Merge tag 'for-linus-6.1-1' of https://github.com/cminyard/linux-ipmi
[platform/kernel/linux-starfive.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/uaccess.h>
39 #include <linux/pkeys.h>
40 #include <linux/seq_buf.h>
41
42 #include <asm/interrupt.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/machdep.h>
47 #include <asm/time.h>
48 #include <asm/runlatch.h>
49 #include <asm/syscalls.h>
50 #include <asm/switch_to.h>
51 #include <asm/tm.h>
52 #include <asm/debug.h>
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/hw_irq.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <asm/exec.h>
59 #include <asm/livepatch.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/asm-prototypes.h>
62 #include <asm/stacktrace.h>
63 #include <asm/hw_breakpoint.h>
64
65 #include <linux/kprobes.h>
66 #include <linux/kdebug.h>
67
68 /* Transactional Memory debug */
69 #ifdef TM_DEBUG_SW
70 #define TM_DEBUG(x...) printk(KERN_INFO x)
71 #else
72 #define TM_DEBUG(x...) do { } while(0)
73 #endif
74
75 extern unsigned long _get_SP(void);
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 /*
79  * Are we running in "Suspend disabled" mode? If so we have to block any
80  * sigreturn that would get us into suspended state, and we also warn in some
81  * other paths that we should never reach with suspend disabled.
82  */
83 bool tm_suspend_disabled __ro_after_init = false;
84
85 static void check_if_tm_restore_required(struct task_struct *tsk)
86 {
87         /*
88          * If we are saving the current thread's registers, and the
89          * thread is in a transactional state, set the TIF_RESTORE_TM
90          * bit so that we know to restore the registers before
91          * returning to userspace.
92          */
93         if (tsk == current && tsk->thread.regs &&
94             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
95             !test_thread_flag(TIF_RESTORE_TM)) {
96                 regs_set_return_msr(&tsk->thread.ckpt_regs,
97                                                 tsk->thread.regs->msr);
98                 set_thread_flag(TIF_RESTORE_TM);
99         }
100 }
101
102 #else
103 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
104 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
105
106 bool strict_msr_control;
107 EXPORT_SYMBOL(strict_msr_control);
108
109 static int __init enable_strict_msr_control(char *str)
110 {
111         strict_msr_control = true;
112         pr_info("Enabling strict facility control\n");
113
114         return 0;
115 }
116 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
117
118 /* notrace because it's called by restore_math */
119 unsigned long notrace msr_check_and_set(unsigned long bits)
120 {
121         unsigned long oldmsr = mfmsr();
122         unsigned long newmsr;
123
124         newmsr = oldmsr | bits;
125
126         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127                 newmsr |= MSR_VSX;
128
129         if (oldmsr != newmsr)
130                 newmsr = mtmsr_isync_irqsafe(newmsr);
131
132         return newmsr;
133 }
134 EXPORT_SYMBOL_GPL(msr_check_and_set);
135
136 /* notrace because it's called by restore_math */
137 void notrace __msr_check_and_clear(unsigned long bits)
138 {
139         unsigned long oldmsr = mfmsr();
140         unsigned long newmsr;
141
142         newmsr = oldmsr & ~bits;
143
144         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145                 newmsr &= ~MSR_VSX;
146
147         if (oldmsr != newmsr)
148                 mtmsr_isync_irqsafe(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151
152 #ifdef CONFIG_PPC_FPU
153 static void __giveup_fpu(struct task_struct *tsk)
154 {
155         unsigned long msr;
156
157         save_fpu(tsk);
158         msr = tsk->thread.regs->msr;
159         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
160         if (cpu_has_feature(CPU_FTR_VSX))
161                 msr &= ~MSR_VSX;
162         regs_set_return_msr(tsk->thread.regs, msr);
163 }
164
165 void giveup_fpu(struct task_struct *tsk)
166 {
167         check_if_tm_restore_required(tsk);
168
169         msr_check_and_set(MSR_FP);
170         __giveup_fpu(tsk);
171         msr_check_and_clear(MSR_FP);
172 }
173 EXPORT_SYMBOL(giveup_fpu);
174
175 /*
176  * Make sure the floating-point register state in the
177  * the thread_struct is up to date for task tsk.
178  */
179 void flush_fp_to_thread(struct task_struct *tsk)
180 {
181         if (tsk->thread.regs) {
182                 /*
183                  * We need to disable preemption here because if we didn't,
184                  * another process could get scheduled after the regs->msr
185                  * test but before we have finished saving the FP registers
186                  * to the thread_struct.  That process could take over the
187                  * FPU, and then when we get scheduled again we would store
188                  * bogus values for the remaining FP registers.
189                  */
190                 preempt_disable();
191                 if (tsk->thread.regs->msr & MSR_FP) {
192                         /*
193                          * This should only ever be called for current or
194                          * for a stopped child process.  Since we save away
195                          * the FP register state on context switch,
196                          * there is something wrong if a stopped child appears
197                          * to still have its FP state in the CPU registers.
198                          */
199                         BUG_ON(tsk != current);
200                         giveup_fpu(tsk);
201                 }
202                 preempt_enable();
203         }
204 }
205 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
206
207 void enable_kernel_fp(void)
208 {
209         unsigned long cpumsr;
210
211         WARN_ON(preemptible());
212
213         cpumsr = msr_check_and_set(MSR_FP);
214
215         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
216                 check_if_tm_restore_required(current);
217                 /*
218                  * If a thread has already been reclaimed then the
219                  * checkpointed registers are on the CPU but have definitely
220                  * been saved by the reclaim code. Don't need to and *cannot*
221                  * giveup as this would save  to the 'live' structure not the
222                  * checkpointed structure.
223                  */
224                 if (!MSR_TM_ACTIVE(cpumsr) &&
225                      MSR_TM_ACTIVE(current->thread.regs->msr))
226                         return;
227                 __giveup_fpu(current);
228         }
229 }
230 EXPORT_SYMBOL(enable_kernel_fp);
231 #else
232 static inline void __giveup_fpu(struct task_struct *tsk) { }
233 #endif /* CONFIG_PPC_FPU */
234
235 #ifdef CONFIG_ALTIVEC
236 static void __giveup_altivec(struct task_struct *tsk)
237 {
238         unsigned long msr;
239
240         save_altivec(tsk);
241         msr = tsk->thread.regs->msr;
242         msr &= ~MSR_VEC;
243         if (cpu_has_feature(CPU_FTR_VSX))
244                 msr &= ~MSR_VSX;
245         regs_set_return_msr(tsk->thread.regs, msr);
246 }
247
248 void giveup_altivec(struct task_struct *tsk)
249 {
250         check_if_tm_restore_required(tsk);
251
252         msr_check_and_set(MSR_VEC);
253         __giveup_altivec(tsk);
254         msr_check_and_clear(MSR_VEC);
255 }
256 EXPORT_SYMBOL(giveup_altivec);
257
258 void enable_kernel_altivec(void)
259 {
260         unsigned long cpumsr;
261
262         WARN_ON(preemptible());
263
264         cpumsr = msr_check_and_set(MSR_VEC);
265
266         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
267                 check_if_tm_restore_required(current);
268                 /*
269                  * If a thread has already been reclaimed then the
270                  * checkpointed registers are on the CPU but have definitely
271                  * been saved by the reclaim code. Don't need to and *cannot*
272                  * giveup as this would save  to the 'live' structure not the
273                  * checkpointed structure.
274                  */
275                 if (!MSR_TM_ACTIVE(cpumsr) &&
276                      MSR_TM_ACTIVE(current->thread.regs->msr))
277                         return;
278                 __giveup_altivec(current);
279         }
280 }
281 EXPORT_SYMBOL(enable_kernel_altivec);
282
283 /*
284  * Make sure the VMX/Altivec register state in the
285  * the thread_struct is up to date for task tsk.
286  */
287 void flush_altivec_to_thread(struct task_struct *tsk)
288 {
289         if (tsk->thread.regs) {
290                 preempt_disable();
291                 if (tsk->thread.regs->msr & MSR_VEC) {
292                         BUG_ON(tsk != current);
293                         giveup_altivec(tsk);
294                 }
295                 preempt_enable();
296         }
297 }
298 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
299 #endif /* CONFIG_ALTIVEC */
300
301 #ifdef CONFIG_VSX
302 static void __giveup_vsx(struct task_struct *tsk)
303 {
304         unsigned long msr = tsk->thread.regs->msr;
305
306         /*
307          * We should never be setting MSR_VSX without also setting
308          * MSR_FP and MSR_VEC
309          */
310         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
311
312         /* __giveup_fpu will clear MSR_VSX */
313         if (msr & MSR_FP)
314                 __giveup_fpu(tsk);
315         if (msr & MSR_VEC)
316                 __giveup_altivec(tsk);
317 }
318
319 static void giveup_vsx(struct task_struct *tsk)
320 {
321         check_if_tm_restore_required(tsk);
322
323         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
324         __giveup_vsx(tsk);
325         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
326 }
327
328 void enable_kernel_vsx(void)
329 {
330         unsigned long cpumsr;
331
332         WARN_ON(preemptible());
333
334         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
335
336         if (current->thread.regs &&
337             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
338                 check_if_tm_restore_required(current);
339                 /*
340                  * If a thread has already been reclaimed then the
341                  * checkpointed registers are on the CPU but have definitely
342                  * been saved by the reclaim code. Don't need to and *cannot*
343                  * giveup as this would save  to the 'live' structure not the
344                  * checkpointed structure.
345                  */
346                 if (!MSR_TM_ACTIVE(cpumsr) &&
347                      MSR_TM_ACTIVE(current->thread.regs->msr))
348                         return;
349                 __giveup_vsx(current);
350         }
351 }
352 EXPORT_SYMBOL(enable_kernel_vsx);
353
354 void flush_vsx_to_thread(struct task_struct *tsk)
355 {
356         if (tsk->thread.regs) {
357                 preempt_disable();
358                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
359                         BUG_ON(tsk != current);
360                         giveup_vsx(tsk);
361                 }
362                 preempt_enable();
363         }
364 }
365 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
366 #endif /* CONFIG_VSX */
367
368 #ifdef CONFIG_SPE
369 void giveup_spe(struct task_struct *tsk)
370 {
371         check_if_tm_restore_required(tsk);
372
373         msr_check_and_set(MSR_SPE);
374         __giveup_spe(tsk);
375         msr_check_and_clear(MSR_SPE);
376 }
377 EXPORT_SYMBOL(giveup_spe);
378
379 void enable_kernel_spe(void)
380 {
381         WARN_ON(preemptible());
382
383         msr_check_and_set(MSR_SPE);
384
385         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
386                 check_if_tm_restore_required(current);
387                 __giveup_spe(current);
388         }
389 }
390 EXPORT_SYMBOL(enable_kernel_spe);
391
392 void flush_spe_to_thread(struct task_struct *tsk)
393 {
394         if (tsk->thread.regs) {
395                 preempt_disable();
396                 if (tsk->thread.regs->msr & MSR_SPE) {
397                         BUG_ON(tsk != current);
398                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
399                         giveup_spe(tsk);
400                 }
401                 preempt_enable();
402         }
403 }
404 #endif /* CONFIG_SPE */
405
406 static unsigned long msr_all_available;
407
408 static int __init init_msr_all_available(void)
409 {
410         if (IS_ENABLED(CONFIG_PPC_FPU))
411                 msr_all_available |= MSR_FP;
412         if (cpu_has_feature(CPU_FTR_ALTIVEC))
413                 msr_all_available |= MSR_VEC;
414         if (cpu_has_feature(CPU_FTR_VSX))
415                 msr_all_available |= MSR_VSX;
416         if (cpu_has_feature(CPU_FTR_SPE))
417                 msr_all_available |= MSR_SPE;
418
419         return 0;
420 }
421 early_initcall(init_msr_all_available);
422
423 void giveup_all(struct task_struct *tsk)
424 {
425         unsigned long usermsr;
426
427         if (!tsk->thread.regs)
428                 return;
429
430         check_if_tm_restore_required(tsk);
431
432         usermsr = tsk->thread.regs->msr;
433
434         if ((usermsr & msr_all_available) == 0)
435                 return;
436
437         msr_check_and_set(msr_all_available);
438
439         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
440
441         if (usermsr & MSR_FP)
442                 __giveup_fpu(tsk);
443         if (usermsr & MSR_VEC)
444                 __giveup_altivec(tsk);
445         if (usermsr & MSR_SPE)
446                 __giveup_spe(tsk);
447
448         msr_check_and_clear(msr_all_available);
449 }
450 EXPORT_SYMBOL(giveup_all);
451
452 #ifdef CONFIG_PPC_BOOK3S_64
453 #ifdef CONFIG_PPC_FPU
454 static bool should_restore_fp(void)
455 {
456         if (current->thread.load_fp) {
457                 current->thread.load_fp++;
458                 return true;
459         }
460         return false;
461 }
462
463 static void do_restore_fp(void)
464 {
465         load_fp_state(&current->thread.fp_state);
466 }
467 #else
468 static bool should_restore_fp(void) { return false; }
469 static void do_restore_fp(void) { }
470 #endif /* CONFIG_PPC_FPU */
471
472 #ifdef CONFIG_ALTIVEC
473 static bool should_restore_altivec(void)
474 {
475         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
476                 current->thread.load_vec++;
477                 return true;
478         }
479         return false;
480 }
481
482 static void do_restore_altivec(void)
483 {
484         load_vr_state(&current->thread.vr_state);
485         current->thread.used_vr = 1;
486 }
487 #else
488 static bool should_restore_altivec(void) { return false; }
489 static void do_restore_altivec(void) { }
490 #endif /* CONFIG_ALTIVEC */
491
492 static bool should_restore_vsx(void)
493 {
494         if (cpu_has_feature(CPU_FTR_VSX))
495                 return true;
496         return false;
497 }
498 #ifdef CONFIG_VSX
499 static void do_restore_vsx(void)
500 {
501         current->thread.used_vsr = 1;
502 }
503 #else
504 static void do_restore_vsx(void) { }
505 #endif /* CONFIG_VSX */
506
507 /*
508  * The exception exit path calls restore_math() with interrupts hard disabled
509  * but the soft irq state not "reconciled". ftrace code that calls
510  * local_irq_save/restore causes warnings.
511  *
512  * Rather than complicate the exit path, just don't trace restore_math. This
513  * could be done by having ftrace entry code check for this un-reconciled
514  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
515  * temporarily fix it up for the duration of the ftrace call.
516  */
517 void notrace restore_math(struct pt_regs *regs)
518 {
519         unsigned long msr;
520         unsigned long new_msr = 0;
521
522         msr = regs->msr;
523
524         /*
525          * new_msr tracks the facilities that are to be restored. Only reload
526          * if the bit is not set in the user MSR (if it is set, the registers
527          * are live for the user thread).
528          */
529         if ((!(msr & MSR_FP)) && should_restore_fp())
530                 new_msr |= MSR_FP;
531
532         if ((!(msr & MSR_VEC)) && should_restore_altivec())
533                 new_msr |= MSR_VEC;
534
535         if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
536                 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
537                         new_msr |= MSR_VSX;
538         }
539
540         if (new_msr) {
541                 unsigned long fpexc_mode = 0;
542
543                 msr_check_and_set(new_msr);
544
545                 if (new_msr & MSR_FP) {
546                         do_restore_fp();
547
548                         // This also covers VSX, because VSX implies FP
549                         fpexc_mode = current->thread.fpexc_mode;
550                 }
551
552                 if (new_msr & MSR_VEC)
553                         do_restore_altivec();
554
555                 if (new_msr & MSR_VSX)
556                         do_restore_vsx();
557
558                 msr_check_and_clear(new_msr);
559
560                 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
561         }
562 }
563 #endif /* CONFIG_PPC_BOOK3S_64 */
564
565 static void save_all(struct task_struct *tsk)
566 {
567         unsigned long usermsr;
568
569         if (!tsk->thread.regs)
570                 return;
571
572         usermsr = tsk->thread.regs->msr;
573
574         if ((usermsr & msr_all_available) == 0)
575                 return;
576
577         msr_check_and_set(msr_all_available);
578
579         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
580
581         if (usermsr & MSR_FP)
582                 save_fpu(tsk);
583
584         if (usermsr & MSR_VEC)
585                 save_altivec(tsk);
586
587         if (usermsr & MSR_SPE)
588                 __giveup_spe(tsk);
589
590         msr_check_and_clear(msr_all_available);
591 }
592
593 void flush_all_to_thread(struct task_struct *tsk)
594 {
595         if (tsk->thread.regs) {
596                 preempt_disable();
597                 BUG_ON(tsk != current);
598 #ifdef CONFIG_SPE
599                 if (tsk->thread.regs->msr & MSR_SPE)
600                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
601 #endif
602                 save_all(tsk);
603
604                 preempt_enable();
605         }
606 }
607 EXPORT_SYMBOL(flush_all_to_thread);
608
609 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
610 void do_send_trap(struct pt_regs *regs, unsigned long address,
611                   unsigned long error_code, int breakpt)
612 {
613         current->thread.trap_nr = TRAP_HWBKPT;
614         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615                         11, SIGSEGV) == NOTIFY_STOP)
616                 return;
617
618         /* Deliver the signal to userspace */
619         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
620                                     (void __user *)address);
621 }
622 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
623
624 static void do_break_handler(struct pt_regs *regs)
625 {
626         struct arch_hw_breakpoint null_brk = {0};
627         struct arch_hw_breakpoint *info;
628         ppc_inst_t instr = ppc_inst(0);
629         int type = 0;
630         int size = 0;
631         unsigned long ea;
632         int i;
633
634         /*
635          * If underneath hw supports only one watchpoint, we know it
636          * caused exception. 8xx also falls into this category.
637          */
638         if (nr_wp_slots() == 1) {
639                 __set_breakpoint(0, &null_brk);
640                 current->thread.hw_brk[0] = null_brk;
641                 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
642                 return;
643         }
644
645         /* Otherwise find out which DAWR caused exception and disable it. */
646         wp_get_instr_detail(regs, &instr, &type, &size, &ea);
647
648         for (i = 0; i < nr_wp_slots(); i++) {
649                 info = &current->thread.hw_brk[i];
650                 if (!info->address)
651                         continue;
652
653                 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
654                         __set_breakpoint(i, &null_brk);
655                         current->thread.hw_brk[i] = null_brk;
656                         current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
657                 }
658         }
659 }
660
661 DEFINE_INTERRUPT_HANDLER(do_break)
662 {
663         current->thread.trap_nr = TRAP_HWBKPT;
664         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
665                         11, SIGSEGV) == NOTIFY_STOP)
666                 return;
667
668         if (debugger_break_match(regs))
669                 return;
670
671         /*
672          * We reach here only when watchpoint exception is generated by ptrace
673          * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
674          * watchpoint is already handled by hw_breakpoint_handler() so we don't
675          * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
676          * we need to manually handle the watchpoint here.
677          */
678         if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
679                 do_break_handler(regs);
680
681         /* Deliver the signal to userspace */
682         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
683 }
684 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
685
686 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
687
688 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
689 /*
690  * Set the debug registers back to their default "safe" values.
691  */
692 static void set_debug_reg_defaults(struct thread_struct *thread)
693 {
694         thread->debug.iac1 = thread->debug.iac2 = 0;
695 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
696         thread->debug.iac3 = thread->debug.iac4 = 0;
697 #endif
698         thread->debug.dac1 = thread->debug.dac2 = 0;
699 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
700         thread->debug.dvc1 = thread->debug.dvc2 = 0;
701 #endif
702         thread->debug.dbcr0 = 0;
703 #ifdef CONFIG_BOOKE
704         /*
705          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
706          */
707         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
708                         DBCR1_IAC3US | DBCR1_IAC4US;
709         /*
710          * Force Data Address Compare User/Supervisor bits to be User-only
711          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
712          */
713         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
714 #else
715         thread->debug.dbcr1 = 0;
716 #endif
717 }
718
719 static void prime_debug_regs(struct debug_reg *debug)
720 {
721         /*
722          * We could have inherited MSR_DE from userspace, since
723          * it doesn't get cleared on exception entry.  Make sure
724          * MSR_DE is clear before we enable any debug events.
725          */
726         mtmsr(mfmsr() & ~MSR_DE);
727
728         mtspr(SPRN_IAC1, debug->iac1);
729         mtspr(SPRN_IAC2, debug->iac2);
730 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
731         mtspr(SPRN_IAC3, debug->iac3);
732         mtspr(SPRN_IAC4, debug->iac4);
733 #endif
734         mtspr(SPRN_DAC1, debug->dac1);
735         mtspr(SPRN_DAC2, debug->dac2);
736 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
737         mtspr(SPRN_DVC1, debug->dvc1);
738         mtspr(SPRN_DVC2, debug->dvc2);
739 #endif
740         mtspr(SPRN_DBCR0, debug->dbcr0);
741         mtspr(SPRN_DBCR1, debug->dbcr1);
742 #ifdef CONFIG_BOOKE
743         mtspr(SPRN_DBCR2, debug->dbcr2);
744 #endif
745 }
746 /*
747  * Unless neither the old or new thread are making use of the
748  * debug registers, set the debug registers from the values
749  * stored in the new thread.
750  */
751 void switch_booke_debug_regs(struct debug_reg *new_debug)
752 {
753         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
754                 || (new_debug->dbcr0 & DBCR0_IDM))
755                         prime_debug_regs(new_debug);
756 }
757 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
758 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
759 #ifndef CONFIG_HAVE_HW_BREAKPOINT
760 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
761 {
762         preempt_disable();
763         __set_breakpoint(i, brk);
764         preempt_enable();
765 }
766
767 static void set_debug_reg_defaults(struct thread_struct *thread)
768 {
769         int i;
770         struct arch_hw_breakpoint null_brk = {0};
771
772         for (i = 0; i < nr_wp_slots(); i++) {
773                 thread->hw_brk[i] = null_brk;
774                 if (ppc_breakpoint_available())
775                         set_breakpoint(i, &thread->hw_brk[i]);
776         }
777 }
778
779 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
780                                 struct arch_hw_breakpoint *b)
781 {
782         if (a->address != b->address)
783                 return false;
784         if (a->type != b->type)
785                 return false;
786         if (a->len != b->len)
787                 return false;
788         /* no need to check hw_len. it's calculated from address and len */
789         return true;
790 }
791
792 static void switch_hw_breakpoint(struct task_struct *new)
793 {
794         int i;
795
796         for (i = 0; i < nr_wp_slots(); i++) {
797                 if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
798                                         &new->thread.hw_brk[i])))
799                         continue;
800
801                 __set_breakpoint(i, &new->thread.hw_brk[i]);
802         }
803 }
804 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
805 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
806
807 static inline int set_dabr(struct arch_hw_breakpoint *brk)
808 {
809         unsigned long dabr, dabrx;
810
811         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
812         dabrx = ((brk->type >> 3) & 0x7);
813
814         if (ppc_md.set_dabr)
815                 return ppc_md.set_dabr(dabr, dabrx);
816
817         if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
818                 mtspr(SPRN_DAC1, dabr);
819                 if (IS_ENABLED(CONFIG_PPC_47x))
820                         isync();
821                 return 0;
822         } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
823                 mtspr(SPRN_DABR, dabr);
824                 if (cpu_has_feature(CPU_FTR_DABRX))
825                         mtspr(SPRN_DABRX, dabrx);
826                 return 0;
827         } else {
828                 return -EINVAL;
829         }
830 }
831
832 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
833 {
834         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
835                                LCTRL1_CRWF_RW;
836         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
837         unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
838         unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
839
840         if (start_addr == 0)
841                 lctrl2 |= LCTRL2_LW0LA_F;
842         else if (end_addr == 0)
843                 lctrl2 |= LCTRL2_LW0LA_E;
844         else
845                 lctrl2 |= LCTRL2_LW0LA_EandF;
846
847         mtspr(SPRN_LCTRL2, 0);
848
849         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
850                 return 0;
851
852         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
853                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
854         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
855                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
856
857         mtspr(SPRN_CMPE, start_addr - 1);
858         mtspr(SPRN_CMPF, end_addr);
859         mtspr(SPRN_LCTRL1, lctrl1);
860         mtspr(SPRN_LCTRL2, lctrl2);
861
862         return 0;
863 }
864
865 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
866 {
867         memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
868
869         if (dawr_enabled())
870                 // Power8 or later
871                 set_dawr(nr, brk);
872         else if (IS_ENABLED(CONFIG_PPC_8xx))
873                 set_breakpoint_8xx(brk);
874         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
875                 // Power7 or earlier
876                 set_dabr(brk);
877         else
878                 // Shouldn't happen due to higher level checks
879                 WARN_ON_ONCE(1);
880 }
881
882 /* Check if we have DAWR or DABR hardware */
883 bool ppc_breakpoint_available(void)
884 {
885         if (dawr_enabled())
886                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
887         if (cpu_has_feature(CPU_FTR_ARCH_207S))
888                 return false; /* POWER9 with DAWR disabled */
889         /* DABR: Everything but POWER8 and POWER9 */
890         return true;
891 }
892 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
893
894 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
895
896 static inline bool tm_enabled(struct task_struct *tsk)
897 {
898         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
899 }
900
901 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
902 {
903         /*
904          * Use the current MSR TM suspended bit to track if we have
905          * checkpointed state outstanding.
906          * On signal delivery, we'd normally reclaim the checkpointed
907          * state to obtain stack pointer (see:get_tm_stackpointer()).
908          * This will then directly return to userspace without going
909          * through __switch_to(). However, if the stack frame is bad,
910          * we need to exit this thread which calls __switch_to() which
911          * will again attempt to reclaim the already saved tm state.
912          * Hence we need to check that we've not already reclaimed
913          * this state.
914          * We do this using the current MSR, rather tracking it in
915          * some specific thread_struct bit, as it has the additional
916          * benefit of checking for a potential TM bad thing exception.
917          */
918         if (!MSR_TM_SUSPENDED(mfmsr()))
919                 return;
920
921         giveup_all(container_of(thr, struct task_struct, thread));
922
923         tm_reclaim(thr, cause);
924
925         /*
926          * If we are in a transaction and FP is off then we can't have
927          * used FP inside that transaction. Hence the checkpointed
928          * state is the same as the live state. We need to copy the
929          * live state to the checkpointed state so that when the
930          * transaction is restored, the checkpointed state is correct
931          * and the aborted transaction sees the correct state. We use
932          * ckpt_regs.msr here as that's what tm_reclaim will use to
933          * determine if it's going to write the checkpointed state or
934          * not. So either this will write the checkpointed registers,
935          * or reclaim will. Similarly for VMX.
936          */
937         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
938                 memcpy(&thr->ckfp_state, &thr->fp_state,
939                        sizeof(struct thread_fp_state));
940         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
941                 memcpy(&thr->ckvr_state, &thr->vr_state,
942                        sizeof(struct thread_vr_state));
943 }
944
945 void tm_reclaim_current(uint8_t cause)
946 {
947         tm_enable();
948         tm_reclaim_thread(&current->thread, cause);
949 }
950
951 static inline void tm_reclaim_task(struct task_struct *tsk)
952 {
953         /* We have to work out if we're switching from/to a task that's in the
954          * middle of a transaction.
955          *
956          * In switching we need to maintain a 2nd register state as
957          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
958          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
959          * ckvr_state
960          *
961          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
962          */
963         struct thread_struct *thr = &tsk->thread;
964
965         if (!thr->regs)
966                 return;
967
968         if (!MSR_TM_ACTIVE(thr->regs->msr))
969                 goto out_and_saveregs;
970
971         WARN_ON(tm_suspend_disabled);
972
973         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
974                  "ccr=%lx, msr=%lx, trap=%lx)\n",
975                  tsk->pid, thr->regs->nip,
976                  thr->regs->ccr, thr->regs->msr,
977                  thr->regs->trap);
978
979         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
980
981         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
982                  tsk->pid);
983
984 out_and_saveregs:
985         /* Always save the regs here, even if a transaction's not active.
986          * This context-switches a thread's TM info SPRs.  We do it here to
987          * be consistent with the restore path (in recheckpoint) which
988          * cannot happen later in _switch().
989          */
990         tm_save_sprs(thr);
991 }
992
993 extern void __tm_recheckpoint(struct thread_struct *thread);
994
995 void tm_recheckpoint(struct thread_struct *thread)
996 {
997         unsigned long flags;
998
999         if (!(thread->regs->msr & MSR_TM))
1000                 return;
1001
1002         /* We really can't be interrupted here as the TEXASR registers can't
1003          * change and later in the trecheckpoint code, we have a userspace R1.
1004          * So let's hard disable over this region.
1005          */
1006         local_irq_save(flags);
1007         hard_irq_disable();
1008
1009         /* The TM SPRs are restored here, so that TEXASR.FS can be set
1010          * before the trecheckpoint and no explosion occurs.
1011          */
1012         tm_restore_sprs(thread);
1013
1014         __tm_recheckpoint(thread);
1015
1016         local_irq_restore(flags);
1017 }
1018
1019 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1020 {
1021         if (!cpu_has_feature(CPU_FTR_TM))
1022                 return;
1023
1024         /* Recheckpoint the registers of the thread we're about to switch to.
1025          *
1026          * If the task was using FP, we non-lazily reload both the original and
1027          * the speculative FP register states.  This is because the kernel
1028          * doesn't see if/when a TM rollback occurs, so if we take an FP
1029          * unavailable later, we are unable to determine which set of FP regs
1030          * need to be restored.
1031          */
1032         if (!tm_enabled(new))
1033                 return;
1034
1035         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1036                 tm_restore_sprs(&new->thread);
1037                 return;
1038         }
1039         /* Recheckpoint to restore original checkpointed register state. */
1040         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1041                  new->pid, new->thread.regs->msr);
1042
1043         tm_recheckpoint(&new->thread);
1044
1045         /*
1046          * The checkpointed state has been restored but the live state has
1047          * not, ensure all the math functionality is turned off to trigger
1048          * restore_math() to reload.
1049          */
1050         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1051
1052         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1053                  "(kernel msr 0x%lx)\n",
1054                  new->pid, mfmsr());
1055 }
1056
1057 static inline void __switch_to_tm(struct task_struct *prev,
1058                 struct task_struct *new)
1059 {
1060         if (cpu_has_feature(CPU_FTR_TM)) {
1061                 if (tm_enabled(prev) || tm_enabled(new))
1062                         tm_enable();
1063
1064                 if (tm_enabled(prev)) {
1065                         prev->thread.load_tm++;
1066                         tm_reclaim_task(prev);
1067                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1068                                 prev->thread.regs->msr &= ~MSR_TM;
1069                 }
1070
1071                 tm_recheckpoint_new_task(new);
1072         }
1073 }
1074
1075 /*
1076  * This is called if we are on the way out to userspace and the
1077  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1078  * FP and/or vector state and does so if necessary.
1079  * If userspace is inside a transaction (whether active or
1080  * suspended) and FP/VMX/VSX instructions have ever been enabled
1081  * inside that transaction, then we have to keep them enabled
1082  * and keep the FP/VMX/VSX state loaded while ever the transaction
1083  * continues.  The reason is that if we didn't, and subsequently
1084  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1085  * we don't know whether it's the same transaction, and thus we
1086  * don't know which of the checkpointed state and the transactional
1087  * state to use.
1088  */
1089 void restore_tm_state(struct pt_regs *regs)
1090 {
1091         unsigned long msr_diff;
1092
1093         /*
1094          * This is the only moment we should clear TIF_RESTORE_TM as
1095          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1096          * again, anything else could lead to an incorrect ckpt_msr being
1097          * saved and therefore incorrect signal contexts.
1098          */
1099         clear_thread_flag(TIF_RESTORE_TM);
1100         if (!MSR_TM_ACTIVE(regs->msr))
1101                 return;
1102
1103         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1104         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1105
1106         /* Ensure that restore_math() will restore */
1107         if (msr_diff & MSR_FP)
1108                 current->thread.load_fp = 1;
1109 #ifdef CONFIG_ALTIVEC
1110         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1111                 current->thread.load_vec = 1;
1112 #endif
1113         restore_math(regs);
1114
1115         regs_set_return_msr(regs, regs->msr | msr_diff);
1116 }
1117
1118 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1119 #define tm_recheckpoint_new_task(new)
1120 #define __switch_to_tm(prev, new)
1121 void tm_reclaim_current(uint8_t cause) {}
1122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1123
1124 static inline void save_sprs(struct thread_struct *t)
1125 {
1126 #ifdef CONFIG_ALTIVEC
1127         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1128                 t->vrsave = mfspr(SPRN_VRSAVE);
1129 #endif
1130 #ifdef CONFIG_SPE
1131         if (cpu_has_feature(CPU_FTR_SPE))
1132                 t->spefscr = mfspr(SPRN_SPEFSCR);
1133 #endif
1134 #ifdef CONFIG_PPC_BOOK3S_64
1135         if (cpu_has_feature(CPU_FTR_DSCR))
1136                 t->dscr = mfspr(SPRN_DSCR);
1137
1138         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1139                 t->bescr = mfspr(SPRN_BESCR);
1140                 t->ebbhr = mfspr(SPRN_EBBHR);
1141                 t->ebbrr = mfspr(SPRN_EBBRR);
1142
1143                 t->fscr = mfspr(SPRN_FSCR);
1144
1145                 /*
1146                  * Note that the TAR is not available for use in the kernel.
1147                  * (To provide this, the TAR should be backed up/restored on
1148                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1149                  * this should be in pt_regs anyway (for debug).)
1150                  */
1151                 t->tar = mfspr(SPRN_TAR);
1152         }
1153 #endif
1154 }
1155
1156 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1157 void kvmppc_save_user_regs(void)
1158 {
1159         unsigned long usermsr;
1160
1161         if (!current->thread.regs)
1162                 return;
1163
1164         usermsr = current->thread.regs->msr;
1165
1166         if (usermsr & MSR_FP)
1167                 save_fpu(current);
1168
1169         if (usermsr & MSR_VEC)
1170                 save_altivec(current);
1171
1172 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1173         if (usermsr & MSR_TM) {
1174                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1175                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1176                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1177                 current->thread.regs->msr &= ~MSR_TM;
1178         }
1179 #endif
1180 }
1181 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1182
1183 void kvmppc_save_current_sprs(void)
1184 {
1185         save_sprs(&current->thread);
1186 }
1187 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1188 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1189
1190 static inline void restore_sprs(struct thread_struct *old_thread,
1191                                 struct thread_struct *new_thread)
1192 {
1193 #ifdef CONFIG_ALTIVEC
1194         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1195             old_thread->vrsave != new_thread->vrsave)
1196                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1197 #endif
1198 #ifdef CONFIG_SPE
1199         if (cpu_has_feature(CPU_FTR_SPE) &&
1200             old_thread->spefscr != new_thread->spefscr)
1201                 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1202 #endif
1203 #ifdef CONFIG_PPC_BOOK3S_64
1204         if (cpu_has_feature(CPU_FTR_DSCR)) {
1205                 u64 dscr = get_paca()->dscr_default;
1206                 if (new_thread->dscr_inherit)
1207                         dscr = new_thread->dscr;
1208
1209                 if (old_thread->dscr != dscr)
1210                         mtspr(SPRN_DSCR, dscr);
1211         }
1212
1213         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1214                 if (old_thread->bescr != new_thread->bescr)
1215                         mtspr(SPRN_BESCR, new_thread->bescr);
1216                 if (old_thread->ebbhr != new_thread->ebbhr)
1217                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1218                 if (old_thread->ebbrr != new_thread->ebbrr)
1219                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1220
1221                 if (old_thread->fscr != new_thread->fscr)
1222                         mtspr(SPRN_FSCR, new_thread->fscr);
1223
1224                 if (old_thread->tar != new_thread->tar)
1225                         mtspr(SPRN_TAR, new_thread->tar);
1226         }
1227
1228         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1229             old_thread->tidr != new_thread->tidr)
1230                 mtspr(SPRN_TIDR, new_thread->tidr);
1231 #endif
1232
1233 }
1234
1235 struct task_struct *__switch_to(struct task_struct *prev,
1236         struct task_struct *new)
1237 {
1238         struct thread_struct *new_thread, *old_thread;
1239         struct task_struct *last;
1240 #ifdef CONFIG_PPC_64S_HASH_MMU
1241         struct ppc64_tlb_batch *batch;
1242 #endif
1243
1244         new_thread = &new->thread;
1245         old_thread = &current->thread;
1246
1247         WARN_ON(!irqs_disabled());
1248
1249 #ifdef CONFIG_PPC_64S_HASH_MMU
1250         batch = this_cpu_ptr(&ppc64_tlb_batch);
1251         if (batch->active) {
1252                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1253                 if (batch->index)
1254                         __flush_tlb_pending(batch);
1255                 batch->active = 0;
1256         }
1257
1258         /*
1259          * On POWER9 the copy-paste buffer can only paste into
1260          * foreign real addresses, so unprivileged processes can not
1261          * see the data or use it in any way unless they have
1262          * foreign real mappings. If the new process has the foreign
1263          * real address mappings, we must issue a cp_abort to clear
1264          * any state and prevent snooping, corruption or a covert
1265          * channel. ISA v3.1 supports paste into local memory.
1266          */
1267         if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1268                         atomic_read(&new->mm->context.vas_windows)))
1269                 asm volatile(PPC_CP_ABORT);
1270 #endif /* CONFIG_PPC_BOOK3S_64 */
1271
1272 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1273         switch_booke_debug_regs(&new->thread.debug);
1274 #else
1275 /*
1276  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1277  * schedule DABR
1278  */
1279 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1280         switch_hw_breakpoint(new);
1281 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1282 #endif
1283
1284         /*
1285          * We need to save SPRs before treclaim/trecheckpoint as these will
1286          * change a number of them.
1287          */
1288         save_sprs(&prev->thread);
1289
1290         /* Save FPU, Altivec, VSX and SPE state */
1291         giveup_all(prev);
1292
1293         __switch_to_tm(prev, new);
1294
1295         if (!radix_enabled()) {
1296                 /*
1297                  * We can't take a PMU exception inside _switch() since there
1298                  * is a window where the kernel stack SLB and the kernel stack
1299                  * are out of sync. Hard disable here.
1300                  */
1301                 hard_irq_disable();
1302         }
1303
1304         /*
1305          * Call restore_sprs() and set_return_regs_changed() before calling
1306          * _switch(). If we move it after _switch() then we miss out on calling
1307          * it for new tasks. The reason for this is we manually create a stack
1308          * frame for new tasks that directly returns through ret_from_fork() or
1309          * ret_from_kernel_thread(). See copy_thread() for details.
1310          */
1311         restore_sprs(old_thread, new_thread);
1312
1313         set_return_regs_changed(); /* _switch changes stack (and regs) */
1314
1315         if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1316                 kuap_assert_locked();
1317
1318         last = _switch(old_thread, new_thread);
1319
1320         /*
1321          * Nothing after _switch will be run for newly created tasks,
1322          * because they switch directly to ret_from_fork/ret_from_kernel_thread
1323          * etc. Code added here should have a comment explaining why that is
1324          * okay.
1325          */
1326
1327 #ifdef CONFIG_PPC_BOOK3S_64
1328 #ifdef CONFIG_PPC_64S_HASH_MMU
1329         /*
1330          * This applies to a process that was context switched while inside
1331          * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1332          * deactivated above, before _switch(). This will never be the case
1333          * for new tasks.
1334          */
1335         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1336                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1337                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1338                 batch->active = 1;
1339         }
1340 #endif
1341
1342         /*
1343          * Math facilities are masked out of the child MSR in copy_thread.
1344          * A new task does not need to restore_math because it will
1345          * demand fault them.
1346          */
1347         if (current->thread.regs)
1348                 restore_math(current->thread.regs);
1349 #endif /* CONFIG_PPC_BOOK3S_64 */
1350
1351         return last;
1352 }
1353
1354 #define NR_INSN_TO_PRINT        16
1355
1356 static void show_instructions(struct pt_regs *regs)
1357 {
1358         int i;
1359         unsigned long nip = regs->nip;
1360         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1361
1362         printk("Instruction dump:");
1363
1364         /*
1365          * If we were executing with the MMU off for instructions, adjust pc
1366          * rather than printing XXXXXXXX.
1367          */
1368         if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1369                 pc = (unsigned long)phys_to_virt(pc);
1370                 nip = (unsigned long)phys_to_virt(regs->nip);
1371         }
1372
1373         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1374                 int instr;
1375
1376                 if (!(i % 8))
1377                         pr_cont("\n");
1378
1379                 if (!__kernel_text_address(pc) ||
1380                     get_kernel_nofault(instr, (const void *)pc)) {
1381                         pr_cont("XXXXXXXX ");
1382                 } else {
1383                         if (nip == pc)
1384                                 pr_cont("<%08x> ", instr);
1385                         else
1386                                 pr_cont("%08x ", instr);
1387                 }
1388
1389                 pc += sizeof(int);
1390         }
1391
1392         pr_cont("\n");
1393 }
1394
1395 void show_user_instructions(struct pt_regs *regs)
1396 {
1397         unsigned long pc;
1398         int n = NR_INSN_TO_PRINT;
1399         struct seq_buf s;
1400         char buf[96]; /* enough for 8 times 9 + 2 chars */
1401
1402         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1403
1404         seq_buf_init(&s, buf, sizeof(buf));
1405
1406         while (n) {
1407                 int i;
1408
1409                 seq_buf_clear(&s);
1410
1411                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1412                         int instr;
1413
1414                         if (copy_from_user_nofault(&instr, (void __user *)pc,
1415                                         sizeof(instr))) {
1416                                 seq_buf_printf(&s, "XXXXXXXX ");
1417                                 continue;
1418                         }
1419                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1420                 }
1421
1422                 if (!seq_buf_has_overflowed(&s))
1423                         pr_info("%s[%d]: code: %s\n", current->comm,
1424                                 current->pid, s.buffer);
1425         }
1426 }
1427
1428 struct regbit {
1429         unsigned long bit;
1430         const char *name;
1431 };
1432
1433 static struct regbit msr_bits[] = {
1434 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1435         {MSR_SF,        "SF"},
1436         {MSR_HV,        "HV"},
1437 #endif
1438         {MSR_VEC,       "VEC"},
1439         {MSR_VSX,       "VSX"},
1440 #ifdef CONFIG_BOOKE
1441         {MSR_CE,        "CE"},
1442 #endif
1443         {MSR_EE,        "EE"},
1444         {MSR_PR,        "PR"},
1445         {MSR_FP,        "FP"},
1446         {MSR_ME,        "ME"},
1447 #ifdef CONFIG_BOOKE
1448         {MSR_DE,        "DE"},
1449 #else
1450         {MSR_SE,        "SE"},
1451         {MSR_BE,        "BE"},
1452 #endif
1453         {MSR_IR,        "IR"},
1454         {MSR_DR,        "DR"},
1455         {MSR_PMM,       "PMM"},
1456 #ifndef CONFIG_BOOKE
1457         {MSR_RI,        "RI"},
1458         {MSR_LE,        "LE"},
1459 #endif
1460         {0,             NULL}
1461 };
1462
1463 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1464 {
1465         const char *s = "";
1466
1467         for (; bits->bit; ++bits)
1468                 if (val & bits->bit) {
1469                         pr_cont("%s%s", s, bits->name);
1470                         s = sep;
1471                 }
1472 }
1473
1474 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1475 static struct regbit msr_tm_bits[] = {
1476         {MSR_TS_T,      "T"},
1477         {MSR_TS_S,      "S"},
1478         {MSR_TM,        "E"},
1479         {0,             NULL}
1480 };
1481
1482 static void print_tm_bits(unsigned long val)
1483 {
1484 /*
1485  * This only prints something if at least one of the TM bit is set.
1486  * Inside the TM[], the output means:
1487  *   E: Enabled         (bit 32)
1488  *   S: Suspended       (bit 33)
1489  *   T: Transactional   (bit 34)
1490  */
1491         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1492                 pr_cont(",TM[");
1493                 print_bits(val, msr_tm_bits, "");
1494                 pr_cont("]");
1495         }
1496 }
1497 #else
1498 static void print_tm_bits(unsigned long val) {}
1499 #endif
1500
1501 static void print_msr_bits(unsigned long val)
1502 {
1503         pr_cont("<");
1504         print_bits(val, msr_bits, ",");
1505         print_tm_bits(val);
1506         pr_cont(">");
1507 }
1508
1509 #ifdef CONFIG_PPC64
1510 #define REG             "%016lx"
1511 #define REGS_PER_LINE   4
1512 #else
1513 #define REG             "%08lx"
1514 #define REGS_PER_LINE   8
1515 #endif
1516
1517 static void __show_regs(struct pt_regs *regs)
1518 {
1519         int i, trap;
1520
1521         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1522                regs->nip, regs->link, regs->ctr);
1523         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1524                regs, regs->trap, print_tainted(), init_utsname()->release);
1525         printk("MSR:  "REG" ", regs->msr);
1526         print_msr_bits(regs->msr);
1527         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1528         trap = TRAP(regs);
1529         if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1530                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1531         if (trap == INTERRUPT_MACHINE_CHECK ||
1532             trap == INTERRUPT_DATA_STORAGE ||
1533             trap == INTERRUPT_ALIGNMENT) {
1534                 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1535                         pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1536                 else
1537                         pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1538         }
1539
1540 #ifdef CONFIG_PPC64
1541         pr_cont("IRQMASK: %lx ", regs->softe);
1542 #endif
1543 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1544         if (MSR_TM_ACTIVE(regs->msr))
1545                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1546 #endif
1547
1548         for (i = 0;  i < 32;  i++) {
1549                 if ((i % REGS_PER_LINE) == 0)
1550                         pr_cont("\nGPR%02d: ", i);
1551                 pr_cont(REG " ", regs->gpr[i]);
1552         }
1553         pr_cont("\n");
1554         /*
1555          * Lookup NIP late so we have the best change of getting the
1556          * above info out without failing
1557          */
1558         if (IS_ENABLED(CONFIG_KALLSYMS)) {
1559                 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1560                 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1561         }
1562 }
1563
1564 void show_regs(struct pt_regs *regs)
1565 {
1566         show_regs_print_info(KERN_DEFAULT);
1567         __show_regs(regs);
1568         show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1569         if (!user_mode(regs))
1570                 show_instructions(regs);
1571 }
1572
1573 void flush_thread(void)
1574 {
1575 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1576         flush_ptrace_hw_breakpoint(current);
1577 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1578         set_debug_reg_defaults(&current->thread);
1579 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1580 }
1581
1582 void arch_setup_new_exec(void)
1583 {
1584
1585 #ifdef CONFIG_PPC_BOOK3S_64
1586         if (!radix_enabled())
1587                 hash__setup_new_exec();
1588 #endif
1589         /*
1590          * If we exec out of a kernel thread then thread.regs will not be
1591          * set.  Do it now.
1592          */
1593         if (!current->thread.regs) {
1594                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1595                 current->thread.regs = regs - 1;
1596         }
1597
1598 #ifdef CONFIG_PPC_MEM_KEYS
1599         current->thread.regs->amr  = default_amr;
1600         current->thread.regs->iamr  = default_iamr;
1601 #endif
1602 }
1603
1604 #ifdef CONFIG_PPC64
1605 /**
1606  * Assign a TIDR (thread ID) for task @t and set it in the thread
1607  * structure. For now, we only support setting TIDR for 'current' task.
1608  *
1609  * Since the TID value is a truncated form of it PID, it is possible
1610  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1611  * that 2 threads share the same TID and are waiting, one of the following
1612  * cases will happen:
1613  *
1614  * 1. The correct thread is running, the wrong thread is not
1615  * In this situation, the correct thread is woken and proceeds to pass it's
1616  * condition check.
1617  *
1618  * 2. Neither threads are running
1619  * In this situation, neither thread will be woken. When scheduled, the waiting
1620  * threads will execute either a wait, which will return immediately, followed
1621  * by a condition check, which will pass for the correct thread and fail
1622  * for the wrong thread, or they will execute the condition check immediately.
1623  *
1624  * 3. The wrong thread is running, the correct thread is not
1625  * The wrong thread will be woken, but will fail it's condition check and
1626  * re-execute wait. The correct thread, when scheduled, will execute either
1627  * it's condition check (which will pass), or wait, which returns immediately
1628  * when called the first time after the thread is scheduled, followed by it's
1629  * condition check (which will pass).
1630  *
1631  * 4. Both threads are running
1632  * Both threads will be woken. The wrong thread will fail it's condition check
1633  * and execute another wait, while the correct thread will pass it's condition
1634  * check.
1635  *
1636  * @t: the task to set the thread ID for
1637  */
1638 int set_thread_tidr(struct task_struct *t)
1639 {
1640         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1641                 return -EINVAL;
1642
1643         if (t != current)
1644                 return -EINVAL;
1645
1646         if (t->thread.tidr)
1647                 return 0;
1648
1649         t->thread.tidr = (u16)task_pid_nr(t);
1650         mtspr(SPRN_TIDR, t->thread.tidr);
1651
1652         return 0;
1653 }
1654 EXPORT_SYMBOL_GPL(set_thread_tidr);
1655
1656 #endif /* CONFIG_PPC64 */
1657
1658 void
1659 release_thread(struct task_struct *t)
1660 {
1661 }
1662
1663 /*
1664  * this gets called so that we can store coprocessor state into memory and
1665  * copy the current task into the new thread.
1666  */
1667 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1668 {
1669         flush_all_to_thread(src);
1670         /*
1671          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1672          * flush but it removes the checkpointed state from the current CPU and
1673          * transitions the CPU out of TM mode.  Hence we need to call
1674          * tm_recheckpoint_new_task() (on the same task) to restore the
1675          * checkpointed state back and the TM mode.
1676          *
1677          * Can't pass dst because it isn't ready. Doesn't matter, passing
1678          * dst is only important for __switch_to()
1679          */
1680         __switch_to_tm(src, src);
1681
1682         *dst = *src;
1683
1684         clear_task_ebb(dst);
1685
1686         return 0;
1687 }
1688
1689 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1690 {
1691 #ifdef CONFIG_PPC_64S_HASH_MMU
1692         unsigned long sp_vsid;
1693         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1694
1695         if (radix_enabled())
1696                 return;
1697
1698         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1699                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1700                         << SLB_VSID_SHIFT_1T;
1701         else
1702                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1703                         << SLB_VSID_SHIFT;
1704         sp_vsid |= SLB_VSID_KERNEL | llp;
1705         p->thread.ksp_vsid = sp_vsid;
1706 #endif
1707 }
1708
1709 /*
1710  * Copy a thread..
1711  */
1712
1713 /*
1714  * Copy architecture-specific thread state
1715  */
1716 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
1717 {
1718         unsigned long clone_flags = args->flags;
1719         unsigned long usp = args->stack;
1720         unsigned long tls = args->tls;
1721         struct pt_regs *childregs, *kregs;
1722         extern void ret_from_fork(void);
1723         extern void ret_from_fork_scv(void);
1724         extern void ret_from_kernel_thread(void);
1725         void (*f)(void);
1726         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1727         struct thread_info *ti = task_thread_info(p);
1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1729         int i;
1730 #endif
1731
1732         klp_init_thread_info(p);
1733
1734         /* Copy registers */
1735         sp -= sizeof(struct pt_regs);
1736         childregs = (struct pt_regs *) sp;
1737         if (unlikely(args->fn)) {
1738                 /* kernel thread */
1739                 memset(childregs, 0, sizeof(struct pt_regs));
1740                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1741                 /* function */
1742                 if (args->fn)
1743                         childregs->gpr[14] = ppc_function_entry((void *)args->fn);
1744 #ifdef CONFIG_PPC64
1745                 clear_tsk_thread_flag(p, TIF_32BIT);
1746                 childregs->softe = IRQS_ENABLED;
1747 #endif
1748                 childregs->gpr[15] = (unsigned long)args->fn_arg;
1749                 p->thread.regs = NULL;  /* no user register state */
1750                 ti->flags |= _TIF_RESTOREALL;
1751                 f = ret_from_kernel_thread;
1752         } else {
1753                 /* user thread */
1754                 struct pt_regs *regs = current_pt_regs();
1755                 *childregs = *regs;
1756                 if (usp)
1757                         childregs->gpr[1] = usp;
1758                 p->thread.regs = childregs;
1759                 /* 64s sets this in ret_from_fork */
1760                 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1761                         childregs->gpr[3] = 0;  /* Result from fork() */
1762                 if (clone_flags & CLONE_SETTLS) {
1763                         if (!is_32bit_task())
1764                                 childregs->gpr[13] = tls;
1765                         else
1766                                 childregs->gpr[2] = tls;
1767                 }
1768
1769                 if (trap_is_scv(regs))
1770                         f = ret_from_fork_scv;
1771                 else
1772                         f = ret_from_fork;
1773         }
1774         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1775         sp -= STACK_FRAME_OVERHEAD;
1776
1777         /*
1778          * The way this works is that at some point in the future
1779          * some task will call _switch to switch to the new task.
1780          * That will pop off the stack frame created below and start
1781          * the new task running at ret_from_fork.  The new task will
1782          * do some house keeping and then return from the fork or clone
1783          * system call, using the stack frame created above.
1784          */
1785         ((unsigned long *)sp)[0] = 0;
1786         sp -= sizeof(struct pt_regs);
1787         kregs = (struct pt_regs *) sp;
1788         sp -= STACK_FRAME_OVERHEAD;
1789         p->thread.ksp = sp;
1790 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1791         for (i = 0; i < nr_wp_slots(); i++)
1792                 p->thread.ptrace_bps[i] = NULL;
1793 #endif
1794
1795 #ifdef CONFIG_PPC_FPU_REGS
1796         p->thread.fp_save_area = NULL;
1797 #endif
1798 #ifdef CONFIG_ALTIVEC
1799         p->thread.vr_save_area = NULL;
1800 #endif
1801 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1802         p->thread.kuap = KUAP_NONE;
1803 #endif
1804 #if defined(CONFIG_BOOKE_OR_40x) && defined(CONFIG_PPC_KUAP)
1805         p->thread.pid = MMU_NO_CONTEXT;
1806 #endif
1807
1808         setup_ksp_vsid(p, sp);
1809
1810 #ifdef CONFIG_PPC64 
1811         if (cpu_has_feature(CPU_FTR_DSCR)) {
1812                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1813                 p->thread.dscr = mfspr(SPRN_DSCR);
1814         }
1815         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1816                 childregs->ppr = DEFAULT_PPR;
1817
1818         p->thread.tidr = 0;
1819 #endif
1820         /*
1821          * Run with the current AMR value of the kernel
1822          */
1823 #ifdef CONFIG_PPC_PKEY
1824         if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1825                 kregs->amr = AMR_KUAP_BLOCKED;
1826
1827         if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1828                 kregs->iamr = AMR_KUEP_BLOCKED;
1829 #endif
1830         kregs->nip = ppc_function_entry(f);
1831         return 0;
1832 }
1833
1834 void preload_new_slb_context(unsigned long start, unsigned long sp);
1835
1836 /*
1837  * Set up a thread for executing a new program
1838  */
1839 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1840 {
1841 #ifdef CONFIG_PPC64
1842         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1843
1844         if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1845                 preload_new_slb_context(start, sp);
1846 #endif
1847
1848 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1849         /*
1850          * Clear any transactional state, we're exec()ing. The cause is
1851          * not important as there will never be a recheckpoint so it's not
1852          * user visible.
1853          */
1854         if (MSR_TM_SUSPENDED(mfmsr()))
1855                 tm_reclaim_current(0);
1856 #endif
1857
1858         memset(&regs->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1859         regs->ctr = 0;
1860         regs->link = 0;
1861         regs->xer = 0;
1862         regs->ccr = 0;
1863         regs->gpr[1] = sp;
1864
1865 #ifdef CONFIG_PPC32
1866         regs->mq = 0;
1867         regs->nip = start;
1868         regs->msr = MSR_USER;
1869 #else
1870         if (!is_32bit_task()) {
1871                 unsigned long entry;
1872
1873                 if (is_elf2_task()) {
1874                         /* Look ma, no function descriptors! */
1875                         entry = start;
1876
1877                         /*
1878                          * Ulrich says:
1879                          *   The latest iteration of the ABI requires that when
1880                          *   calling a function (at its global entry point),
1881                          *   the caller must ensure r12 holds the entry point
1882                          *   address (so that the function can quickly
1883                          *   establish addressability).
1884                          */
1885                         regs->gpr[12] = start;
1886                         /* Make sure that's restored on entry to userspace. */
1887                         set_thread_flag(TIF_RESTOREALL);
1888                 } else {
1889                         unsigned long toc;
1890
1891                         /* start is a relocated pointer to the function
1892                          * descriptor for the elf _start routine.  The first
1893                          * entry in the function descriptor is the entry
1894                          * address of _start and the second entry is the TOC
1895                          * value we need to use.
1896                          */
1897                         __get_user(entry, (unsigned long __user *)start);
1898                         __get_user(toc, (unsigned long __user *)start+1);
1899
1900                         /* Check whether the e_entry function descriptor entries
1901                          * need to be relocated before we can use them.
1902                          */
1903                         if (load_addr != 0) {
1904                                 entry += load_addr;
1905                                 toc   += load_addr;
1906                         }
1907                         regs->gpr[2] = toc;
1908                 }
1909                 regs_set_return_ip(regs, entry);
1910                 regs_set_return_msr(regs, MSR_USER64);
1911         } else {
1912                 regs->gpr[2] = 0;
1913                 regs_set_return_ip(regs, start);
1914                 regs_set_return_msr(regs, MSR_USER32);
1915         }
1916
1917 #endif
1918 #ifdef CONFIG_VSX
1919         current->thread.used_vsr = 0;
1920 #endif
1921         current->thread.load_slb = 0;
1922         current->thread.load_fp = 0;
1923 #ifdef CONFIG_PPC_FPU_REGS
1924         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1925         current->thread.fp_save_area = NULL;
1926 #endif
1927 #ifdef CONFIG_ALTIVEC
1928         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1929         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1930         current->thread.vr_save_area = NULL;
1931         current->thread.vrsave = 0;
1932         current->thread.used_vr = 0;
1933         current->thread.load_vec = 0;
1934 #endif /* CONFIG_ALTIVEC */
1935 #ifdef CONFIG_SPE
1936         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1937         current->thread.acc = 0;
1938         current->thread.spefscr = 0;
1939         current->thread.used_spe = 0;
1940 #endif /* CONFIG_SPE */
1941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1942         current->thread.tm_tfhar = 0;
1943         current->thread.tm_texasr = 0;
1944         current->thread.tm_tfiar = 0;
1945         current->thread.load_tm = 0;
1946 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1947 }
1948 EXPORT_SYMBOL(start_thread);
1949
1950 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1951                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1952
1953 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1954 {
1955         struct pt_regs *regs = tsk->thread.regs;
1956
1957         /* This is a bit hairy.  If we are an SPE enabled  processor
1958          * (have embedded fp) we store the IEEE exception enable flags in
1959          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1960          * mode (asyn, precise, disabled) for 'Classic' FP. */
1961         if (val & PR_FP_EXC_SW_ENABLE) {
1962                 if (cpu_has_feature(CPU_FTR_SPE)) {
1963                         /*
1964                          * When the sticky exception bits are set
1965                          * directly by userspace, it must call prctl
1966                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1967                          * in the existing prctl settings) or
1968                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1969                          * the bits being set).  <fenv.h> functions
1970                          * saving and restoring the whole
1971                          * floating-point environment need to do so
1972                          * anyway to restore the prctl settings from
1973                          * the saved environment.
1974                          */
1975 #ifdef CONFIG_SPE
1976                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1977                         tsk->thread.fpexc_mode = val &
1978                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1979 #endif
1980                         return 0;
1981                 } else {
1982                         return -EINVAL;
1983                 }
1984         }
1985
1986         /* on a CONFIG_SPE this does not hurt us.  The bits that
1987          * __pack_fe01 use do not overlap with bits used for
1988          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1989          * on CONFIG_SPE implementations are reserved so writing to
1990          * them does not change anything */
1991         if (val > PR_FP_EXC_PRECISE)
1992                 return -EINVAL;
1993         tsk->thread.fpexc_mode = __pack_fe01(val);
1994         if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1995                 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1996                                                 | tsk->thread.fpexc_mode);
1997         }
1998         return 0;
1999 }
2000
2001 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2002 {
2003         unsigned int val = 0;
2004
2005         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2006                 if (cpu_has_feature(CPU_FTR_SPE)) {
2007                         /*
2008                          * When the sticky exception bits are set
2009                          * directly by userspace, it must call prctl
2010                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2011                          * in the existing prctl settings) or
2012                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2013                          * the bits being set).  <fenv.h> functions
2014                          * saving and restoring the whole
2015                          * floating-point environment need to do so
2016                          * anyway to restore the prctl settings from
2017                          * the saved environment.
2018                          */
2019 #ifdef CONFIG_SPE
2020                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2021                         val = tsk->thread.fpexc_mode;
2022 #endif
2023                 } else
2024                         return -EINVAL;
2025         } else {
2026                 val = __unpack_fe01(tsk->thread.fpexc_mode);
2027         }
2028         return put_user(val, (unsigned int __user *) adr);
2029 }
2030
2031 int set_endian(struct task_struct *tsk, unsigned int val)
2032 {
2033         struct pt_regs *regs = tsk->thread.regs;
2034
2035         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2036             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2037                 return -EINVAL;
2038
2039         if (regs == NULL)
2040                 return -EINVAL;
2041
2042         if (val == PR_ENDIAN_BIG)
2043                 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2044         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2045                 regs_set_return_msr(regs, regs->msr | MSR_LE);
2046         else
2047                 return -EINVAL;
2048
2049         return 0;
2050 }
2051
2052 int get_endian(struct task_struct *tsk, unsigned long adr)
2053 {
2054         struct pt_regs *regs = tsk->thread.regs;
2055         unsigned int val;
2056
2057         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2058             !cpu_has_feature(CPU_FTR_REAL_LE))
2059                 return -EINVAL;
2060
2061         if (regs == NULL)
2062                 return -EINVAL;
2063
2064         if (regs->msr & MSR_LE) {
2065                 if (cpu_has_feature(CPU_FTR_REAL_LE))
2066                         val = PR_ENDIAN_LITTLE;
2067                 else
2068                         val = PR_ENDIAN_PPC_LITTLE;
2069         } else
2070                 val = PR_ENDIAN_BIG;
2071
2072         return put_user(val, (unsigned int __user *)adr);
2073 }
2074
2075 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2076 {
2077         tsk->thread.align_ctl = val;
2078         return 0;
2079 }
2080
2081 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2082 {
2083         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2084 }
2085
2086 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2087                                   unsigned long nbytes)
2088 {
2089         unsigned long stack_page;
2090         unsigned long cpu = task_cpu(p);
2091
2092         stack_page = (unsigned long)hardirq_ctx[cpu];
2093         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2094                 return 1;
2095
2096         stack_page = (unsigned long)softirq_ctx[cpu];
2097         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2098                 return 1;
2099
2100         return 0;
2101 }
2102
2103 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2104                                         unsigned long nbytes)
2105 {
2106 #ifdef CONFIG_PPC64
2107         unsigned long stack_page;
2108         unsigned long cpu = task_cpu(p);
2109
2110         if (!paca_ptrs)
2111                 return 0;
2112
2113         stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2114         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2115                 return 1;
2116
2117 # ifdef CONFIG_PPC_BOOK3S_64
2118         stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2119         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2120                 return 1;
2121
2122         stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2123         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2124                 return 1;
2125 # endif
2126 #endif
2127
2128         return 0;
2129 }
2130
2131
2132 int validate_sp(unsigned long sp, struct task_struct *p,
2133                        unsigned long nbytes)
2134 {
2135         unsigned long stack_page = (unsigned long)task_stack_page(p);
2136
2137         if (sp < THREAD_SIZE)
2138                 return 0;
2139
2140         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2141                 return 1;
2142
2143         if (valid_irq_stack(sp, p, nbytes))
2144                 return 1;
2145
2146         return valid_emergency_stack(sp, p, nbytes);
2147 }
2148
2149 EXPORT_SYMBOL(validate_sp);
2150
2151 static unsigned long ___get_wchan(struct task_struct *p)
2152 {
2153         unsigned long ip, sp;
2154         int count = 0;
2155
2156         sp = p->thread.ksp;
2157         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2158                 return 0;
2159
2160         do {
2161                 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2162                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2163                     task_is_running(p))
2164                         return 0;
2165                 if (count > 0) {
2166                         ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2167                         if (!in_sched_functions(ip))
2168                                 return ip;
2169                 }
2170         } while (count++ < 16);
2171         return 0;
2172 }
2173
2174 unsigned long __get_wchan(struct task_struct *p)
2175 {
2176         unsigned long ret;
2177
2178         if (!try_get_task_stack(p))
2179                 return 0;
2180
2181         ret = ___get_wchan(p);
2182
2183         put_task_stack(p);
2184
2185         return ret;
2186 }
2187
2188 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2189
2190 void __no_sanitize_address show_stack(struct task_struct *tsk,
2191                                       unsigned long *stack,
2192                                       const char *loglvl)
2193 {
2194         unsigned long sp, ip, lr, newsp;
2195         int count = 0;
2196         int firstframe = 1;
2197         unsigned long ret_addr;
2198         int ftrace_idx = 0;
2199
2200         if (tsk == NULL)
2201                 tsk = current;
2202
2203         if (!try_get_task_stack(tsk))
2204                 return;
2205
2206         sp = (unsigned long) stack;
2207         if (sp == 0) {
2208                 if (tsk == current)
2209                         sp = current_stack_frame();
2210                 else
2211                         sp = tsk->thread.ksp;
2212         }
2213
2214         lr = 0;
2215         printk("%sCall Trace:\n", loglvl);
2216         do {
2217                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2218                         break;
2219
2220                 stack = (unsigned long *) sp;
2221                 newsp = stack[0];
2222                 ip = stack[STACK_FRAME_LR_SAVE];
2223                 if (!firstframe || ip != lr) {
2224                         printk("%s["REG"] ["REG"] %pS",
2225                                 loglvl, sp, ip, (void *)ip);
2226                         ret_addr = ftrace_graph_ret_addr(current,
2227                                                 &ftrace_idx, ip, stack);
2228                         if (ret_addr != ip)
2229                                 pr_cont(" (%pS)", (void *)ret_addr);
2230                         if (firstframe)
2231                                 pr_cont(" (unreliable)");
2232                         pr_cont("\n");
2233                 }
2234                 firstframe = 0;
2235
2236                 /*
2237                  * See if this is an exception frame.
2238                  * We look for the "regshere" marker in the current frame.
2239                  */
2240                 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2241                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2242                         struct pt_regs *regs = (struct pt_regs *)
2243                                 (sp + STACK_FRAME_OVERHEAD);
2244
2245                         lr = regs->link;
2246                         printk("%s--- interrupt: %lx at %pS\n",
2247                                loglvl, regs->trap, (void *)regs->nip);
2248                         __show_regs(regs);
2249                         printk("%s--- interrupt: %lx\n",
2250                                loglvl, regs->trap);
2251
2252                         firstframe = 1;
2253                 }
2254
2255                 sp = newsp;
2256         } while (count++ < kstack_depth_to_print);
2257
2258         put_task_stack(tsk);
2259 }
2260
2261 #ifdef CONFIG_PPC64
2262 /* Called with hard IRQs off */
2263 void notrace __ppc64_runlatch_on(void)
2264 {
2265         struct thread_info *ti = current_thread_info();
2266
2267         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2268                 /*
2269                  * Least significant bit (RUN) is the only writable bit of
2270                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2271                  * earliest ISA where this is the case, but it's convenient.
2272                  */
2273                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2274         } else {
2275                 unsigned long ctrl;
2276
2277                 /*
2278                  * Some architectures (e.g., Cell) have writable fields other
2279                  * than RUN, so do the read-modify-write.
2280                  */
2281                 ctrl = mfspr(SPRN_CTRLF);
2282                 ctrl |= CTRL_RUNLATCH;
2283                 mtspr(SPRN_CTRLT, ctrl);
2284         }
2285
2286         ti->local_flags |= _TLF_RUNLATCH;
2287 }
2288
2289 /* Called with hard IRQs off */
2290 void notrace __ppc64_runlatch_off(void)
2291 {
2292         struct thread_info *ti = current_thread_info();
2293
2294         ti->local_flags &= ~_TLF_RUNLATCH;
2295
2296         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2297                 mtspr(SPRN_CTRLT, 0);
2298         } else {
2299                 unsigned long ctrl;
2300
2301                 ctrl = mfspr(SPRN_CTRLF);
2302                 ctrl &= ~CTRL_RUNLATCH;
2303                 mtspr(SPRN_CTRLT, ctrl);
2304         }
2305 }
2306 #endif /* CONFIG_PPC64 */
2307
2308 unsigned long arch_align_stack(unsigned long sp)
2309 {
2310         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2311                 sp -= get_random_int() & ~PAGE_MASK;
2312         return sp & ~0xf;
2313 }