user_regset *regset)
1597 if (!cpu_has_feature(CPU_FTR_TM))
1600 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1607 static int tm_ppr_get(struct task_struct *target,
1608 const struct user_regset *regset,
1609 unsigned int pos, unsigned int count,
1610 void *kbuf, void __user *ubuf)
1614 if (!cpu_has_feature(CPU_FTR_TM))
1617 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1620 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1621 &target->thread.tm_ppr, 0, sizeof(u64));
1625 static int tm_ppr_set(struct task_struct *target,
1626 const struct user_regset *regset,
1627 unsigned int pos, unsigned int count,
1628 const void *kbuf, const void __user *ubuf)
1632 if (!cpu_has_feature(CPU_FTR_TM))
1635 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1638 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1639 &target->thread.tm_ppr, 0, sizeof(u64));
1643 static int tm_dscr_active(struct task_struct *target,
1644 const struct user_regset *regset)
1646 if (!cpu_has_feature(CPU_FTR_TM))
1649 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1655 static int tm_dscr_get(struct task_struct *target,
1656 const struct user_regset *regset,
1657 unsigned int pos, unsigned int count,
1658 void *kbuf, void __user *ubuf)
1662 if (!cpu_has_feature(CPU_FTR_TM))
1665 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1668 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1669 &target->thread.tm_dscr, 0, sizeof(u64));
1673 static int tm_dscr_set(struct task_struct *target,
1674 const struct user_regset *regset,
1675 unsigned int pos, unsigned int count,
1676 const void *kbuf, const void __user *ubuf)
1680 if (!cpu_has_feature(CPU_FTR_TM))
1683 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1686 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1687 &target->thread.tm_dscr, 0, sizeof(u64));
1690 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1693 static int ppr_get(struct task_struct *target,
1694 const struct user_regset *regset,
1695 unsigned int pos, unsigned int count,
1696 void *kbuf, void __user *ubuf)
1700 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1701 &target->thread.ppr, 0, sizeof(u64));
1705 static int ppr_set(struct task_struct *target,
1706 const struct user_regset *regset,
1707 unsigned int pos, unsigned int count,
1708 const void *kbuf, const void __user *ubuf)
1712 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1713 &target->thread.ppr, 0, sizeof(u64));
1717 static int dscr_get(struct task_struct *target,
1718 const struct user_regset *regset,
1719 unsigned int pos, unsigned int count,
1720 void *kbuf, void __user *ubuf)
1724 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1725 &target->thread.dscr, 0, sizeof(u64));
1728 static int dscr_set(struct task_struct *target,
1729 const struct user_regset *regset,
1730 unsigned int pos, unsigned int count,
1731 const void *kbuf, const void __user *ubuf)
1735 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1736 &target->thread.dscr, 0, sizeof(u64));
1740 #ifdef CONFIG_PPC_BOOK3S_64
1741 static int tar_get(struct task_struct *target,
1742 const struct user_regset *regset,
1743 unsigned int pos, unsigned int count,
1744 void *kbuf, void __user *ubuf)
1748 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1749 &target->thread.tar, 0, sizeof(u64));
1752 static int tar_set(struct task_struct *target,
1753 const struct user_regset *regset,
1754 unsigned int pos, unsigned int count,
1755 const void *kbuf, const void __user *ubuf)
1759 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1760 &target->thread.tar, 0, sizeof(u64));
1764 static int ebb_active(struct task_struct *target,
1765 const struct user_regset *regset)
1767 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1770 if (target->thread.used_ebb)
1776 static int ebb_get(struct task_struct *target,
1777 const struct user_regset *regset,
1778 unsigned int pos, unsigned int count,
1779 void *kbuf, void __user *ubuf)
1782 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1783 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1785 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1788 if (!target->thread.used_ebb)
1791 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1792 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1795 static int ebb_set(struct task_struct *target,
1796 const struct user_regset *regset,
1797 unsigned int pos, unsigned int count,
1798 const void *kbuf, const void __user *ubuf)
1803 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1804 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1806 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1809 if (target->thread.used_ebb)
1812 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1813 &target->thread.ebbrr, 0, sizeof(unsigned long));
1816 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1817 &target->thread.ebbhr, sizeof(unsigned long),
1818 2 * sizeof(unsigned long));
1821 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1822 &target->thread.bescr,
1823 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1827 static int pmu_active(struct task_struct *target,
1828 const struct user_regset *regset)
1830 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1836 static int pmu_get(struct task_struct *target,
1837 const struct user_regset *regset,
1838 unsigned int pos, unsigned int count,
1839 void *kbuf, void __user *ubuf)
1842 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1843 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1844 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1845 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1847 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1850 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1851 &target->thread.siar, 0,
1852 5 * sizeof(unsigned long));
1855 static int pmu_set(struct task_struct *target,
1856 const struct user_regset *regset,
1857 unsigned int pos, unsigned int count,
1858 const void *kbuf, const void __user *ubuf)
1863 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1864 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1865 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1866 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1868 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1871 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1872 &target->thread.siar, 0,
1873 sizeof(unsigned long));
1876 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1877 &target->thread.sdar, sizeof(unsigned long),
1878 2 * sizeof(unsigned long));
1881 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1882 &target->thread.sier, 2 * sizeof(unsigned long),
1883 3 * sizeof(unsigned long));
1886 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1887 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1888 4 * sizeof(unsigned long));
1891 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1892 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1893 5 * sizeof(unsigned long));
1898 * These are our native regset flavors.
1900 enum powerpc_regset {
1903 #ifdef CONFIG_ALTIVEC
1912 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1913 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1914 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1915 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1916 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1917 REGSET_TM_SPR, /* TM specific SPR registers */
1918 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1919 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1920 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1923 REGSET_PPR, /* PPR register */
1924 REGSET_DSCR, /* DSCR register */
1926 #ifdef CONFIG_PPC_BOOK3S_64
1927 REGSET_TAR, /* TAR register */
1928 REGSET_EBB, /* EBB registers */
1929 REGSET_PMR, /* Performance Monitor Registers */
1933 static const struct user_regset native_regsets[] = {
1935 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1936 .size = sizeof(long), .align = sizeof(long),
1937 .get = gpr_get, .set = gpr_set
1940 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1941 .size = sizeof(double), .align = sizeof(double),
1942 .get = fpr_get, .set = fpr_set
1944 #ifdef CONFIG_ALTIVEC
1946 .core_note_type = NT_PPC_VMX, .n = 34,
1947 .size = sizeof(vector128), .align = sizeof(vector128),
1948 .active = vr_active, .get = vr_get, .set = vr_set
1953 .core_note_type = NT_PPC_VSX, .n = 32,
1954 .size = sizeof(double), .align = sizeof(double),
1955 .active = vsr_active, .get = vsr_get, .set = vsr_set
1960 .core_note_type = NT_PPC_SPE, .n = 35,
1961 .size = sizeof(u32), .align = sizeof(u32),
1962 .active = evr_active, .get = evr_get, .set = evr_set
1965 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1966 [REGSET_TM_CGPR] = {
1967 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1968 .size = sizeof(long), .align = sizeof(long),
1969 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1971 [REGSET_TM_CFPR] = {
1972 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1973 .size = sizeof(double), .align = sizeof(double),
1974 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1976 [REGSET_TM_CVMX] = {
1977 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1978 .size = sizeof(vector128), .align = sizeof(vector128),
1979 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1981 [REGSET_TM_CVSX] = {
1982 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1983 .size = sizeof(double), .align = sizeof(double),
1984 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1987 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1988 .size = sizeof(u64), .align = sizeof(u64),
1989 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1991 [REGSET_TM_CTAR] = {
1992 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1993 .size = sizeof(u64), .align = sizeof(u64),
1994 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1996 [REGSET_TM_CPPR] = {
1997 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1998 .size = sizeof(u64), .align = sizeof(u64),
1999 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2001 [REGSET_TM_CDSCR] = {
2002 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2003 .size = sizeof(u64), .align = sizeof(u64),
2004 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2009 .core_note_type = NT_PPC_PPR, .n = 1,
2010 .size = sizeof(u64), .align = sizeof(u64),
2011 .get = ppr_get, .set = ppr_set
2014 .core_note_type = NT_PPC_DSCR, .n = 1,
2015 .size = sizeof(u64), .align = sizeof(u64),
2016 .get = dscr_get, .set = dscr_set
2019 #ifdef CONFIG_PPC_BOOK3S_64
2021 .core_note_type = NT_PPC_TAR, .n = 1,
2022 .size = sizeof(u64), .align = sizeof(u64),
2023 .get = tar_get, .set = tar_set
2026 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2027 .size = sizeof(u64), .align = sizeof(u64),
2028 .active = ebb_active, .get = ebb_get, .set = ebb_set
2031 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
2032 .size = sizeof(u64), .align = sizeof(u64),
2033 .active = pmu_active, .get = pmu_get, .set = pmu_set
2038 static const struct user_regset_view user_ppc_native_view = {
2039 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
2040 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2044 #include <linux/compat.h>
2046 static int gpr32_get_common(struct task_struct *target,
2047 const struct user_regset *regset,
2048 unsigned int pos, unsigned int count,
2049 void *kbuf, void __user *ubuf, bool tm_active)
2051 const unsigned long *regs = &target->thread.regs->gpr[0];
2052 const unsigned long *ckpt_regs;
2053 compat_ulong_t *k = kbuf;
2054 compat_ulong_t __user *u = ubuf;
2058 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2059 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
2064 if (target->thread.regs == NULL)
2067 if (!FULL_REGS(target->thread.regs)) {
2069 * We have a partial register set.
2070 * Fill 14-31 with bogus values.
2072 for (i = 14; i < 32; i++)
2073 target->thread.regs->gpr[i] = NV_REG_POISON;
2078 count /= sizeof(reg);
2081 for (; count > 0 && pos < PT_MSR; --count)
2084 for (; count > 0 && pos < PT_MSR; --count)
2085 if (__put_user((compat_ulong_t) regs[pos++], u++))
2088 if (count > 0 && pos == PT_MSR) {
2089 reg = get_user_msr(target);
2092 else if (__put_user(reg, u++))
2099 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2102 for (; count > 0 && pos < PT_REGS_COUNT; --count)
2103 if (__put_user((compat_ulong_t) regs[pos++], u++))
2109 count *= sizeof(reg);
2110 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
2111 PT_REGS_COUNT * sizeof(reg), -1);
2114 static int gpr32_set_common(struct task_struct *target,
2115 const struct user_regset *regset,
2116 unsigned int pos, unsigned int count,
2117 const void *kbuf, const void __user *ubuf, bool tm_active)
2119 unsigned long *regs = &target->thread.regs->gpr[0];
2120 unsigned long *ckpt_regs;
2121 const compat_ulong_t *k = kbuf;
2122 const compat_ulong_t __user *u = ubuf;
2125 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2126 ckpt_regs = &target->thread.ckpt_regs.gpr[0];
2132 regs = &target->thread.regs->gpr[0];
2134 if (target->thread.regs == NULL)
2137 CHECK_FULL_REGS(target->thread.regs);
2141 count /= sizeof(reg);
2144 for (; count > 0 && pos < PT_MSR; --count)
2147 for (; count > 0 && pos < PT_MSR; --count) {
2148 if (__get_user(reg, u++))
2154 if (count > 0 && pos == PT_MSR) {
2157 else if (__get_user(reg, u++))
2159 set_user_msr(target, reg);
2165 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2167 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2170 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2171 if (__get_user(reg, u++))
2175 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2176 if (__get_user(reg, u++))
2180 if (count > 0 && pos == PT_TRAP) {
2183 else if (__get_user(reg, u++))
2185 set_user_trap(target, reg);
2193 count *= sizeof(reg);
2194 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2195 (PT_TRAP + 1) * sizeof(reg), -1);
2198 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2199 static int tm_cgpr32_get(struct task_struct *target,
2200 const struct user_regset *regset,
2201 unsigned int pos, unsigned int count,
2202 void *kbuf, void __user *ubuf)
2204 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 1);
2207 static int tm_cgpr32_set(struct task_struct *target,
2208 const struct user_regset *regset,
2209 unsigned int pos, unsigned int count,
2210 const void *kbuf, const void __user *ubuf)
2212 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 1);
2214 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2216 static int gpr32_get(struct task_struct *target,
2217 const struct user_regset *regset,
2218 unsigned int pos, unsigned int count,
2219 void *kbuf, void __user *ubuf)
2221 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf, 0);
2224 static int gpr32_set(struct task_struct *target,
2225 const struct user_regset *regset,
2226 unsigned int pos, unsigned int count,
2227 const void *kbuf, const void __user *ubuf)
2229 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf, 0);
2233 * These are the regset flavors matching the CONFIG_PPC32 native set.
2235 static const struct user_regset compat_regsets[] = {
2237 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2238 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2239 .get = gpr32_get, .set = gpr32_set
2242 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2243 .size = sizeof(double), .align = sizeof(double),
2244 .get = fpr_get, .set = fpr_set
2246 #ifdef CONFIG_ALTIVEC
2248 .core_note_type = NT_PPC_VMX, .n = 34,
2249 .size = sizeof(vector128), .align = sizeof(vector128),
2250 .active = vr_active, .get = vr_get, .set = vr_set
2255 .core_note_type = NT_PPC_SPE, .n = 35,
2256 .size = sizeof(u32), .align = sizeof(u32),
2257 .active = evr_active, .get = evr_get, .set = evr_set
2260 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2261 [REGSET_TM_CGPR] = {
2262 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2263 .size = sizeof(long), .align = sizeof(long),
2264 .active = tm_cgpr_active,
2265 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2267 [REGSET_TM_CFPR] = {
2268 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2269 .size = sizeof(double), .align = sizeof(double),
2270 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2272 [REGSET_TM_CVMX] = {
2273 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2274 .size = sizeof(vector128), .align = sizeof(vector128),
2275 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2277 [REGSET_TM_CVSX] = {
2278 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2279 .size = sizeof(double), .align = sizeof(double),
2280 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2283 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2284 .size = sizeof(u64), .align = sizeof(u64),
2285 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2287 [REGSET_TM_CTAR] = {
2288 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2289 .size = sizeof(u64), .align = sizeof(u64),
2290 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2292 [REGSET_TM_CPPR] = {
2293 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2294 .size = sizeof(u64), .align = sizeof(u64),
2295 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2297 [REGSET_TM_CDSCR] = {
2298 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2299 .size = sizeof(u64), .align = sizeof(u64),
2300 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2305 .core_note_type = NT_PPC_PPR, .n = 1,
2306 .size = sizeof(u64), .align = sizeof(u64),
2307 .get = ppr_get, .set = ppr_set
2310 .core_note_type = NT_PPC_DSCR, .n = 1,
2311 .size = sizeof(u64), .align = sizeof(u64),
2312 .get = dscr_get, .set = dscr_set
2315 #ifdef CONFIG_PPC_BOOK3S_64
2317 .core_note_type = NT_PPC_TAR, .n = 1,
2318 .size = sizeof(u64), .align = sizeof(u64),
2319 .get = tar_get, .set = tar_set
2322 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2323 .size = sizeof(u64), .align = sizeof(u64),
2324 .active = ebb_active, .get = ebb_get, .set = ebb_set
2329 static const struct user_regset_view user_ppc_compat_view = {
2330 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2331 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2333 #endif /* CONFIG_PPC64 */
2335 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2338 if (test_tsk_thread_flag(task, TIF_32BIT))
2339 return &user_ppc_compat_view;
2341 return &user_ppc_native_view;
2345 void user_enable_single_step(struct task_struct *task)
2347 struct pt_regs *regs = task->thread.regs;
2350 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2351 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2352 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2353 regs->msr |= MSR_DE;
2355 regs->msr &= ~MSR_BE;
2356 regs->msr |= MSR_SE;
2359 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2362 void user_enable_block_step(struct task_struct *task)
2364 struct pt_regs *regs = task->thread.regs;
2367 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2368 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2369 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2370 regs->msr |= MSR_DE;
2372 regs->msr &= ~MSR_SE;
2373 regs->msr |= MSR_BE;
2376 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2379 void user_disable_single_step(struct task_struct *task)
2381 struct pt_regs *regs = task->thread.regs;
2384 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2386 * The logic to disable single stepping should be as
2387 * simple as turning off the Instruction Complete flag.
2388 * And, after doing so, if all debug flags are off, turn
2389 * off DBCR0(IDM) and MSR(DE) .... Torez
2391 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2393 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2395 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2396 task->thread.debug.dbcr1)) {
2398 * All debug events were off.....
2400 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2401 regs->msr &= ~MSR_DE;
2404 regs->msr &= ~(MSR_SE | MSR_BE);
2407 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2410 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2411 void ptrace_triggered(struct perf_event *bp,
2412 struct perf_sample_data *data, struct pt_regs *regs)
2414 struct perf_event_attr attr;
2417 * Disable the breakpoint request here since ptrace has defined a
2418 * one-shot behaviour for breakpoint exceptions in PPC64.
2419 * The SIGTRAP signal is generated automatically for us in do_dabr().
2420 * We don't have to do anything about that here
2423 attr.disabled = true;
2424 modify_user_hw_breakpoint(bp, &attr);
2426 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2428 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2431 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2433 struct thread_struct *thread = &(task->thread);
2434 struct perf_event *bp;
2435 struct perf_event_attr attr;
2436 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2437 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2438 struct arch_hw_breakpoint hw_brk;
2441 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2442 * For embedded processors we support one DAC and no IAC's at the
2448 /* The bottom 3 bits in dabr are flags */
2449 if ((data & ~0x7UL) >= TASK_SIZE)
2452 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2453 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2454 * It was assumed, on previous implementations, that 3 bits were
2455 * passed together with the data address, fitting the design of the
2456 * DABR register, as follows:
2460 * bit 2: Breakpoint translation
2462 * Thus, we use them here as so.
2465 /* Ensure breakpoint translation bit is set */
2466 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2468 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2469 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2471 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2472 bp = thread->ptrace_bps[0];
2473 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2475 unregister_hw_breakpoint(bp);
2476 thread->ptrace_bps[0] = NULL;
2482 attr.bp_addr = hw_brk.address;
2483 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2485 /* Enable breakpoint */
2486 attr.disabled = false;
2488 ret = modify_user_hw_breakpoint(bp, &attr);
2492 thread->ptrace_bps[0] = bp;
2493 thread->hw_brk = hw_brk;
2497 /* Create a new breakpoint request if one doesn't exist already */
2498 hw_breakpoint_init(&attr);
2499 attr.bp_addr = hw_brk.address;
2500 arch_bp_generic_fields(hw_brk.type,
2503 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2504 ptrace_triggered, NULL, task);
2506 thread->ptrace_bps[0] = NULL;
2510 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2511 task->thread.hw_brk = hw_brk;
2512 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2513 /* As described above, it was assumed 3 bits were passed with the data
2514 * address, but we will assume only the mode bits will be passed
2515 * as to not cause alignment restrictions for DAC-based processors.
2518 /* DAC's hold the whole address without any mode flags */
2519 task->thread.debug.dac1 = data & ~0x3UL;
2521 if (task->thread.debug.dac1 == 0) {
2522 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2523 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2524 task->thread.debug.dbcr1)) {
2525 task->thread.regs->msr &= ~MSR_DE;
2526 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2531 /* Read or Write bits must be set */
2533 if (!(data & 0x3UL))
2536 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2538 task->thread.debug.dbcr0 |= DBCR0_IDM;
2540 /* Check for write and read flags and set DBCR0
2542 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2544 dbcr_dac(task) |= DBCR_DAC1R;
2546 dbcr_dac(task) |= DBCR_DAC1W;
2547 task->thread.regs->msr |= MSR_DE;
2548 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2553 * Called by kernel/ptrace.c when detaching..
2555 * Make sure single step bits etc are not set.
2557 void ptrace_disable(struct task_struct *child)
2559 /* make sure the single step bit is not set. */
2560 user_disable_single_step(child);
2563 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2564 static long set_instruction_bp(struct task_struct *child,
2565 struct ppc_hw_breakpoint *bp_info)
2568 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2569 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2570 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2571 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2573 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2575 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2578 if (bp_info->addr >= TASK_SIZE)
2581 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2583 /* Make sure range is valid. */
2584 if (bp_info->addr2 >= TASK_SIZE)
2587 /* We need a pair of IAC regsisters */
2588 if ((!slot1_in_use) && (!slot2_in_use)) {
2590 child->thread.debug.iac1 = bp_info->addr;
2591 child->thread.debug.iac2 = bp_info->addr2;
2592 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2593 if (bp_info->addr_mode ==
2594 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2595 dbcr_iac_range(child) |= DBCR_IAC12X;
2597 dbcr_iac_range(child) |= DBCR_IAC12I;
2598 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2599 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2601 child->thread.debug.iac3 = bp_info->addr;
2602 child->thread.debug.iac4 = bp_info->addr2;
2603 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2604 if (bp_info->addr_mode ==
2605 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2606 dbcr_iac_range(child) |= DBCR_IAC34X;
2608 dbcr_iac_range(child) |= DBCR_IAC34I;
2613 /* We only need one. If possible leave a pair free in
2614 * case a range is needed later
2616 if (!slot1_in_use) {
2618 * Don't use iac1 if iac1-iac2 are free and either
2619 * iac3 or iac4 (but not both) are free
2621 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2623 child->thread.debug.iac1 = bp_info->addr;
2624 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2628 if (!slot2_in_use) {
2630 child->thread.debug.iac2 = bp_info->addr;
2631 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2632 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2633 } else if (!slot3_in_use) {
2635 child->thread.debug.iac3 = bp_info->addr;
2636 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2637 } else if (!slot4_in_use) {
2639 child->thread.debug.iac4 = bp_info->addr;
2640 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2646 child->thread.debug.dbcr0 |= DBCR0_IDM;
2647 child->thread.regs->msr |= MSR_DE;
2652 static int del_instruction_bp(struct task_struct *child, int slot)
2656 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2659 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2660 /* address range - clear slots 1 & 2 */
2661 child->thread.debug.iac2 = 0;
2662 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2664 child->thread.debug.iac1 = 0;
2665 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2668 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2671 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2672 /* used in a range */
2674 child->thread.debug.iac2 = 0;
2675 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2679 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2682 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2683 /* address range - clear slots 3 & 4 */
2684 child->thread.debug.iac4 = 0;
2685 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2687 child->thread.debug.iac3 = 0;
2688 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2691 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2694 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2695 /* Used in a range */
2697 child->thread.debug.iac4 = 0;
2698 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2707 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2710 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2712 int condition_mode =
2713 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2716 if (byte_enable && (condition_mode == 0))
2719 if (bp_info->addr >= TASK_SIZE)
2722 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2724 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2725 dbcr_dac(child) |= DBCR_DAC1R;
2726 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2727 dbcr_dac(child) |= DBCR_DAC1W;
2728 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2729 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2731 child->thread.debug.dvc1 =
2732 (unsigned long)bp_info->condition_value;
2733 child->thread.debug.dbcr2 |=
2734 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2735 (condition_mode << DBCR2_DVC1M_SHIFT));
2738 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2739 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2740 /* Both dac1 and dac2 are part of a range */
2743 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2745 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2746 dbcr_dac(child) |= DBCR_DAC2R;
2747 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2748 dbcr_dac(child) |= DBCR_DAC2W;
2749 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2750 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2752 child->thread.debug.dvc2 =
2753 (unsigned long)bp_info->condition_value;
2754 child->thread.debug.dbcr2 |=
2755 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2756 (condition_mode << DBCR2_DVC2M_SHIFT));
2761 child->thread.debug.dbcr0 |= DBCR0_IDM;
2762 child->thread.regs->msr |= MSR_DE;
2767 static int del_dac(struct task_struct *child, int slot)
2770 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2773 child->thread.debug.dac1 = 0;
2774 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2775 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2776 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2777 child->thread.debug.dac2 = 0;
2778 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2780 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2782 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2783 child->thread.debug.dvc1 = 0;
2785 } else if (slot == 2) {
2786 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2789 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2790 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2791 /* Part of a range */
2793 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2795 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2796 child->thread.debug.dvc2 = 0;
2798 child->thread.debug.dac2 = 0;
2799 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2805 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2807 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2808 static int set_dac_range(struct task_struct *child,
2809 struct ppc_hw_breakpoint *bp_info)
2811 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2813 /* We don't allow range watchpoints to be used with DVC */
2814 if (bp_info->condition_mode)
2818 * Best effort to verify the address range. The user/supervisor bits
2819 * prevent trapping in kernel space, but let's fail on an obvious bad
2820 * range. The simple test on the mask is not fool-proof, and any
2821 * exclusive range will spill over into kernel space.
2823 if (bp_info->addr >= TASK_SIZE)
2825 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2827 * dac2 is a bitmask. Don't allow a mask that makes a
2828 * kernel space address from a valid dac1 value
2830 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2834 * For range breakpoints, addr2 must also be a valid address
2836 if (bp_info->addr2 >= TASK_SIZE)
2840 if (child->thread.debug.dbcr0 &
2841 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2844 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2845 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2846 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2847 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2848 child->thread.debug.dac1 = bp_info->addr;
2849 child->thread.debug.dac2 = bp_info->addr2;
2850 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2851 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2852 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2853 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2854 else /* PPC_BREAKPOINT_MODE_MASK */
2855 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2856 child->thread.regs->msr |= MSR_DE;
2860 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2862 static long ppc_set_hwdebug(struct task_struct *child,
2863 struct ppc_hw_breakpoint *bp_info)
2865 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2867 struct thread_struct *thread = &(child->thread);
2868 struct perf_event *bp;
2869 struct perf_event_attr attr;
2870 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2871 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2872 struct arch_hw_breakpoint brk;
2875 if (bp_info->version != 1)
2877 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2879 * Check for invalid flags and combinations
2881 if ((bp_info->trigger_type == 0) ||
2882 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2883 PPC_BREAKPOINT_TRIGGER_RW)) ||
2884 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2885 (bp_info->condition_mode &
2886 ~(PPC_BREAKPOINT_CONDITION_MODE |
2887 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2889 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2890 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2894 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2895 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2896 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2898 return set_instruction_bp(child, bp_info);
2900 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2901 return set_dac(child, bp_info);
2903 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2904 return set_dac_range(child, bp_info);
2908 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2910 * We only support one data breakpoint
2912 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2913 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2914 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2917 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2920 brk.address = bp_info->addr & ~7UL;
2921 brk.type = HW_BRK_TYPE_TRANSLATE;
2923 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2924 brk.type |= HW_BRK_TYPE_READ;
2925 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2926 brk.type |= HW_BRK_TYPE_WRITE;
2927 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2929 * Check if the request is for 'range' breakpoints. We can
2930 * support it if range < 8 bytes.
2932 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2933 len = bp_info->addr2 - bp_info->addr;
2934 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2938 bp = thread->ptrace_bps[0];
2942 /* Create a new breakpoint request if one doesn't exist already */
2943 hw_breakpoint_init(&attr);
2944 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2946 arch_bp_generic_fields(brk.type, &attr.bp_type);
2948 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2949 ptrace_triggered, NULL, child);
2951 thread->ptrace_bps[0] = NULL;
2956 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2958 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2961 if (child->thread.hw_brk.address)
2964 child->thread.hw_brk = brk;
2967 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2970 static long ppc_del_hwdebug(struct task_struct *child, long data)
2972 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2974 struct thread_struct *thread = &(child->thread);
2975 struct perf_event *bp;
2976 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2977 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2981 rc = del_instruction_bp(child, (int)data);
2983 rc = del_dac(child, (int)data - 4);
2986 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2987 child->thread.debug.dbcr1)) {
2988 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2989 child->thread.regs->msr &= ~MSR_DE;
2997 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2998 bp = thread->ptrace_bps[0];
3000 unregister_hw_breakpoint(bp);
3001 thread->ptrace_bps[0] = NULL;
3005 #else /* CONFIG_HAVE_HW_BREAKPOINT */
3006 if (child->thread.hw_brk.address == 0)
3009 child->thread.hw_brk.address = 0;
3010 child->thread.hw_brk.type = 0;
3011 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3017 long arch_ptrace(struct task_struct *child, long request,
3018 unsigned long addr, unsigned long data)
3021 void __user *datavp = (void __user *) data;
3022 unsigned long __user *datalp = datavp;
3025 /* read the word at location addr in the USER area. */
3026 case PTRACE_PEEKUSR: {
3027 unsigned long index, tmp;
3030 /* convert to index and check */
3033 if ((addr & 3) || (index > PT_FPSCR)
3034 || (child->thread.regs == NULL))
3037 if ((addr & 7) || (index > PT_FPSCR))
3041 CHECK_FULL_REGS(child->thread.regs);
3042 if (index < PT_FPR0) {
3043 ret = ptrace_get_reg(child, (int) index, &tmp);
3047 unsigned int fpidx = index - PT_FPR0;
3049 flush_fp_to_thread(child);
3050 if (fpidx < (PT_FPSCR - PT_FPR0))
3051 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
3054 tmp = child->thread.fp_state.fpscr;
3056 ret = put_user(tmp, datalp);
3060 /* write the word at location addr in the USER area */
3061 case PTRACE_POKEUSR: {
3062 unsigned long index;
3065 /* convert to index and check */
3068 if ((addr & 3) || (index > PT_FPSCR)
3069 || (child->thread.regs == NULL))
3072 if ((addr & 7) || (index > PT_FPSCR))
3076 CHECK_FULL_REGS(child->thread.regs);
3077 if (index < PT_FPR0) {
3078 ret = ptrace_put_reg(child, index, data);
3080 unsigned int fpidx = index - PT_FPR0;
3082 flush_fp_to_thread(child);
3083 if (fpidx < (PT_FPSCR - PT_FPR0))
3084 memcpy(&child->thread.TS_FPR(fpidx), &data,
3087 child->thread.fp_state.fpscr = data;
3093 case PPC_PTRACE_GETHWDBGINFO: {
3094 struct ppc_debug_info dbginfo;
3096 dbginfo.version = 1;
3097 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3098 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
3099 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
3100 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
3101 dbginfo.data_bp_alignment = 4;
3102 dbginfo.sizeof_condition = 4;
3103 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
3104 PPC_DEBUG_FEATURE_INSN_BP_MASK;
3105 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
3107 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
3108 PPC_DEBUG_FEATURE_DATA_BP_MASK;
3110 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
3111 dbginfo.num_instruction_bps = 0;
3112 dbginfo.num_data_bps = 1;
3113 dbginfo.num_condition_regs = 0;
3115 dbginfo.data_bp_alignment = 8;
3117 dbginfo.data_bp_alignment = 4;
3119 dbginfo.sizeof_condition = 0;
3120 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3121 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3122 if (cpu_has_feature(CPU_FTR_DAWR))
3123 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3125 dbginfo.features = 0;
3126 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3127 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3129 if (!access_ok(VERIFY_WRITE, datavp,
3130 sizeof(struct ppc_debug_info)))
3132 ret = __copy_to_user(datavp, &dbginfo,
3133 sizeof(struct ppc_debug_info)) ?
3138 case PPC_PTRACE_SETHWDEBUG: {
3139 struct ppc_hw_breakpoint bp_info;
3141 if (!access_ok(VERIFY_READ, datavp,
3142 sizeof(struct ppc_hw_breakpoint)))
3144 ret = __copy_from_user(&bp_info, datavp,
3145 sizeof(struct ppc_hw_breakpoint)) ?
3148 ret = ppc_set_hwdebug(child, &bp_info);
3152 case PPC_PTRACE_DELHWDEBUG: {
3153 ret = ppc_del_hwdebug(child, data);
3157 case PTRACE_GET_DEBUGREG: {
3158 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3159 unsigned long dabr_fake;
3162 /* We only support one DABR and no IABRS at the moment */
3165 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3166 ret = put_user(child->thread.debug.dac1, datalp);
3168 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3169 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3170 ret = put_user(dabr_fake, datalp);
3175 case PTRACE_SET_DEBUGREG:
3176 ret = ptrace_set_debugreg(child, addr, data);
3180 case PTRACE_GETREGS64:
3182 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3183 return copy_regset_to_user(child, &user_ppc_native_view,
3185 0, sizeof(struct pt_regs),
3189 case PTRACE_SETREGS64:
3191 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3192 return copy_regset_from_user(child, &user_ppc_native_view,
3194 0, sizeof(struct pt_regs),
3197 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3198 return copy_regset_to_user(child, &user_ppc_native_view,
3200 0, sizeof(elf_fpregset_t),
3203 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3204 return copy_regset_from_user(child, &user_ppc_native_view,
3206 0, sizeof(elf_fpregset_t),
3209 #ifdef CONFIG_ALTIVEC
3210 case PTRACE_GETVRREGS:
3211 return copy_regset_to_user(child, &user_ppc_native_view,
3213 0, (33 * sizeof(vector128) +
3217 case PTRACE_SETVRREGS:
3218 return copy_regset_from_user(child, &user_ppc_native_view,
3220 0, (33 * sizeof(vector128) +
3225 case PTRACE_GETVSRREGS:
3226 return copy_regset_to_user(child, &user_ppc_native_view,
3228 0, 32 * sizeof(double),
3231 case PTRACE_SETVSRREGS:
3232 return copy_regset_from_user(child, &user_ppc_native_view,
3234 0, 32 * sizeof(double),
3238 case PTRACE_GETEVRREGS:
3239 /* Get the child spe register state. */
3240 return copy_regset_to_user(child, &user_ppc_native_view,
3241 REGSET_SPE, 0, 35 * sizeof(u32),
3244 case PTRACE_SETEVRREGS:
3245 /* Set the child spe register state. */
3246 return copy_regset_from_user(child, &user_ppc_native_view,
3247 REGSET_SPE, 0, 35 * sizeof(u32),
3252 ret = ptrace_request(child, request, addr, data);
3258 #ifdef CONFIG_SECCOMP
3259 static int do_seccomp(struct pt_regs *regs)
3261 if (!test_thread_flag(TIF_SECCOMP))
3265 * The ABI we present to seccomp tracers is that r3 contains
3266 * the syscall return value and orig_gpr3 contains the first
3267 * syscall parameter. This is different to the ptrace ABI where
3268 * both r3 and orig_gpr3 contain the first syscall parameter.
3270 regs->gpr[3] = -ENOSYS;
3273 * We use the __ version here because we have already checked
3274 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3275 * have already loaded -ENOSYS into r3, or seccomp has put
3276 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3278 if (__secure_computing(NULL))
3282 * The syscall was allowed by seccomp, restore the register
3283 * state to what audit expects.
3284 * Note that we use orig_gpr3, which means a seccomp tracer can
3285 * modify the first syscall parameter (in orig_gpr3) and also
3286 * allow the syscall to proceed.
3288 regs->gpr[3] = regs->orig_gpr3;
3293 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3294 #endif /* CONFIG_SECCOMP */
3297 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3298 * @regs: the pt_regs of the task to trace (current)
3300 * Performs various types of tracing on syscall entry. This includes seccomp,
3301 * ptrace, syscall tracepoints and audit.
3303 * The pt_regs are potentially visible to userspace via ptrace, so their
3306 * One or more of the tracers may modify the contents of pt_regs, in particular
3307 * to modify arguments or even the syscall number itself.
3309 * It's also possible that a tracer can choose to reject the system call. In
3310 * that case this function will return an illegal syscall number, and will put
3311 * an appropriate return value in regs->r3.
3313 * Return: the (possibly changed) syscall number.
3315 long do_syscall_trace_enter(struct pt_regs *regs)
3320 * The tracer may decide to abort the syscall, if so tracehook
3321 * will return !0. Note that the tracer may also just change
3322 * regs->gpr[0] to an invalid syscall number, that is handled
3323 * below on the exit path.
3325 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3326 tracehook_report_syscall_entry(regs))
3329 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3330 if (do_seccomp(regs))
3333 /* Avoid trace and audit when syscall is invalid. */
3334 if (regs->gpr[0] >= NR_syscalls)
3337 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3338 trace_sys_enter(regs, regs->gpr[0]);
3341 if (!is_32bit_task())
3342 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3343 regs->gpr[5], regs->gpr[6]);
3346 audit_syscall_entry(regs->gpr[0],
3347 regs->gpr[3] & 0xffffffff,
3348 regs->gpr[4] & 0xffffffff,
3349 regs->gpr[5] & 0xffffffff,
3350 regs->gpr[6] & 0xffffffff);
3352 /* Return the possibly modified but valid syscall number */
3353 return regs->gpr[0];
3357 * If we are aborting explicitly, or if the syscall number is
3358 * now invalid, set the return value to -ENOSYS.
3360 regs->gpr[3] = -ENOSYS;
3364 void do_syscall_trace_leave(struct pt_regs *regs)
3368 audit_syscall_exit(regs);
3370 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3371 trace_sys_exit(regs, regs->result);
3373 step = test_thread_flag(TIF_SINGLESTEP);
3374 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3375 tracehook_report_syscall_exit(regs, step);