Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 /*
78  * Make sure the floating-point register state in the
79  * the thread_struct is up to date for task tsk.
80  */
81 void flush_fp_to_thread(struct task_struct *tsk)
82 {
83         if (tsk->thread.regs) {
84                 /*
85                  * We need to disable preemption here because if we didn't,
86                  * another process could get scheduled after the regs->msr
87                  * test but before we have finished saving the FP registers
88                  * to the thread_struct.  That process could take over the
89                  * FPU, and then when we get scheduled again we would store
90                  * bogus values for the remaining FP registers.
91                  */
92                 preempt_disable();
93                 if (tsk->thread.regs->msr & MSR_FP) {
94 #ifdef CONFIG_SMP
95                         /*
96                          * This should only ever be called for current or
97                          * for a stopped child process.  Since we save away
98                          * the FP register state on context switch on SMP,
99                          * there is something wrong if a stopped child appears
100                          * to still have its FP state in the CPU registers.
101                          */
102                         BUG_ON(tsk != current);
103 #endif
104                         giveup_fpu(tsk);
105                 }
106                 preempt_enable();
107         }
108 }
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110
111 void enable_kernel_fp(void)
112 {
113         WARN_ON(preemptible());
114
115 #ifdef CONFIG_SMP
116         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117                 giveup_fpu(current);
118         else
119                 giveup_fpu(NULL);       /* just enables FP for kernel */
120 #else
121         giveup_fpu(last_task_used_math);
122 #endif /* CONFIG_SMP */
123 }
124 EXPORT_SYMBOL(enable_kernel_fp);
125
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
128 {
129         WARN_ON(preemptible());
130
131 #ifdef CONFIG_SMP
132         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133                 giveup_altivec(current);
134         else
135                 giveup_altivec_notask();
136 #else
137         giveup_altivec(last_task_used_altivec);
138 #endif /* CONFIG_SMP */
139 }
140 EXPORT_SYMBOL(enable_kernel_altivec);
141
142 /*
143  * Make sure the VMX/Altivec register state in the
144  * the thread_struct is up to date for task tsk.
145  */
146 void flush_altivec_to_thread(struct task_struct *tsk)
147 {
148         if (tsk->thread.regs) {
149                 preempt_disable();
150                 if (tsk->thread.regs->msr & MSR_VEC) {
151 #ifdef CONFIG_SMP
152                         BUG_ON(tsk != current);
153 #endif
154                         giveup_altivec(tsk);
155                 }
156                 preempt_enable();
157         }
158 }
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_VSX
163 #if 0
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
166 {
167         WARN_ON(preemptible());
168
169 #ifdef CONFIG_SMP
170         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171                 giveup_vsx(current);
172         else
173                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
174 #else
175         giveup_vsx(last_task_used_vsx);
176 #endif /* CONFIG_SMP */
177 }
178 EXPORT_SYMBOL(enable_kernel_vsx);
179 #endif
180
181 void giveup_vsx(struct task_struct *tsk)
182 {
183         giveup_fpu(tsk);
184         giveup_altivec(tsk);
185         __giveup_vsx(tsk);
186 }
187
188 void flush_vsx_to_thread(struct task_struct *tsk)
189 {
190         if (tsk->thread.regs) {
191                 preempt_disable();
192                 if (tsk->thread.regs->msr & MSR_VSX) {
193 #ifdef CONFIG_SMP
194                         BUG_ON(tsk != current);
195 #endif
196                         giveup_vsx(tsk);
197                 }
198                 preempt_enable();
199         }
200 }
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 #endif /* CONFIG_VSX */
203
204 #ifdef CONFIG_SPE
205
206 void enable_kernel_spe(void)
207 {
208         WARN_ON(preemptible());
209
210 #ifdef CONFIG_SMP
211         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212                 giveup_spe(current);
213         else
214                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
215 #else
216         giveup_spe(last_task_used_spe);
217 #endif /* __SMP __ */
218 }
219 EXPORT_SYMBOL(enable_kernel_spe);
220
221 void flush_spe_to_thread(struct task_struct *tsk)
222 {
223         if (tsk->thread.regs) {
224                 preempt_disable();
225                 if (tsk->thread.regs->msr & MSR_SPE) {
226 #ifdef CONFIG_SMP
227                         BUG_ON(tsk != current);
228 #endif
229                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230                         giveup_spe(tsk);
231                 }
232                 preempt_enable();
233         }
234 }
235 #endif /* CONFIG_SPE */
236
237 #ifndef CONFIG_SMP
238 /*
239  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240  * and the current task has some state, discard it.
241  */
242 void discard_lazy_cpu_state(void)
243 {
244         preempt_disable();
245         if (last_task_used_math == current)
246                 last_task_used_math = NULL;
247 #ifdef CONFIG_ALTIVEC
248         if (last_task_used_altivec == current)
249                 last_task_used_altivec = NULL;
250 #endif /* CONFIG_ALTIVEC */
251 #ifdef CONFIG_VSX
252         if (last_task_used_vsx == current)
253                 last_task_used_vsx = NULL;
254 #endif /* CONFIG_VSX */
255 #ifdef CONFIG_SPE
256         if (last_task_used_spe == current)
257                 last_task_used_spe = NULL;
258 #endif
259         preempt_enable();
260 }
261 #endif /* CONFIG_SMP */
262
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs *regs, unsigned long address,
265                   unsigned long error_code, int signal_code, int breakpt)
266 {
267         siginfo_t info;
268
269         current->thread.trap_nr = signal_code;
270         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271                         11, SIGSEGV) == NOTIFY_STOP)
272                 return;
273
274         /* Deliver the signal to userspace */
275         info.si_signo = SIGTRAP;
276         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
277         info.si_code = signal_code;
278         info.si_addr = (void __user *)address;
279         force_sig_info(SIGTRAP, &info, current);
280 }
281 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs *regs, unsigned long address,
283                     unsigned long error_code)
284 {
285         siginfo_t info;
286
287         current->thread.trap_nr = TRAP_HWBKPT;
288         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289                         11, SIGSEGV) == NOTIFY_STOP)
290                 return;
291
292         if (debugger_break_match(regs))
293                 return;
294
295         /* Clear the breakpoint */
296         hw_breakpoint_disable();
297
298         /* Deliver the signal to userspace */
299         info.si_signo = SIGTRAP;
300         info.si_errno = 0;
301         info.si_code = TRAP_HWBKPT;
302         info.si_addr = (void __user *)address;
303         force_sig_info(SIGTRAP, &info, current);
304 }
305 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
306
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
310 /*
311  * Set the debug registers back to their default "safe" values.
312  */
313 static void set_debug_reg_defaults(struct thread_struct *thread)
314 {
315         thread->iac1 = thread->iac2 = 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317         thread->iac3 = thread->iac4 = 0;
318 #endif
319         thread->dac1 = thread->dac2 = 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321         thread->dvc1 = thread->dvc2 = 0;
322 #endif
323         thread->dbcr0 = 0;
324 #ifdef CONFIG_BOOKE
325         /*
326          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327          */
328         thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |   \
329                         DBCR1_IAC3US | DBCR1_IAC4US;
330         /*
331          * Force Data Address Compare User/Supervisor bits to be User-only
332          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333          */
334         thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335 #else
336         thread->dbcr1 = 0;
337 #endif
338 }
339
340 static void prime_debug_regs(struct thread_struct *thread)
341 {
342         mtspr(SPRN_IAC1, thread->iac1);
343         mtspr(SPRN_IAC2, thread->iac2);
344 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
345         mtspr(SPRN_IAC3, thread->iac3);
346         mtspr(SPRN_IAC4, thread->iac4);
347 #endif
348         mtspr(SPRN_DAC1, thread->dac1);
349         mtspr(SPRN_DAC2, thread->dac2);
350 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
351         mtspr(SPRN_DVC1, thread->dvc1);
352         mtspr(SPRN_DVC2, thread->dvc2);
353 #endif
354         mtspr(SPRN_DBCR0, thread->dbcr0);
355         mtspr(SPRN_DBCR1, thread->dbcr1);
356 #ifdef CONFIG_BOOKE
357         mtspr(SPRN_DBCR2, thread->dbcr2);
358 #endif
359 }
360 /*
361  * Unless neither the old or new thread are making use of the
362  * debug registers, set the debug registers from the values
363  * stored in the new thread.
364  */
365 static void switch_booke_debug_regs(struct thread_struct *new_thread)
366 {
367         if ((current->thread.dbcr0 & DBCR0_IDM)
368                 || (new_thread->dbcr0 & DBCR0_IDM))
369                         prime_debug_regs(new_thread);
370 }
371 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
372 #ifndef CONFIG_HAVE_HW_BREAKPOINT
373 static void set_debug_reg_defaults(struct thread_struct *thread)
374 {
375         thread->hw_brk.address = 0;
376         thread->hw_brk.type = 0;
377         set_breakpoint(&thread->hw_brk);
378 }
379 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
380 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
381
382 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
383 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
384 {
385         mtspr(SPRN_DAC1, dabr);
386 #ifdef CONFIG_PPC_47x
387         isync();
388 #endif
389         return 0;
390 }
391 #elif defined(CONFIG_PPC_BOOK3S)
392 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
393 {
394         mtspr(SPRN_DABR, dabr);
395         mtspr(SPRN_DABRX, dabrx);
396         return 0;
397 }
398 #else
399 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400 {
401         return -EINVAL;
402 }
403 #endif
404
405 static inline int set_dabr(struct arch_hw_breakpoint *brk)
406 {
407         unsigned long dabr, dabrx;
408
409         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
410         dabrx = ((brk->type >> 3) & 0x7);
411
412         if (ppc_md.set_dabr)
413                 return ppc_md.set_dabr(dabr, dabrx);
414
415         return __set_dabr(dabr, dabrx);
416 }
417
418 static inline int set_dawr(struct arch_hw_breakpoint *brk)
419 {
420         unsigned long dawr, dawrx, mrd;
421
422         dawr = brk->address;
423
424         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
425                                    << (63 - 58); //* read/write bits */
426         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
427                                    << (63 - 59); //* translate */
428         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
429                                    >> 3; //* PRIM bits */
430         /* dawr length is stored in field MDR bits 48:53.  Matches range in
431            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
432            0b111111=64DW.
433            brk->len is in bytes.
434            This aligns up to double word size, shifts and does the bias.
435         */
436         mrd = ((brk->len + 7) >> 3) - 1;
437         dawrx |= (mrd & 0x3f) << (63 - 53);
438
439         if (ppc_md.set_dawr)
440                 return ppc_md.set_dawr(dawr, dawrx);
441         mtspr(SPRN_DAWR, dawr);
442         mtspr(SPRN_DAWRX, dawrx);
443         return 0;
444 }
445
446 int set_breakpoint(struct arch_hw_breakpoint *brk)
447 {
448         __get_cpu_var(current_brk) = *brk;
449
450         if (cpu_has_feature(CPU_FTR_DAWR))
451                 return set_dawr(brk);
452
453         return set_dabr(brk);
454 }
455
456 #ifdef CONFIG_PPC64
457 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
458 #endif
459
460 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
461                               struct arch_hw_breakpoint *b)
462 {
463         if (a->address != b->address)
464                 return false;
465         if (a->type != b->type)
466                 return false;
467         if (a->len != b->len)
468                 return false;
469         return true;
470 }
471 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
472 static inline void tm_reclaim_task(struct task_struct *tsk)
473 {
474         /* We have to work out if we're switching from/to a task that's in the
475          * middle of a transaction.
476          *
477          * In switching we need to maintain a 2nd register state as
478          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
479          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
480          * (current) FPRs into oldtask->thread.transact_fpr[].
481          *
482          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
483          */
484         struct thread_struct *thr = &tsk->thread;
485
486         if (!thr->regs)
487                 return;
488
489         if (!MSR_TM_ACTIVE(thr->regs->msr))
490                 goto out_and_saveregs;
491
492         /* Stash the original thread MSR, as giveup_fpu et al will
493          * modify it.  We hold onto it to see whether the task used
494          * FP & vector regs.
495          */
496         thr->tm_orig_msr = thr->regs->msr;
497
498         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
499                  "ccr=%lx, msr=%lx, trap=%lx)\n",
500                  tsk->pid, thr->regs->nip,
501                  thr->regs->ccr, thr->regs->msr,
502                  thr->regs->trap);
503
504         tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
505
506         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
507                  tsk->pid);
508
509 out_and_saveregs:
510         /* Always save the regs here, even if a transaction's not active.
511          * This context-switches a thread's TM info SPRs.  We do it here to
512          * be consistent with the restore path (in recheckpoint) which
513          * cannot happen later in _switch().
514          */
515         tm_save_sprs(thr);
516 }
517
518 static inline void tm_recheckpoint_new_task(struct task_struct *new)
519 {
520         unsigned long msr;
521
522         if (!cpu_has_feature(CPU_FTR_TM))
523                 return;
524
525         /* Recheckpoint the registers of the thread we're about to switch to.
526          *
527          * If the task was using FP, we non-lazily reload both the original and
528          * the speculative FP register states.  This is because the kernel
529          * doesn't see if/when a TM rollback occurs, so if we take an FP
530          * unavoidable later, we are unable to determine which set of FP regs
531          * need to be restored.
532          */
533         if (!new->thread.regs)
534                 return;
535
536         /* The TM SPRs are restored here, so that TEXASR.FS can be set
537          * before the trecheckpoint and no explosion occurs.
538          */
539         tm_restore_sprs(&new->thread);
540
541         if (!MSR_TM_ACTIVE(new->thread.regs->msr))
542                 return;
543         msr = new->thread.tm_orig_msr;
544         /* Recheckpoint to restore original checkpointed register state. */
545         TM_DEBUG("*** tm_recheckpoint of pid %d "
546                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
547                  new->pid, new->thread.regs->msr, msr);
548
549         /* This loads the checkpointed FP/VEC state, if used */
550         tm_recheckpoint(&new->thread, msr);
551
552         /* This loads the speculative FP/VEC state, if used */
553         if (msr & MSR_FP) {
554                 do_load_up_transact_fpu(&new->thread);
555                 new->thread.regs->msr |=
556                         (MSR_FP | new->thread.fpexc_mode);
557         }
558         if (msr & MSR_VEC) {
559                 do_load_up_transact_altivec(&new->thread);
560                 new->thread.regs->msr |= MSR_VEC;
561         }
562         /* We may as well turn on VSX too since all the state is restored now */
563         if (msr & MSR_VSX)
564                 new->thread.regs->msr |= MSR_VSX;
565
566         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
567                  "(kernel msr 0x%lx)\n",
568                  new->pid, mfmsr());
569 }
570
571 static inline void __switch_to_tm(struct task_struct *prev)
572 {
573         if (cpu_has_feature(CPU_FTR_TM)) {
574                 tm_enable();
575                 tm_reclaim_task(prev);
576         }
577 }
578 #else
579 #define tm_recheckpoint_new_task(new)
580 #define __switch_to_tm(prev)
581 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
582
583 struct task_struct *__switch_to(struct task_struct *prev,
584         struct task_struct *new)
585 {
586         struct thread_struct *new_thread, *old_thread;
587         unsigned long flags;
588         struct task_struct *last;
589 #ifdef CONFIG_PPC_BOOK3S_64
590         struct ppc64_tlb_batch *batch;
591 #endif
592
593         __switch_to_tm(prev);
594
595 #ifdef CONFIG_SMP
596         /* avoid complexity of lazy save/restore of fpu
597          * by just saving it every time we switch out if
598          * this task used the fpu during the last quantum.
599          *
600          * If it tries to use the fpu again, it'll trap and
601          * reload its fp regs.  So we don't have to do a restore
602          * every switch, just a save.
603          *  -- Cort
604          */
605         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
606                 giveup_fpu(prev);
607 #ifdef CONFIG_ALTIVEC
608         /*
609          * If the previous thread used altivec in the last quantum
610          * (thus changing altivec regs) then save them.
611          * We used to check the VRSAVE register but not all apps
612          * set it, so we don't rely on it now (and in fact we need
613          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
614          *
615          * On SMP we always save/restore altivec regs just to avoid the
616          * complexity of changing processors.
617          *  -- Cort
618          */
619         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
620                 giveup_altivec(prev);
621 #endif /* CONFIG_ALTIVEC */
622 #ifdef CONFIG_VSX
623         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
624                 /* VMX and FPU registers are already save here */
625                 __giveup_vsx(prev);
626 #endif /* CONFIG_VSX */
627 #ifdef CONFIG_SPE
628         /*
629          * If the previous thread used spe in the last quantum
630          * (thus changing spe regs) then save them.
631          *
632          * On SMP we always save/restore spe regs just to avoid the
633          * complexity of changing processors.
634          */
635         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
636                 giveup_spe(prev);
637 #endif /* CONFIG_SPE */
638
639 #else  /* CONFIG_SMP */
640 #ifdef CONFIG_ALTIVEC
641         /* Avoid the trap.  On smp this this never happens since
642          * we don't set last_task_used_altivec -- Cort
643          */
644         if (new->thread.regs && last_task_used_altivec == new)
645                 new->thread.regs->msr |= MSR_VEC;
646 #endif /* CONFIG_ALTIVEC */
647 #ifdef CONFIG_VSX
648         if (new->thread.regs && last_task_used_vsx == new)
649                 new->thread.regs->msr |= MSR_VSX;
650 #endif /* CONFIG_VSX */
651 #ifdef CONFIG_SPE
652         /* Avoid the trap.  On smp this this never happens since
653          * we don't set last_task_used_spe
654          */
655         if (new->thread.regs && last_task_used_spe == new)
656                 new->thread.regs->msr |= MSR_SPE;
657 #endif /* CONFIG_SPE */
658
659 #endif /* CONFIG_SMP */
660
661 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
662         switch_booke_debug_regs(&new->thread);
663 #else
664 /*
665  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
666  * schedule DABR
667  */
668 #ifndef CONFIG_HAVE_HW_BREAKPOINT
669         if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
670                 set_breakpoint(&new->thread.hw_brk);
671 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
672 #endif
673
674
675         new_thread = &new->thread;
676         old_thread = &current->thread;
677
678 #ifdef CONFIG_PPC64
679         /*
680          * Collect processor utilization data per process
681          */
682         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
683                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
684                 long unsigned start_tb, current_tb;
685                 start_tb = old_thread->start_tb;
686                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
687                 old_thread->accum_tb += (current_tb - start_tb);
688                 new_thread->start_tb = current_tb;
689         }
690 #endif /* CONFIG_PPC64 */
691
692 #ifdef CONFIG_PPC_BOOK3S_64
693         batch = &__get_cpu_var(ppc64_tlb_batch);
694         if (batch->active) {
695                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
696                 if (batch->index)
697                         __flush_tlb_pending(batch);
698                 batch->active = 0;
699         }
700 #endif /* CONFIG_PPC_BOOK3S_64 */
701
702         local_irq_save(flags);
703
704         /*
705          * We can't take a PMU exception inside _switch() since there is a
706          * window where the kernel stack SLB and the kernel stack are out
707          * of sync. Hard disable here.
708          */
709         hard_irq_disable();
710
711         tm_recheckpoint_new_task(new);
712
713         last = _switch(old_thread, new_thread);
714
715 #ifdef CONFIG_PPC_BOOK3S_64
716         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
717                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
718                 batch = &__get_cpu_var(ppc64_tlb_batch);
719                 batch->active = 1;
720         }
721 #endif /* CONFIG_PPC_BOOK3S_64 */
722
723         local_irq_restore(flags);
724
725         return last;
726 }
727
728 static int instructions_to_print = 16;
729
730 static void show_instructions(struct pt_regs *regs)
731 {
732         int i;
733         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
734                         sizeof(int));
735
736         printk("Instruction dump:");
737
738         for (i = 0; i < instructions_to_print; i++) {
739                 int instr;
740
741                 if (!(i % 8))
742                         printk("\n");
743
744 #if !defined(CONFIG_BOOKE)
745                 /* If executing with the IMMU off, adjust pc rather
746                  * than print XXXXXXXX.
747                  */
748                 if (!(regs->msr & MSR_IR))
749                         pc = (unsigned long)phys_to_virt(pc);
750 #endif
751
752                 /* We use __get_user here *only* to avoid an OOPS on a
753                  * bad address because the pc *should* only be a
754                  * kernel address.
755                  */
756                 if (!__kernel_text_address(pc) ||
757                      __get_user(instr, (unsigned int __user *)pc)) {
758                         printk(KERN_CONT "XXXXXXXX ");
759                 } else {
760                         if (regs->nip == pc)
761                                 printk(KERN_CONT "<%08x> ", instr);
762                         else
763                                 printk(KERN_CONT "%08x ", instr);
764                 }
765
766                 pc += sizeof(int);
767         }
768
769         printk("\n");
770 }
771
772 static struct regbit {
773         unsigned long bit;
774         const char *name;
775 } msr_bits[] = {
776 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
777         {MSR_SF,        "SF"},
778         {MSR_HV,        "HV"},
779 #endif
780         {MSR_VEC,       "VEC"},
781         {MSR_VSX,       "VSX"},
782 #ifdef CONFIG_BOOKE
783         {MSR_CE,        "CE"},
784 #endif
785         {MSR_EE,        "EE"},
786         {MSR_PR,        "PR"},
787         {MSR_FP,        "FP"},
788         {MSR_ME,        "ME"},
789 #ifdef CONFIG_BOOKE
790         {MSR_DE,        "DE"},
791 #else
792         {MSR_SE,        "SE"},
793         {MSR_BE,        "BE"},
794 #endif
795         {MSR_IR,        "IR"},
796         {MSR_DR,        "DR"},
797         {MSR_PMM,       "PMM"},
798 #ifndef CONFIG_BOOKE
799         {MSR_RI,        "RI"},
800         {MSR_LE,        "LE"},
801 #endif
802         {0,             NULL}
803 };
804
805 static void printbits(unsigned long val, struct regbit *bits)
806 {
807         const char *sep = "";
808
809         printk("<");
810         for (; bits->bit; ++bits)
811                 if (val & bits->bit) {
812                         printk("%s%s", sep, bits->name);
813                         sep = ",";
814                 }
815         printk(">");
816 }
817
818 #ifdef CONFIG_PPC64
819 #define REG             "%016lx"
820 #define REGS_PER_LINE   4
821 #define LAST_VOLATILE   13
822 #else
823 #define REG             "%08lx"
824 #define REGS_PER_LINE   8
825 #define LAST_VOLATILE   12
826 #endif
827
828 void show_regs(struct pt_regs * regs)
829 {
830         int i, trap;
831
832         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
833                regs->nip, regs->link, regs->ctr);
834         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
835                regs, regs->trap, print_tainted(), init_utsname()->release);
836         printk("MSR: "REG" ", regs->msr);
837         printbits(regs->msr, msr_bits);
838         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
839 #ifdef CONFIG_PPC64
840         printk("SOFTE: %ld\n", regs->softe);
841 #endif
842         trap = TRAP(regs);
843         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
844                 printk("CFAR: "REG"\n", regs->orig_gpr3);
845         if (trap == 0x300 || trap == 0x600)
846 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
847                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
848 #else
849                 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
850 #endif
851         printk("TASK = %p[%d] '%s' THREAD: %p",
852                current, task_pid_nr(current), current->comm, task_thread_info(current));
853
854 #ifdef CONFIG_SMP
855         printk(" CPU: %d", raw_smp_processor_id());
856 #endif /* CONFIG_SMP */
857
858         for (i = 0;  i < 32;  i++) {
859                 if ((i % REGS_PER_LINE) == 0)
860                         printk("\nGPR%02d: ", i);
861                 printk(REG " ", regs->gpr[i]);
862                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
863                         break;
864         }
865         printk("\n");
866 #ifdef CONFIG_KALLSYMS
867         /*
868          * Lookup NIP late so we have the best change of getting the
869          * above info out without failing
870          */
871         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
872         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
873 #endif
874 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
875         printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
876 #endif
877         show_stack(current, (unsigned long *) regs->gpr[1]);
878         if (!user_mode(regs))
879                 show_instructions(regs);
880 }
881
882 void exit_thread(void)
883 {
884         discard_lazy_cpu_state();
885 }
886
887 void flush_thread(void)
888 {
889         discard_lazy_cpu_state();
890
891 #ifdef CONFIG_HAVE_HW_BREAKPOINT
892         flush_ptrace_hw_breakpoint(current);
893 #else /* CONFIG_HAVE_HW_BREAKPOINT */
894         set_debug_reg_defaults(&current->thread);
895 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
896 }
897
898 void
899 release_thread(struct task_struct *t)
900 {
901 }
902
903 /*
904  * this gets called so that we can store coprocessor state into memory and
905  * copy the current task into the new thread.
906  */
907 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
908 {
909         flush_fp_to_thread(src);
910         flush_altivec_to_thread(src);
911         flush_vsx_to_thread(src);
912         flush_spe_to_thread(src);
913 #ifdef CONFIG_HAVE_HW_BREAKPOINT
914         flush_ptrace_hw_breakpoint(src);
915 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
916
917         *dst = *src;
918         return 0;
919 }
920
921 /*
922  * Copy a thread..
923  */
924 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
925
926 int copy_thread(unsigned long clone_flags, unsigned long usp,
927                 unsigned long arg, struct task_struct *p)
928 {
929         struct pt_regs *childregs, *kregs;
930         extern void ret_from_fork(void);
931         extern void ret_from_kernel_thread(void);
932         void (*f)(void);
933         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
934
935         /* Copy registers */
936         sp -= sizeof(struct pt_regs);
937         childregs = (struct pt_regs *) sp;
938         if (unlikely(p->flags & PF_KTHREAD)) {
939                 struct thread_info *ti = (void *)task_stack_page(p);
940                 memset(childregs, 0, sizeof(struct pt_regs));
941                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
942                 childregs->gpr[14] = usp;       /* function */
943 #ifdef CONFIG_PPC64
944                 clear_tsk_thread_flag(p, TIF_32BIT);
945                 childregs->softe = 1;
946 #endif
947                 childregs->gpr[15] = arg;
948                 p->thread.regs = NULL;  /* no user register state */
949                 ti->flags |= _TIF_RESTOREALL;
950                 f = ret_from_kernel_thread;
951         } else {
952                 struct pt_regs *regs = current_pt_regs();
953                 CHECK_FULL_REGS(regs);
954                 *childregs = *regs;
955                 if (usp)
956                         childregs->gpr[1] = usp;
957                 p->thread.regs = childregs;
958                 childregs->gpr[3] = 0;  /* Result from fork() */
959                 if (clone_flags & CLONE_SETTLS) {
960 #ifdef CONFIG_PPC64
961                         if (!is_32bit_task())
962                                 childregs->gpr[13] = childregs->gpr[6];
963                         else
964 #endif
965                                 childregs->gpr[2] = childregs->gpr[6];
966                 }
967
968                 f = ret_from_fork;
969         }
970         sp -= STACK_FRAME_OVERHEAD;
971
972         /*
973          * The way this works is that at some point in the future
974          * some task will call _switch to switch to the new task.
975          * That will pop off the stack frame created below and start
976          * the new task running at ret_from_fork.  The new task will
977          * do some house keeping and then return from the fork or clone
978          * system call, using the stack frame created above.
979          */
980         sp -= sizeof(struct pt_regs);
981         kregs = (struct pt_regs *) sp;
982         sp -= STACK_FRAME_OVERHEAD;
983         p->thread.ksp = sp;
984         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
985                                 _ALIGN_UP(sizeof(struct thread_info), 16);
986
987 #ifdef CONFIG_PPC_STD_MMU_64
988         if (mmu_has_feature(MMU_FTR_SLB)) {
989                 unsigned long sp_vsid;
990                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
991
992                 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
993                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
994                                 << SLB_VSID_SHIFT_1T;
995                 else
996                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
997                                 << SLB_VSID_SHIFT;
998                 sp_vsid |= SLB_VSID_KERNEL | llp;
999                 p->thread.ksp_vsid = sp_vsid;
1000         }
1001 #endif /* CONFIG_PPC_STD_MMU_64 */
1002 #ifdef CONFIG_PPC64 
1003         if (cpu_has_feature(CPU_FTR_DSCR)) {
1004                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1005                 p->thread.dscr = current->thread.dscr;
1006         }
1007         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1008                 p->thread.ppr = INIT_PPR;
1009 #endif
1010         /*
1011          * The PPC64 ABI makes use of a TOC to contain function 
1012          * pointers.  The function (ret_from_except) is actually a pointer
1013          * to the TOC entry.  The first entry is a pointer to the actual
1014          * function.
1015          */
1016 #ifdef CONFIG_PPC64
1017         kregs->nip = *((unsigned long *)f);
1018 #else
1019         kregs->nip = (unsigned long)f;
1020 #endif
1021         return 0;
1022 }
1023
1024 /*
1025  * Set up a thread for executing a new program
1026  */
1027 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1028 {
1029 #ifdef CONFIG_PPC64
1030         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1031 #endif
1032
1033         /*
1034          * If we exec out of a kernel thread then thread.regs will not be
1035          * set.  Do it now.
1036          */
1037         if (!current->thread.regs) {
1038                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1039                 current->thread.regs = regs - 1;
1040         }
1041
1042         memset(regs->gpr, 0, sizeof(regs->gpr));
1043         regs->ctr = 0;
1044         regs->link = 0;
1045         regs->xer = 0;
1046         regs->ccr = 0;
1047         regs->gpr[1] = sp;
1048
1049         /*
1050          * We have just cleared all the nonvolatile GPRs, so make
1051          * FULL_REGS(regs) return true.  This is necessary to allow
1052          * ptrace to examine the thread immediately after exec.
1053          */
1054         regs->trap &= ~1UL;
1055
1056 #ifdef CONFIG_PPC32
1057         regs->mq = 0;
1058         regs->nip = start;
1059         regs->msr = MSR_USER;
1060 #else
1061         if (!is_32bit_task()) {
1062                 unsigned long entry, toc;
1063
1064                 /* start is a relocated pointer to the function descriptor for
1065                  * the elf _start routine.  The first entry in the function
1066                  * descriptor is the entry address of _start and the second
1067                  * entry is the TOC value we need to use.
1068                  */
1069                 __get_user(entry, (unsigned long __user *)start);
1070                 __get_user(toc, (unsigned long __user *)start+1);
1071
1072                 /* Check whether the e_entry function descriptor entries
1073                  * need to be relocated before we can use them.
1074                  */
1075                 if (load_addr != 0) {
1076                         entry += load_addr;
1077                         toc   += load_addr;
1078                 }
1079                 regs->nip = entry;
1080                 regs->gpr[2] = toc;
1081                 regs->msr = MSR_USER64;
1082         } else {
1083                 regs->nip = start;
1084                 regs->gpr[2] = 0;
1085                 regs->msr = MSR_USER32;
1086         }
1087 #endif
1088         discard_lazy_cpu_state();
1089 #ifdef CONFIG_VSX
1090         current->thread.used_vsr = 0;
1091 #endif
1092         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1093         current->thread.fpscr.val = 0;
1094 #ifdef CONFIG_ALTIVEC
1095         memset(current->thread.vr, 0, sizeof(current->thread.vr));
1096         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1097         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1098         current->thread.vrsave = 0;
1099         current->thread.used_vr = 0;
1100 #endif /* CONFIG_ALTIVEC */
1101 #ifdef CONFIG_SPE
1102         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1103         current->thread.acc = 0;
1104         current->thread.spefscr = 0;
1105         current->thread.used_spe = 0;
1106 #endif /* CONFIG_SPE */
1107 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1108         if (cpu_has_feature(CPU_FTR_TM))
1109                 regs->msr |= MSR_TM;
1110         current->thread.tm_tfhar = 0;
1111         current->thread.tm_texasr = 0;
1112         current->thread.tm_tfiar = 0;
1113 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1114 }
1115
1116 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1117                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1118
1119 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1120 {
1121         struct pt_regs *regs = tsk->thread.regs;
1122
1123         /* This is a bit hairy.  If we are an SPE enabled  processor
1124          * (have embedded fp) we store the IEEE exception enable flags in
1125          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1126          * mode (asyn, precise, disabled) for 'Classic' FP. */
1127         if (val & PR_FP_EXC_SW_ENABLE) {
1128 #ifdef CONFIG_SPE
1129                 if (cpu_has_feature(CPU_FTR_SPE)) {
1130                         tsk->thread.fpexc_mode = val &
1131                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1132                         return 0;
1133                 } else {
1134                         return -EINVAL;
1135                 }
1136 #else
1137                 return -EINVAL;
1138 #endif
1139         }
1140
1141         /* on a CONFIG_SPE this does not hurt us.  The bits that
1142          * __pack_fe01 use do not overlap with bits used for
1143          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1144          * on CONFIG_SPE implementations are reserved so writing to
1145          * them does not change anything */
1146         if (val > PR_FP_EXC_PRECISE)
1147                 return -EINVAL;
1148         tsk->thread.fpexc_mode = __pack_fe01(val);
1149         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1150                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1151                         | tsk->thread.fpexc_mode;
1152         return 0;
1153 }
1154
1155 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1156 {
1157         unsigned int val;
1158
1159         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1160 #ifdef CONFIG_SPE
1161                 if (cpu_has_feature(CPU_FTR_SPE))
1162                         val = tsk->thread.fpexc_mode;
1163                 else
1164                         return -EINVAL;
1165 #else
1166                 return -EINVAL;
1167 #endif
1168         else
1169                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1170         return put_user(val, (unsigned int __user *) adr);
1171 }
1172
1173 int set_endian(struct task_struct *tsk, unsigned int val)
1174 {
1175         struct pt_regs *regs = tsk->thread.regs;
1176
1177         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1178             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1179                 return -EINVAL;
1180
1181         if (regs == NULL)
1182                 return -EINVAL;
1183
1184         if (val == PR_ENDIAN_BIG)
1185                 regs->msr &= ~MSR_LE;
1186         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1187                 regs->msr |= MSR_LE;
1188         else
1189                 return -EINVAL;
1190
1191         return 0;
1192 }
1193
1194 int get_endian(struct task_struct *tsk, unsigned long adr)
1195 {
1196         struct pt_regs *regs = tsk->thread.regs;
1197         unsigned int val;
1198
1199         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1200             !cpu_has_feature(CPU_FTR_REAL_LE))
1201                 return -EINVAL;
1202
1203         if (regs == NULL)
1204                 return -EINVAL;
1205
1206         if (regs->msr & MSR_LE) {
1207                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1208                         val = PR_ENDIAN_LITTLE;
1209                 else
1210                         val = PR_ENDIAN_PPC_LITTLE;
1211         } else
1212                 val = PR_ENDIAN_BIG;
1213
1214         return put_user(val, (unsigned int __user *)adr);
1215 }
1216
1217 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1218 {
1219         tsk->thread.align_ctl = val;
1220         return 0;
1221 }
1222
1223 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1224 {
1225         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1226 }
1227
1228 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1229                                   unsigned long nbytes)
1230 {
1231         unsigned long stack_page;
1232         unsigned long cpu = task_cpu(p);
1233
1234         /*
1235          * Avoid crashing if the stack has overflowed and corrupted
1236          * task_cpu(p), which is in the thread_info struct.
1237          */
1238         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1239                 stack_page = (unsigned long) hardirq_ctx[cpu];
1240                 if (sp >= stack_page + sizeof(struct thread_struct)
1241                     && sp <= stack_page + THREAD_SIZE - nbytes)
1242                         return 1;
1243
1244                 stack_page = (unsigned long) softirq_ctx[cpu];
1245                 if (sp >= stack_page + sizeof(struct thread_struct)
1246                     && sp <= stack_page + THREAD_SIZE - nbytes)
1247                         return 1;
1248         }
1249         return 0;
1250 }
1251
1252 int validate_sp(unsigned long sp, struct task_struct *p,
1253                        unsigned long nbytes)
1254 {
1255         unsigned long stack_page = (unsigned long)task_stack_page(p);
1256
1257         if (sp >= stack_page + sizeof(struct thread_struct)
1258             && sp <= stack_page + THREAD_SIZE - nbytes)
1259                 return 1;
1260
1261         return valid_irq_stack(sp, p, nbytes);
1262 }
1263
1264 EXPORT_SYMBOL(validate_sp);
1265
1266 unsigned long get_wchan(struct task_struct *p)
1267 {
1268         unsigned long ip, sp;
1269         int count = 0;
1270
1271         if (!p || p == current || p->state == TASK_RUNNING)
1272                 return 0;
1273
1274         sp = p->thread.ksp;
1275         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1276                 return 0;
1277
1278         do {
1279                 sp = *(unsigned long *)sp;
1280                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1281                         return 0;
1282                 if (count > 0) {
1283                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1284                         if (!in_sched_functions(ip))
1285                                 return ip;
1286                 }
1287         } while (count++ < 16);
1288         return 0;
1289 }
1290
1291 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1292
1293 void show_stack(struct task_struct *tsk, unsigned long *stack)
1294 {
1295         unsigned long sp, ip, lr, newsp;
1296         int count = 0;
1297         int firstframe = 1;
1298 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1299         int curr_frame = current->curr_ret_stack;
1300         extern void return_to_handler(void);
1301         unsigned long rth = (unsigned long)return_to_handler;
1302         unsigned long mrth = -1;
1303 #ifdef CONFIG_PPC64
1304         extern void mod_return_to_handler(void);
1305         rth = *(unsigned long *)rth;
1306         mrth = (unsigned long)mod_return_to_handler;
1307         mrth = *(unsigned long *)mrth;
1308 #endif
1309 #endif
1310
1311         sp = (unsigned long) stack;
1312         if (tsk == NULL)
1313                 tsk = current;
1314         if (sp == 0) {
1315                 if (tsk == current)
1316                         asm("mr %0,1" : "=r" (sp));
1317                 else
1318                         sp = tsk->thread.ksp;
1319         }
1320
1321         lr = 0;
1322         printk("Call Trace:\n");
1323         do {
1324                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1325                         return;
1326
1327                 stack = (unsigned long *) sp;
1328                 newsp = stack[0];
1329                 ip = stack[STACK_FRAME_LR_SAVE];
1330                 if (!firstframe || ip != lr) {
1331                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1332 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1333                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1334                                 printk(" (%pS)",
1335                                        (void *)current->ret_stack[curr_frame].ret);
1336                                 curr_frame--;
1337                         }
1338 #endif
1339                         if (firstframe)
1340                                 printk(" (unreliable)");
1341                         printk("\n");
1342                 }
1343                 firstframe = 0;
1344
1345                 /*
1346                  * See if this is an exception frame.
1347                  * We look for the "regshere" marker in the current frame.
1348                  */
1349                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1350                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1351                         struct pt_regs *regs = (struct pt_regs *)
1352                                 (sp + STACK_FRAME_OVERHEAD);
1353                         lr = regs->link;
1354                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1355                                regs->trap, (void *)regs->nip, (void *)lr);
1356                         firstframe = 1;
1357                 }
1358
1359                 sp = newsp;
1360         } while (count++ < kstack_depth_to_print);
1361 }
1362
1363 void dump_stack(void)
1364 {
1365         show_stack(current, NULL);
1366 }
1367 EXPORT_SYMBOL(dump_stack);
1368
1369 #ifdef CONFIG_PPC64
1370 /* Called with hard IRQs off */
1371 void __ppc64_runlatch_on(void)
1372 {
1373         struct thread_info *ti = current_thread_info();
1374         unsigned long ctrl;
1375
1376         ctrl = mfspr(SPRN_CTRLF);
1377         ctrl |= CTRL_RUNLATCH;
1378         mtspr(SPRN_CTRLT, ctrl);
1379
1380         ti->local_flags |= _TLF_RUNLATCH;
1381 }
1382
1383 /* Called with hard IRQs off */
1384 void __ppc64_runlatch_off(void)
1385 {
1386         struct thread_info *ti = current_thread_info();
1387         unsigned long ctrl;
1388
1389         ti->local_flags &= ~_TLF_RUNLATCH;
1390
1391         ctrl = mfspr(SPRN_CTRLF);
1392         ctrl &= ~CTRL_RUNLATCH;
1393         mtspr(SPRN_CTRLT, ctrl);
1394 }
1395 #endif /* CONFIG_PPC64 */
1396
1397 unsigned long arch_align_stack(unsigned long sp)
1398 {
1399         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1400                 sp -= get_random_int() & ~PAGE_MASK;
1401         return sp & ~0xf;
1402 }
1403
1404 static inline unsigned long brk_rnd(void)
1405 {
1406         unsigned long rnd = 0;
1407
1408         /* 8MB for 32bit, 1GB for 64bit */
1409         if (is_32bit_task())
1410                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1411         else
1412                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1413
1414         return rnd << PAGE_SHIFT;
1415 }
1416
1417 unsigned long arch_randomize_brk(struct mm_struct *mm)
1418 {
1419         unsigned long base = mm->brk;
1420         unsigned long ret;
1421
1422 #ifdef CONFIG_PPC_STD_MMU_64
1423         /*
1424          * If we are using 1TB segments and we are allowed to randomise
1425          * the heap, we can put it above 1TB so it is backed by a 1TB
1426          * segment. Otherwise the heap will be in the bottom 1TB
1427          * which always uses 256MB segments and this may result in a
1428          * performance penalty.
1429          */
1430         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1431                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1432 #endif
1433
1434         ret = PAGE_ALIGN(base + brk_rnd());
1435
1436         if (ret < mm->brk)
1437                 return mm->brk;
1438
1439         return ret;
1440 }
1441
1442 unsigned long randomize_et_dyn(unsigned long base)
1443 {
1444         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1445
1446         if (ret < base)
1447                 return base;
1448
1449         return ret;
1450 }