Merge tag 'armsoc-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[platform/kernel/linux-rpi.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77
78 extern unsigned long _get_SP(void);
79
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90         /*
91          * If we are saving the current thread's registers, and the
92          * thread is in a transactional state, set the TIF_RESTORE_TM
93          * bit so that we know to restore the registers before
94          * returning to userspace.
95          */
96         if (tsk == current && tsk->thread.regs &&
97             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98             !test_thread_flag(TIF_RESTORE_TM)) {
99                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100                 set_thread_flag(TIF_RESTORE_TM);
101         }
102 }
103
104 #else
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
110
111 static int __init enable_strict_msr_control(char *str)
112 {
113         strict_msr_control = true;
114         pr_info("Enabling strict facility control\n");
115
116         return 0;
117 }
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119
120 /* notrace because it's called by restore_math */
121 unsigned long notrace msr_check_and_set(unsigned long bits)
122 {
123         unsigned long oldmsr = mfmsr();
124         unsigned long newmsr;
125
126         newmsr = oldmsr | bits;
127
128 #ifdef CONFIG_VSX
129         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130                 newmsr |= MSR_VSX;
131 #endif
132
133         if (oldmsr != newmsr)
134                 mtmsr_isync(newmsr);
135
136         return newmsr;
137 }
138 EXPORT_SYMBOL_GPL(msr_check_and_set);
139
140 /* notrace because it's called by restore_math */
141 void notrace __msr_check_and_clear(unsigned long bits)
142 {
143         unsigned long oldmsr = mfmsr();
144         unsigned long newmsr;
145
146         newmsr = oldmsr & ~bits;
147
148 #ifdef CONFIG_VSX
149         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
150                 newmsr &= ~MSR_VSX;
151 #endif
152
153         if (oldmsr != newmsr)
154                 mtmsr_isync(newmsr);
155 }
156 EXPORT_SYMBOL(__msr_check_and_clear);
157
158 #ifdef CONFIG_PPC_FPU
159 static void __giveup_fpu(struct task_struct *tsk)
160 {
161         unsigned long msr;
162
163         save_fpu(tsk);
164         msr = tsk->thread.regs->msr;
165         msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
166 #ifdef CONFIG_VSX
167         if (cpu_has_feature(CPU_FTR_VSX))
168                 msr &= ~MSR_VSX;
169 #endif
170         tsk->thread.regs->msr = msr;
171 }
172
173 void giveup_fpu(struct task_struct *tsk)
174 {
175         check_if_tm_restore_required(tsk);
176
177         msr_check_and_set(MSR_FP);
178         __giveup_fpu(tsk);
179         msr_check_and_clear(MSR_FP);
180 }
181 EXPORT_SYMBOL(giveup_fpu);
182
183 /*
184  * Make sure the floating-point register state in the
185  * the thread_struct is up to date for task tsk.
186  */
187 void flush_fp_to_thread(struct task_struct *tsk)
188 {
189         if (tsk->thread.regs) {
190                 /*
191                  * We need to disable preemption here because if we didn't,
192                  * another process could get scheduled after the regs->msr
193                  * test but before we have finished saving the FP registers
194                  * to the thread_struct.  That process could take over the
195                  * FPU, and then when we get scheduled again we would store
196                  * bogus values for the remaining FP registers.
197                  */
198                 preempt_disable();
199                 if (tsk->thread.regs->msr & MSR_FP) {
200                         /*
201                          * This should only ever be called for current or
202                          * for a stopped child process.  Since we save away
203                          * the FP register state on context switch,
204                          * there is something wrong if a stopped child appears
205                          * to still have its FP state in the CPU registers.
206                          */
207                         BUG_ON(tsk != current);
208                         giveup_fpu(tsk);
209                 }
210                 preempt_enable();
211         }
212 }
213 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
214
215 void enable_kernel_fp(void)
216 {
217         unsigned long cpumsr;
218
219         WARN_ON(preemptible());
220
221         cpumsr = msr_check_and_set(MSR_FP);
222
223         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
224                 check_if_tm_restore_required(current);
225                 /*
226                  * If a thread has already been reclaimed then the
227                  * checkpointed registers are on the CPU but have definitely
228                  * been saved by the reclaim code. Don't need to and *cannot*
229                  * giveup as this would save  to the 'live' structure not the
230                  * checkpointed structure.
231                  */
232                 if (!MSR_TM_ACTIVE(cpumsr) &&
233                      MSR_TM_ACTIVE(current->thread.regs->msr))
234                         return;
235                 __giveup_fpu(current);
236         }
237 }
238 EXPORT_SYMBOL(enable_kernel_fp);
239
240 static int restore_fp(struct task_struct *tsk)
241 {
242         if (tsk->thread.load_fp) {
243                 load_fp_state(&current->thread.fp_state);
244                 current->thread.load_fp++;
245                 return 1;
246         }
247         return 0;
248 }
249 #else
250 static int restore_fp(struct task_struct *tsk) { return 0; }
251 #endif /* CONFIG_PPC_FPU */
252
253 #ifdef CONFIG_ALTIVEC
254 #define loadvec(thr) ((thr).load_vec)
255
256 static void __giveup_altivec(struct task_struct *tsk)
257 {
258         unsigned long msr;
259
260         save_altivec(tsk);
261         msr = tsk->thread.regs->msr;
262         msr &= ~MSR_VEC;
263 #ifdef CONFIG_VSX
264         if (cpu_has_feature(CPU_FTR_VSX))
265                 msr &= ~MSR_VSX;
266 #endif
267         tsk->thread.regs->msr = msr;
268 }
269
270 void giveup_altivec(struct task_struct *tsk)
271 {
272         check_if_tm_restore_required(tsk);
273
274         msr_check_and_set(MSR_VEC);
275         __giveup_altivec(tsk);
276         msr_check_and_clear(MSR_VEC);
277 }
278 EXPORT_SYMBOL(giveup_altivec);
279
280 void enable_kernel_altivec(void)
281 {
282         unsigned long cpumsr;
283
284         WARN_ON(preemptible());
285
286         cpumsr = msr_check_and_set(MSR_VEC);
287
288         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
289                 check_if_tm_restore_required(current);
290                 /*
291                  * If a thread has already been reclaimed then the
292                  * checkpointed registers are on the CPU but have definitely
293                  * been saved by the reclaim code. Don't need to and *cannot*
294                  * giveup as this would save  to the 'live' structure not the
295                  * checkpointed structure.
296                  */
297                 if (!MSR_TM_ACTIVE(cpumsr) &&
298                      MSR_TM_ACTIVE(current->thread.regs->msr))
299                         return;
300                 __giveup_altivec(current);
301         }
302 }
303 EXPORT_SYMBOL(enable_kernel_altivec);
304
305 /*
306  * Make sure the VMX/Altivec register state in the
307  * the thread_struct is up to date for task tsk.
308  */
309 void flush_altivec_to_thread(struct task_struct *tsk)
310 {
311         if (tsk->thread.regs) {
312                 preempt_disable();
313                 if (tsk->thread.regs->msr & MSR_VEC) {
314                         BUG_ON(tsk != current);
315                         giveup_altivec(tsk);
316                 }
317                 preempt_enable();
318         }
319 }
320 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
321
322 static int restore_altivec(struct task_struct *tsk)
323 {
324         if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) {
325                 load_vr_state(&tsk->thread.vr_state);
326                 tsk->thread.used_vr = 1;
327                 tsk->thread.load_vec++;
328
329                 return 1;
330         }
331         return 0;
332 }
333 #else
334 #define loadvec(thr) 0
335 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
336 #endif /* CONFIG_ALTIVEC */
337
338 #ifdef CONFIG_VSX
339 static void __giveup_vsx(struct task_struct *tsk)
340 {
341         unsigned long msr = tsk->thread.regs->msr;
342
343         /*
344          * We should never be ssetting MSR_VSX without also setting
345          * MSR_FP and MSR_VEC
346          */
347         WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
348
349         /* __giveup_fpu will clear MSR_VSX */
350         if (msr & MSR_FP)
351                 __giveup_fpu(tsk);
352         if (msr & MSR_VEC)
353                 __giveup_altivec(tsk);
354 }
355
356 static void giveup_vsx(struct task_struct *tsk)
357 {
358         check_if_tm_restore_required(tsk);
359
360         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361         __giveup_vsx(tsk);
362         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
363 }
364
365 void enable_kernel_vsx(void)
366 {
367         unsigned long cpumsr;
368
369         WARN_ON(preemptible());
370
371         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
372
373         if (current->thread.regs &&
374             (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
375                 check_if_tm_restore_required(current);
376                 /*
377                  * If a thread has already been reclaimed then the
378                  * checkpointed registers are on the CPU but have definitely
379                  * been saved by the reclaim code. Don't need to and *cannot*
380                  * giveup as this would save  to the 'live' structure not the
381                  * checkpointed structure.
382                  */
383                 if (!MSR_TM_ACTIVE(cpumsr) &&
384                      MSR_TM_ACTIVE(current->thread.regs->msr))
385                         return;
386                 __giveup_vsx(current);
387         }
388 }
389 EXPORT_SYMBOL(enable_kernel_vsx);
390
391 void flush_vsx_to_thread(struct task_struct *tsk)
392 {
393         if (tsk->thread.regs) {
394                 preempt_disable();
395                 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
396                         BUG_ON(tsk != current);
397                         giveup_vsx(tsk);
398                 }
399                 preempt_enable();
400         }
401 }
402 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
403
404 static int restore_vsx(struct task_struct *tsk)
405 {
406         if (cpu_has_feature(CPU_FTR_VSX)) {
407                 tsk->thread.used_vsr = 1;
408                 return 1;
409         }
410
411         return 0;
412 }
413 #else
414 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
415 #endif /* CONFIG_VSX */
416
417 #ifdef CONFIG_SPE
418 void giveup_spe(struct task_struct *tsk)
419 {
420         check_if_tm_restore_required(tsk);
421
422         msr_check_and_set(MSR_SPE);
423         __giveup_spe(tsk);
424         msr_check_and_clear(MSR_SPE);
425 }
426 EXPORT_SYMBOL(giveup_spe);
427
428 void enable_kernel_spe(void)
429 {
430         WARN_ON(preemptible());
431
432         msr_check_and_set(MSR_SPE);
433
434         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
435                 check_if_tm_restore_required(current);
436                 __giveup_spe(current);
437         }
438 }
439 EXPORT_SYMBOL(enable_kernel_spe);
440
441 void flush_spe_to_thread(struct task_struct *tsk)
442 {
443         if (tsk->thread.regs) {
444                 preempt_disable();
445                 if (tsk->thread.regs->msr & MSR_SPE) {
446                         BUG_ON(tsk != current);
447                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
448                         giveup_spe(tsk);
449                 }
450                 preempt_enable();
451         }
452 }
453 #endif /* CONFIG_SPE */
454
455 static unsigned long msr_all_available;
456
457 static int __init init_msr_all_available(void)
458 {
459 #ifdef CONFIG_PPC_FPU
460         msr_all_available |= MSR_FP;
461 #endif
462 #ifdef CONFIG_ALTIVEC
463         if (cpu_has_feature(CPU_FTR_ALTIVEC))
464                 msr_all_available |= MSR_VEC;
465 #endif
466 #ifdef CONFIG_VSX
467         if (cpu_has_feature(CPU_FTR_VSX))
468                 msr_all_available |= MSR_VSX;
469 #endif
470 #ifdef CONFIG_SPE
471         if (cpu_has_feature(CPU_FTR_SPE))
472                 msr_all_available |= MSR_SPE;
473 #endif
474
475         return 0;
476 }
477 early_initcall(init_msr_all_available);
478
479 void giveup_all(struct task_struct *tsk)
480 {
481         unsigned long usermsr;
482
483         if (!tsk->thread.regs)
484                 return;
485
486         check_if_tm_restore_required(tsk);
487
488         usermsr = tsk->thread.regs->msr;
489
490         if ((usermsr & msr_all_available) == 0)
491                 return;
492
493         msr_check_and_set(msr_all_available);
494
495         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
496
497 #ifdef CONFIG_PPC_FPU
498         if (usermsr & MSR_FP)
499                 __giveup_fpu(tsk);
500 #endif
501 #ifdef CONFIG_ALTIVEC
502         if (usermsr & MSR_VEC)
503                 __giveup_altivec(tsk);
504 #endif
505 #ifdef CONFIG_SPE
506         if (usermsr & MSR_SPE)
507                 __giveup_spe(tsk);
508 #endif
509
510         msr_check_and_clear(msr_all_available);
511 }
512 EXPORT_SYMBOL(giveup_all);
513
514 /*
515  * The exception exit path calls restore_math() with interrupts hard disabled
516  * but the soft irq state not "reconciled". ftrace code that calls
517  * local_irq_save/restore causes warnings.
518  *
519  * Rather than complicate the exit path, just don't trace restore_math. This
520  * could be done by having ftrace entry code check for this un-reconciled
521  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
522  * temporarily fix it up for the duration of the ftrace call.
523  */
524 void notrace restore_math(struct pt_regs *regs)
525 {
526         unsigned long msr;
527
528         if (!MSR_TM_ACTIVE(regs->msr) &&
529                 !current->thread.load_fp && !loadvec(current->thread))
530                 return;
531
532         msr = regs->msr;
533         msr_check_and_set(msr_all_available);
534
535         /*
536          * Only reload if the bit is not set in the user MSR, the bit BEING set
537          * indicates that the registers are hot
538          */
539         if ((!(msr & MSR_FP)) && restore_fp(current))
540                 msr |= MSR_FP | current->thread.fpexc_mode;
541
542         if ((!(msr & MSR_VEC)) && restore_altivec(current))
543                 msr |= MSR_VEC;
544
545         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
546                         restore_vsx(current)) {
547                 msr |= MSR_VSX;
548         }
549
550         msr_check_and_clear(msr_all_available);
551
552         regs->msr = msr;
553 }
554
555 static void save_all(struct task_struct *tsk)
556 {
557         unsigned long usermsr;
558
559         if (!tsk->thread.regs)
560                 return;
561
562         usermsr = tsk->thread.regs->msr;
563
564         if ((usermsr & msr_all_available) == 0)
565                 return;
566
567         msr_check_and_set(msr_all_available);
568
569         WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
570
571         if (usermsr & MSR_FP)
572                 save_fpu(tsk);
573
574         if (usermsr & MSR_VEC)
575                 save_altivec(tsk);
576
577         if (usermsr & MSR_SPE)
578                 __giveup_spe(tsk);
579
580         msr_check_and_clear(msr_all_available);
581         thread_pkey_regs_save(&tsk->thread);
582 }
583
584 void flush_all_to_thread(struct task_struct *tsk)
585 {
586         if (tsk->thread.regs) {
587                 preempt_disable();
588                 BUG_ON(tsk != current);
589 #ifdef CONFIG_SPE
590                 if (tsk->thread.regs->msr & MSR_SPE)
591                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
592 #endif
593                 save_all(tsk);
594
595                 preempt_enable();
596         }
597 }
598 EXPORT_SYMBOL(flush_all_to_thread);
599
600 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
601 void do_send_trap(struct pt_regs *regs, unsigned long address,
602                   unsigned long error_code, int breakpt)
603 {
604         current->thread.trap_nr = TRAP_HWBKPT;
605         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
606                         11, SIGSEGV) == NOTIFY_STOP)
607                 return;
608
609         /* Deliver the signal to userspace */
610         force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
611                                     (void __user *)address);
612 }
613 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
614 void do_break (struct pt_regs *regs, unsigned long address,
615                     unsigned long error_code)
616 {
617         current->thread.trap_nr = TRAP_HWBKPT;
618         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619                         11, SIGSEGV) == NOTIFY_STOP)
620                 return;
621
622         if (debugger_break_match(regs))
623                 return;
624
625         /* Clear the breakpoint */
626         hw_breakpoint_disable();
627
628         /* Deliver the signal to userspace */
629         force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
630 }
631 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
632
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
634
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
636 /*
637  * Set the debug registers back to their default "safe" values.
638  */
639 static void set_debug_reg_defaults(struct thread_struct *thread)
640 {
641         thread->debug.iac1 = thread->debug.iac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643         thread->debug.iac3 = thread->debug.iac4 = 0;
644 #endif
645         thread->debug.dac1 = thread->debug.dac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647         thread->debug.dvc1 = thread->debug.dvc2 = 0;
648 #endif
649         thread->debug.dbcr0 = 0;
650 #ifdef CONFIG_BOOKE
651         /*
652          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
653          */
654         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655                         DBCR1_IAC3US | DBCR1_IAC4US;
656         /*
657          * Force Data Address Compare User/Supervisor bits to be User-only
658          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
659          */
660         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661 #else
662         thread->debug.dbcr1 = 0;
663 #endif
664 }
665
666 static void prime_debug_regs(struct debug_reg *debug)
667 {
668         /*
669          * We could have inherited MSR_DE from userspace, since
670          * it doesn't get cleared on exception entry.  Make sure
671          * MSR_DE is clear before we enable any debug events.
672          */
673         mtmsr(mfmsr() & ~MSR_DE);
674
675         mtspr(SPRN_IAC1, debug->iac1);
676         mtspr(SPRN_IAC2, debug->iac2);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678         mtspr(SPRN_IAC3, debug->iac3);
679         mtspr(SPRN_IAC4, debug->iac4);
680 #endif
681         mtspr(SPRN_DAC1, debug->dac1);
682         mtspr(SPRN_DAC2, debug->dac2);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684         mtspr(SPRN_DVC1, debug->dvc1);
685         mtspr(SPRN_DVC2, debug->dvc2);
686 #endif
687         mtspr(SPRN_DBCR0, debug->dbcr0);
688         mtspr(SPRN_DBCR1, debug->dbcr1);
689 #ifdef CONFIG_BOOKE
690         mtspr(SPRN_DBCR2, debug->dbcr2);
691 #endif
692 }
693 /*
694  * Unless neither the old or new thread are making use of the
695  * debug registers, set the debug registers from the values
696  * stored in the new thread.
697  */
698 void switch_booke_debug_regs(struct debug_reg *new_debug)
699 {
700         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701                 || (new_debug->dbcr0 & DBCR0_IDM))
702                         prime_debug_regs(new_debug);
703 }
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_breakpoint(struct arch_hw_breakpoint *brk)
708 {
709         preempt_disable();
710         __set_breakpoint(brk);
711         preempt_enable();
712 }
713
714 static void set_debug_reg_defaults(struct thread_struct *thread)
715 {
716         thread->hw_brk.address = 0;
717         thread->hw_brk.type = 0;
718         thread->hw_brk.len = 0;
719         thread->hw_brk.hw_len = 0;
720         if (ppc_breakpoint_available())
721                 set_breakpoint(&thread->hw_brk);
722 }
723 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
724 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
725
726 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
727 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
728 {
729         mtspr(SPRN_DAC1, dabr);
730 #ifdef CONFIG_PPC_47x
731         isync();
732 #endif
733         return 0;
734 }
735 #elif defined(CONFIG_PPC_BOOK3S)
736 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
737 {
738         mtspr(SPRN_DABR, dabr);
739         if (cpu_has_feature(CPU_FTR_DABRX))
740                 mtspr(SPRN_DABRX, dabrx);
741         return 0;
742 }
743 #else
744 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
745 {
746         return -EINVAL;
747 }
748 #endif
749
750 static inline int set_dabr(struct arch_hw_breakpoint *brk)
751 {
752         unsigned long dabr, dabrx;
753
754         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
755         dabrx = ((brk->type >> 3) & 0x7);
756
757         if (ppc_md.set_dabr)
758                 return ppc_md.set_dabr(dabr, dabrx);
759
760         return __set_dabr(dabr, dabrx);
761 }
762
763 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
764 {
765         unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
766                                LCTRL1_CRWF_RW;
767         unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
768         unsigned long start_addr = brk->address & ~HW_BREAKPOINT_ALIGN;
769         unsigned long end_addr = (brk->address + brk->len - 1) | HW_BREAKPOINT_ALIGN;
770
771         if (start_addr == 0)
772                 lctrl2 |= LCTRL2_LW0LA_F;
773         else if (end_addr == ~0U)
774                 lctrl2 |= LCTRL2_LW0LA_E;
775         else
776                 lctrl2 |= LCTRL2_LW0LA_EandF;
777
778         mtspr(SPRN_LCTRL2, 0);
779
780         if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
781                 return 0;
782
783         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
784                 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
785         if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
786                 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
787
788         mtspr(SPRN_CMPE, start_addr - 1);
789         mtspr(SPRN_CMPF, end_addr + 1);
790         mtspr(SPRN_LCTRL1, lctrl1);
791         mtspr(SPRN_LCTRL2, lctrl2);
792
793         return 0;
794 }
795
796 void __set_breakpoint(struct arch_hw_breakpoint *brk)
797 {
798         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
799
800         if (dawr_enabled())
801                 // Power8 or later
802                 set_dawr(brk);
803         else if (IS_ENABLED(CONFIG_PPC_8xx))
804                 set_breakpoint_8xx(brk);
805         else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
806                 // Power7 or earlier
807                 set_dabr(brk);
808         else
809                 // Shouldn't happen due to higher level checks
810                 WARN_ON_ONCE(1);
811 }
812
813 /* Check if we have DAWR or DABR hardware */
814 bool ppc_breakpoint_available(void)
815 {
816         if (dawr_enabled())
817                 return true; /* POWER8 DAWR or POWER9 forced DAWR */
818         if (cpu_has_feature(CPU_FTR_ARCH_207S))
819                 return false; /* POWER9 with DAWR disabled */
820         /* DABR: Everything but POWER8 and POWER9 */
821         return true;
822 }
823 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
824
825 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
826                               struct arch_hw_breakpoint *b)
827 {
828         if (a->address != b->address)
829                 return false;
830         if (a->type != b->type)
831                 return false;
832         if (a->len != b->len)
833                 return false;
834         /* no need to check hw_len. it's calculated from address and len */
835         return true;
836 }
837
838 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
839
840 static inline bool tm_enabled(struct task_struct *tsk)
841 {
842         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
843 }
844
845 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
846 {
847         /*
848          * Use the current MSR TM suspended bit to track if we have
849          * checkpointed state outstanding.
850          * On signal delivery, we'd normally reclaim the checkpointed
851          * state to obtain stack pointer (see:get_tm_stackpointer()).
852          * This will then directly return to userspace without going
853          * through __switch_to(). However, if the stack frame is bad,
854          * we need to exit this thread which calls __switch_to() which
855          * will again attempt to reclaim the already saved tm state.
856          * Hence we need to check that we've not already reclaimed
857          * this state.
858          * We do this using the current MSR, rather tracking it in
859          * some specific thread_struct bit, as it has the additional
860          * benefit of checking for a potential TM bad thing exception.
861          */
862         if (!MSR_TM_SUSPENDED(mfmsr()))
863                 return;
864
865         giveup_all(container_of(thr, struct task_struct, thread));
866
867         tm_reclaim(thr, cause);
868
869         /*
870          * If we are in a transaction and FP is off then we can't have
871          * used FP inside that transaction. Hence the checkpointed
872          * state is the same as the live state. We need to copy the
873          * live state to the checkpointed state so that when the
874          * transaction is restored, the checkpointed state is correct
875          * and the aborted transaction sees the correct state. We use
876          * ckpt_regs.msr here as that's what tm_reclaim will use to
877          * determine if it's going to write the checkpointed state or
878          * not. So either this will write the checkpointed registers,
879          * or reclaim will. Similarly for VMX.
880          */
881         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
882                 memcpy(&thr->ckfp_state, &thr->fp_state,
883                        sizeof(struct thread_fp_state));
884         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
885                 memcpy(&thr->ckvr_state, &thr->vr_state,
886                        sizeof(struct thread_vr_state));
887 }
888
889 void tm_reclaim_current(uint8_t cause)
890 {
891         tm_enable();
892         tm_reclaim_thread(&current->thread, cause);
893 }
894
895 static inline void tm_reclaim_task(struct task_struct *tsk)
896 {
897         /* We have to work out if we're switching from/to a task that's in the
898          * middle of a transaction.
899          *
900          * In switching we need to maintain a 2nd register state as
901          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
902          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
903          * ckvr_state
904          *
905          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
906          */
907         struct thread_struct *thr = &tsk->thread;
908
909         if (!thr->regs)
910                 return;
911
912         if (!MSR_TM_ACTIVE(thr->regs->msr))
913                 goto out_and_saveregs;
914
915         WARN_ON(tm_suspend_disabled);
916
917         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
918                  "ccr=%lx, msr=%lx, trap=%lx)\n",
919                  tsk->pid, thr->regs->nip,
920                  thr->regs->ccr, thr->regs->msr,
921                  thr->regs->trap);
922
923         tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
924
925         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
926                  tsk->pid);
927
928 out_and_saveregs:
929         /* Always save the regs here, even if a transaction's not active.
930          * This context-switches a thread's TM info SPRs.  We do it here to
931          * be consistent with the restore path (in recheckpoint) which
932          * cannot happen later in _switch().
933          */
934         tm_save_sprs(thr);
935 }
936
937 extern void __tm_recheckpoint(struct thread_struct *thread);
938
939 void tm_recheckpoint(struct thread_struct *thread)
940 {
941         unsigned long flags;
942
943         if (!(thread->regs->msr & MSR_TM))
944                 return;
945
946         /* We really can't be interrupted here as the TEXASR registers can't
947          * change and later in the trecheckpoint code, we have a userspace R1.
948          * So let's hard disable over this region.
949          */
950         local_irq_save(flags);
951         hard_irq_disable();
952
953         /* The TM SPRs are restored here, so that TEXASR.FS can be set
954          * before the trecheckpoint and no explosion occurs.
955          */
956         tm_restore_sprs(thread);
957
958         __tm_recheckpoint(thread);
959
960         local_irq_restore(flags);
961 }
962
963 static inline void tm_recheckpoint_new_task(struct task_struct *new)
964 {
965         if (!cpu_has_feature(CPU_FTR_TM))
966                 return;
967
968         /* Recheckpoint the registers of the thread we're about to switch to.
969          *
970          * If the task was using FP, we non-lazily reload both the original and
971          * the speculative FP register states.  This is because the kernel
972          * doesn't see if/when a TM rollback occurs, so if we take an FP
973          * unavailable later, we are unable to determine which set of FP regs
974          * need to be restored.
975          */
976         if (!tm_enabled(new))
977                 return;
978
979         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
980                 tm_restore_sprs(&new->thread);
981                 return;
982         }
983         /* Recheckpoint to restore original checkpointed register state. */
984         TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
985                  new->pid, new->thread.regs->msr);
986
987         tm_recheckpoint(&new->thread);
988
989         /*
990          * The checkpointed state has been restored but the live state has
991          * not, ensure all the math functionality is turned off to trigger
992          * restore_math() to reload.
993          */
994         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
995
996         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
997                  "(kernel msr 0x%lx)\n",
998                  new->pid, mfmsr());
999 }
1000
1001 static inline void __switch_to_tm(struct task_struct *prev,
1002                 struct task_struct *new)
1003 {
1004         if (cpu_has_feature(CPU_FTR_TM)) {
1005                 if (tm_enabled(prev) || tm_enabled(new))
1006                         tm_enable();
1007
1008                 if (tm_enabled(prev)) {
1009                         prev->thread.load_tm++;
1010                         tm_reclaim_task(prev);
1011                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1012                                 prev->thread.regs->msr &= ~MSR_TM;
1013                 }
1014
1015                 tm_recheckpoint_new_task(new);
1016         }
1017 }
1018
1019 /*
1020  * This is called if we are on the way out to userspace and the
1021  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1022  * FP and/or vector state and does so if necessary.
1023  * If userspace is inside a transaction (whether active or
1024  * suspended) and FP/VMX/VSX instructions have ever been enabled
1025  * inside that transaction, then we have to keep them enabled
1026  * and keep the FP/VMX/VSX state loaded while ever the transaction
1027  * continues.  The reason is that if we didn't, and subsequently
1028  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1029  * we don't know whether it's the same transaction, and thus we
1030  * don't know which of the checkpointed state and the transactional
1031  * state to use.
1032  */
1033 void restore_tm_state(struct pt_regs *regs)
1034 {
1035         unsigned long msr_diff;
1036
1037         /*
1038          * This is the only moment we should clear TIF_RESTORE_TM as
1039          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1040          * again, anything else could lead to an incorrect ckpt_msr being
1041          * saved and therefore incorrect signal contexts.
1042          */
1043         clear_thread_flag(TIF_RESTORE_TM);
1044         if (!MSR_TM_ACTIVE(regs->msr))
1045                 return;
1046
1047         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1048         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1049
1050         /* Ensure that restore_math() will restore */
1051         if (msr_diff & MSR_FP)
1052                 current->thread.load_fp = 1;
1053 #ifdef CONFIG_ALTIVEC
1054         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1055                 current->thread.load_vec = 1;
1056 #endif
1057         restore_math(regs);
1058
1059         regs->msr |= msr_diff;
1060 }
1061
1062 #else
1063 #define tm_recheckpoint_new_task(new)
1064 #define __switch_to_tm(prev, new)
1065 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1066
1067 static inline void save_sprs(struct thread_struct *t)
1068 {
1069 #ifdef CONFIG_ALTIVEC
1070         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1071                 t->vrsave = mfspr(SPRN_VRSAVE);
1072 #endif
1073 #ifdef CONFIG_PPC_BOOK3S_64
1074         if (cpu_has_feature(CPU_FTR_DSCR))
1075                 t->dscr = mfspr(SPRN_DSCR);
1076
1077         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1078                 t->bescr = mfspr(SPRN_BESCR);
1079                 t->ebbhr = mfspr(SPRN_EBBHR);
1080                 t->ebbrr = mfspr(SPRN_EBBRR);
1081
1082                 t->fscr = mfspr(SPRN_FSCR);
1083
1084                 /*
1085                  * Note that the TAR is not available for use in the kernel.
1086                  * (To provide this, the TAR should be backed up/restored on
1087                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1088                  * this should be in pt_regs anyway (for debug).)
1089                  */
1090                 t->tar = mfspr(SPRN_TAR);
1091         }
1092 #endif
1093
1094         thread_pkey_regs_save(t);
1095 }
1096
1097 static inline void restore_sprs(struct thread_struct *old_thread,
1098                                 struct thread_struct *new_thread)
1099 {
1100 #ifdef CONFIG_ALTIVEC
1101         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1102             old_thread->vrsave != new_thread->vrsave)
1103                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1104 #endif
1105 #ifdef CONFIG_PPC_BOOK3S_64
1106         if (cpu_has_feature(CPU_FTR_DSCR)) {
1107                 u64 dscr = get_paca()->dscr_default;
1108                 if (new_thread->dscr_inherit)
1109                         dscr = new_thread->dscr;
1110
1111                 if (old_thread->dscr != dscr)
1112                         mtspr(SPRN_DSCR, dscr);
1113         }
1114
1115         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1116                 if (old_thread->bescr != new_thread->bescr)
1117                         mtspr(SPRN_BESCR, new_thread->bescr);
1118                 if (old_thread->ebbhr != new_thread->ebbhr)
1119                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1120                 if (old_thread->ebbrr != new_thread->ebbrr)
1121                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1122
1123                 if (old_thread->fscr != new_thread->fscr)
1124                         mtspr(SPRN_FSCR, new_thread->fscr);
1125
1126                 if (old_thread->tar != new_thread->tar)
1127                         mtspr(SPRN_TAR, new_thread->tar);
1128         }
1129
1130         if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1131             old_thread->tidr != new_thread->tidr)
1132                 mtspr(SPRN_TIDR, new_thread->tidr);
1133 #endif
1134
1135         thread_pkey_regs_restore(new_thread, old_thread);
1136 }
1137
1138 struct task_struct *__switch_to(struct task_struct *prev,
1139         struct task_struct *new)
1140 {
1141         struct thread_struct *new_thread, *old_thread;
1142         struct task_struct *last;
1143 #ifdef CONFIG_PPC_BOOK3S_64
1144         struct ppc64_tlb_batch *batch;
1145 #endif
1146
1147         new_thread = &new->thread;
1148         old_thread = &current->thread;
1149
1150         WARN_ON(!irqs_disabled());
1151
1152 #ifdef CONFIG_PPC_BOOK3S_64
1153         batch = this_cpu_ptr(&ppc64_tlb_batch);
1154         if (batch->active) {
1155                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1156                 if (batch->index)
1157                         __flush_tlb_pending(batch);
1158                 batch->active = 0;
1159         }
1160 #endif /* CONFIG_PPC_BOOK3S_64 */
1161
1162 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1163         switch_booke_debug_regs(&new->thread.debug);
1164 #else
1165 /*
1166  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1167  * schedule DABR
1168  */
1169 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1170         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1171                 __set_breakpoint(&new->thread.hw_brk);
1172 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1173 #endif
1174
1175         /*
1176          * We need to save SPRs before treclaim/trecheckpoint as these will
1177          * change a number of them.
1178          */
1179         save_sprs(&prev->thread);
1180
1181         /* Save FPU, Altivec, VSX and SPE state */
1182         giveup_all(prev);
1183
1184         __switch_to_tm(prev, new);
1185
1186         if (!radix_enabled()) {
1187                 /*
1188                  * We can't take a PMU exception inside _switch() since there
1189                  * is a window where the kernel stack SLB and the kernel stack
1190                  * are out of sync. Hard disable here.
1191                  */
1192                 hard_irq_disable();
1193         }
1194
1195         /*
1196          * Call restore_sprs() before calling _switch(). If we move it after
1197          * _switch() then we miss out on calling it for new tasks. The reason
1198          * for this is we manually create a stack frame for new tasks that
1199          * directly returns through ret_from_fork() or
1200          * ret_from_kernel_thread(). See copy_thread() for details.
1201          */
1202         restore_sprs(old_thread, new_thread);
1203
1204         last = _switch(old_thread, new_thread);
1205
1206 #ifdef CONFIG_PPC_BOOK3S_64
1207         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1208                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1209                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1210                 batch->active = 1;
1211         }
1212
1213         if (current->thread.regs) {
1214                 restore_math(current->thread.regs);
1215
1216                 /*
1217                  * The copy-paste buffer can only store into foreign real
1218                  * addresses, so unprivileged processes can not see the
1219                  * data or use it in any way unless they have foreign real
1220                  * mappings. If the new process has the foreign real address
1221                  * mappings, we must issue a cp_abort to clear any state and
1222                  * prevent snooping, corruption or a covert channel.
1223                  */
1224                 if (current->thread.used_vas)
1225                         asm volatile(PPC_CP_ABORT);
1226         }
1227 #endif /* CONFIG_PPC_BOOK3S_64 */
1228
1229         return last;
1230 }
1231
1232 #define NR_INSN_TO_PRINT        16
1233
1234 static void show_instructions(struct pt_regs *regs)
1235 {
1236         int i;
1237         unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1238
1239         printk("Instruction dump:");
1240
1241         for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1242                 int instr;
1243
1244                 if (!(i % 8))
1245                         pr_cont("\n");
1246
1247 #if !defined(CONFIG_BOOKE)
1248                 /* If executing with the IMMU off, adjust pc rather
1249                  * than print XXXXXXXX.
1250                  */
1251                 if (!(regs->msr & MSR_IR))
1252                         pc = (unsigned long)phys_to_virt(pc);
1253 #endif
1254
1255                 if (!__kernel_text_address(pc) ||
1256                     probe_kernel_address((const void *)pc, instr)) {
1257                         pr_cont("XXXXXXXX ");
1258                 } else {
1259                         if (regs->nip == pc)
1260                                 pr_cont("<%08x> ", instr);
1261                         else
1262                                 pr_cont("%08x ", instr);
1263                 }
1264
1265                 pc += sizeof(int);
1266         }
1267
1268         pr_cont("\n");
1269 }
1270
1271 void show_user_instructions(struct pt_regs *regs)
1272 {
1273         unsigned long pc;
1274         int n = NR_INSN_TO_PRINT;
1275         struct seq_buf s;
1276         char buf[96]; /* enough for 8 times 9 + 2 chars */
1277
1278         pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1279
1280         seq_buf_init(&s, buf, sizeof(buf));
1281
1282         while (n) {
1283                 int i;
1284
1285                 seq_buf_clear(&s);
1286
1287                 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1288                         int instr;
1289
1290                         if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) {
1291                                 seq_buf_printf(&s, "XXXXXXXX ");
1292                                 continue;
1293                         }
1294                         seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1295                 }
1296
1297                 if (!seq_buf_has_overflowed(&s))
1298                         pr_info("%s[%d]: code: %s\n", current->comm,
1299                                 current->pid, s.buffer);
1300         }
1301 }
1302
1303 struct regbit {
1304         unsigned long bit;
1305         const char *name;
1306 };
1307
1308 static struct regbit msr_bits[] = {
1309 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1310         {MSR_SF,        "SF"},
1311         {MSR_HV,        "HV"},
1312 #endif
1313         {MSR_VEC,       "VEC"},
1314         {MSR_VSX,       "VSX"},
1315 #ifdef CONFIG_BOOKE
1316         {MSR_CE,        "CE"},
1317 #endif
1318         {MSR_EE,        "EE"},
1319         {MSR_PR,        "PR"},
1320         {MSR_FP,        "FP"},
1321         {MSR_ME,        "ME"},
1322 #ifdef CONFIG_BOOKE
1323         {MSR_DE,        "DE"},
1324 #else
1325         {MSR_SE,        "SE"},
1326         {MSR_BE,        "BE"},
1327 #endif
1328         {MSR_IR,        "IR"},
1329         {MSR_DR,        "DR"},
1330         {MSR_PMM,       "PMM"},
1331 #ifndef CONFIG_BOOKE
1332         {MSR_RI,        "RI"},
1333         {MSR_LE,        "LE"},
1334 #endif
1335         {0,             NULL}
1336 };
1337
1338 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1339 {
1340         const char *s = "";
1341
1342         for (; bits->bit; ++bits)
1343                 if (val & bits->bit) {
1344                         pr_cont("%s%s", s, bits->name);
1345                         s = sep;
1346                 }
1347 }
1348
1349 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1350 static struct regbit msr_tm_bits[] = {
1351         {MSR_TS_T,      "T"},
1352         {MSR_TS_S,      "S"},
1353         {MSR_TM,        "E"},
1354         {0,             NULL}
1355 };
1356
1357 static void print_tm_bits(unsigned long val)
1358 {
1359 /*
1360  * This only prints something if at least one of the TM bit is set.
1361  * Inside the TM[], the output means:
1362  *   E: Enabled         (bit 32)
1363  *   S: Suspended       (bit 33)
1364  *   T: Transactional   (bit 34)
1365  */
1366         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1367                 pr_cont(",TM[");
1368                 print_bits(val, msr_tm_bits, "");
1369                 pr_cont("]");
1370         }
1371 }
1372 #else
1373 static void print_tm_bits(unsigned long val) {}
1374 #endif
1375
1376 static void print_msr_bits(unsigned long val)
1377 {
1378         pr_cont("<");
1379         print_bits(val, msr_bits, ",");
1380         print_tm_bits(val);
1381         pr_cont(">");
1382 }
1383
1384 #ifdef CONFIG_PPC64
1385 #define REG             "%016lx"
1386 #define REGS_PER_LINE   4
1387 #define LAST_VOLATILE   13
1388 #else
1389 #define REG             "%08lx"
1390 #define REGS_PER_LINE   8
1391 #define LAST_VOLATILE   12
1392 #endif
1393
1394 void show_regs(struct pt_regs * regs)
1395 {
1396         int i, trap;
1397
1398         show_regs_print_info(KERN_DEFAULT);
1399
1400         printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1401                regs->nip, regs->link, regs->ctr);
1402         printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1403                regs, regs->trap, print_tainted(), init_utsname()->release);
1404         printk("MSR:  "REG" ", regs->msr);
1405         print_msr_bits(regs->msr);
1406         pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1407         trap = TRAP(regs);
1408         if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1409                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1410         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1411 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1412                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1413 #else
1414                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1415 #endif
1416 #ifdef CONFIG_PPC64
1417         pr_cont("IRQMASK: %lx ", regs->softe);
1418 #endif
1419 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1420         if (MSR_TM_ACTIVE(regs->msr))
1421                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1422 #endif
1423
1424         for (i = 0;  i < 32;  i++) {
1425                 if ((i % REGS_PER_LINE) == 0)
1426                         pr_cont("\nGPR%02d: ", i);
1427                 pr_cont(REG " ", regs->gpr[i]);
1428                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1429                         break;
1430         }
1431         pr_cont("\n");
1432 #ifdef CONFIG_KALLSYMS
1433         /*
1434          * Lookup NIP late so we have the best change of getting the
1435          * above info out without failing
1436          */
1437         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1438         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1439 #endif
1440         show_stack(current, (unsigned long *) regs->gpr[1]);
1441         if (!user_mode(regs))
1442                 show_instructions(regs);
1443 }
1444
1445 void flush_thread(void)
1446 {
1447 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1448         flush_ptrace_hw_breakpoint(current);
1449 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1450         set_debug_reg_defaults(&current->thread);
1451 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1452 }
1453
1454 #ifdef CONFIG_PPC_BOOK3S_64
1455 void arch_setup_new_exec(void)
1456 {
1457         if (radix_enabled())
1458                 return;
1459         hash__setup_new_exec();
1460 }
1461 #endif
1462
1463 int set_thread_uses_vas(void)
1464 {
1465 #ifdef CONFIG_PPC_BOOK3S_64
1466         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1467                 return -EINVAL;
1468
1469         current->thread.used_vas = 1;
1470
1471         /*
1472          * Even a process that has no foreign real address mapping can use
1473          * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1474          * to clear any pending COPY and prevent a covert channel.
1475          *
1476          * __switch_to() will issue CP_ABORT on future context switches.
1477          */
1478         asm volatile(PPC_CP_ABORT);
1479
1480 #endif /* CONFIG_PPC_BOOK3S_64 */
1481         return 0;
1482 }
1483
1484 #ifdef CONFIG_PPC64
1485 /**
1486  * Assign a TIDR (thread ID) for task @t and set it in the thread
1487  * structure. For now, we only support setting TIDR for 'current' task.
1488  *
1489  * Since the TID value is a truncated form of it PID, it is possible
1490  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1491  * that 2 threads share the same TID and are waiting, one of the following
1492  * cases will happen:
1493  *
1494  * 1. The correct thread is running, the wrong thread is not
1495  * In this situation, the correct thread is woken and proceeds to pass it's
1496  * condition check.
1497  *
1498  * 2. Neither threads are running
1499  * In this situation, neither thread will be woken. When scheduled, the waiting
1500  * threads will execute either a wait, which will return immediately, followed
1501  * by a condition check, which will pass for the correct thread and fail
1502  * for the wrong thread, or they will execute the condition check immediately.
1503  *
1504  * 3. The wrong thread is running, the correct thread is not
1505  * The wrong thread will be woken, but will fail it's condition check and
1506  * re-execute wait. The correct thread, when scheduled, will execute either
1507  * it's condition check (which will pass), or wait, which returns immediately
1508  * when called the first time after the thread is scheduled, followed by it's
1509  * condition check (which will pass).
1510  *
1511  * 4. Both threads are running
1512  * Both threads will be woken. The wrong thread will fail it's condition check
1513  * and execute another wait, while the correct thread will pass it's condition
1514  * check.
1515  *
1516  * @t: the task to set the thread ID for
1517  */
1518 int set_thread_tidr(struct task_struct *t)
1519 {
1520         if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1521                 return -EINVAL;
1522
1523         if (t != current)
1524                 return -EINVAL;
1525
1526         if (t->thread.tidr)
1527                 return 0;
1528
1529         t->thread.tidr = (u16)task_pid_nr(t);
1530         mtspr(SPRN_TIDR, t->thread.tidr);
1531
1532         return 0;
1533 }
1534 EXPORT_SYMBOL_GPL(set_thread_tidr);
1535
1536 #endif /* CONFIG_PPC64 */
1537
1538 void
1539 release_thread(struct task_struct *t)
1540 {
1541 }
1542
1543 /*
1544  * this gets called so that we can store coprocessor state into memory and
1545  * copy the current task into the new thread.
1546  */
1547 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1548 {
1549         flush_all_to_thread(src);
1550         /*
1551          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1552          * flush but it removes the checkpointed state from the current CPU and
1553          * transitions the CPU out of TM mode.  Hence we need to call
1554          * tm_recheckpoint_new_task() (on the same task) to restore the
1555          * checkpointed state back and the TM mode.
1556          *
1557          * Can't pass dst because it isn't ready. Doesn't matter, passing
1558          * dst is only important for __switch_to()
1559          */
1560         __switch_to_tm(src, src);
1561
1562         *dst = *src;
1563
1564         clear_task_ebb(dst);
1565
1566         return 0;
1567 }
1568
1569 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1570 {
1571 #ifdef CONFIG_PPC_BOOK3S_64
1572         unsigned long sp_vsid;
1573         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1574
1575         if (radix_enabled())
1576                 return;
1577
1578         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1579                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1580                         << SLB_VSID_SHIFT_1T;
1581         else
1582                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1583                         << SLB_VSID_SHIFT;
1584         sp_vsid |= SLB_VSID_KERNEL | llp;
1585         p->thread.ksp_vsid = sp_vsid;
1586 #endif
1587 }
1588
1589 /*
1590  * Copy a thread..
1591  */
1592
1593 /*
1594  * Copy architecture-specific thread state
1595  */
1596 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
1597                 unsigned long kthread_arg, struct task_struct *p,
1598                 unsigned long tls)
1599 {
1600         struct pt_regs *childregs, *kregs;
1601         extern void ret_from_fork(void);
1602         extern void ret_from_kernel_thread(void);
1603         void (*f)(void);
1604         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1605         struct thread_info *ti = task_thread_info(p);
1606
1607         klp_init_thread_info(p);
1608
1609         /* Copy registers */
1610         sp -= sizeof(struct pt_regs);
1611         childregs = (struct pt_regs *) sp;
1612         if (unlikely(p->flags & PF_KTHREAD)) {
1613                 /* kernel thread */
1614                 memset(childregs, 0, sizeof(struct pt_regs));
1615                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1616                 /* function */
1617                 if (usp)
1618                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1619 #ifdef CONFIG_PPC64
1620                 clear_tsk_thread_flag(p, TIF_32BIT);
1621                 childregs->softe = IRQS_ENABLED;
1622 #endif
1623                 childregs->gpr[15] = kthread_arg;
1624                 p->thread.regs = NULL;  /* no user register state */
1625                 ti->flags |= _TIF_RESTOREALL;
1626                 f = ret_from_kernel_thread;
1627         } else {
1628                 /* user thread */
1629                 struct pt_regs *regs = current_pt_regs();
1630                 CHECK_FULL_REGS(regs);
1631                 *childregs = *regs;
1632                 if (usp)
1633                         childregs->gpr[1] = usp;
1634                 p->thread.regs = childregs;
1635                 childregs->gpr[3] = 0;  /* Result from fork() */
1636                 if (clone_flags & CLONE_SETTLS) {
1637 #ifdef CONFIG_PPC64
1638                         if (!is_32bit_task())
1639                                 childregs->gpr[13] = tls;
1640                         else
1641 #endif
1642                                 childregs->gpr[2] = tls;
1643                 }
1644
1645                 f = ret_from_fork;
1646         }
1647         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1648         sp -= STACK_FRAME_OVERHEAD;
1649
1650         /*
1651          * The way this works is that at some point in the future
1652          * some task will call _switch to switch to the new task.
1653          * That will pop off the stack frame created below and start
1654          * the new task running at ret_from_fork.  The new task will
1655          * do some house keeping and then return from the fork or clone
1656          * system call, using the stack frame created above.
1657          */
1658         ((unsigned long *)sp)[0] = 0;
1659         sp -= sizeof(struct pt_regs);
1660         kregs = (struct pt_regs *) sp;
1661         sp -= STACK_FRAME_OVERHEAD;
1662         p->thread.ksp = sp;
1663 #ifdef CONFIG_PPC32
1664         p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1665 #endif
1666 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1667         p->thread.ptrace_bps[0] = NULL;
1668 #endif
1669
1670         p->thread.fp_save_area = NULL;
1671 #ifdef CONFIG_ALTIVEC
1672         p->thread.vr_save_area = NULL;
1673 #endif
1674
1675         setup_ksp_vsid(p, sp);
1676
1677 #ifdef CONFIG_PPC64 
1678         if (cpu_has_feature(CPU_FTR_DSCR)) {
1679                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1680                 p->thread.dscr = mfspr(SPRN_DSCR);
1681         }
1682         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1683                 childregs->ppr = DEFAULT_PPR;
1684
1685         p->thread.tidr = 0;
1686 #endif
1687         kregs->nip = ppc_function_entry(f);
1688         return 0;
1689 }
1690
1691 void preload_new_slb_context(unsigned long start, unsigned long sp);
1692
1693 /*
1694  * Set up a thread for executing a new program
1695  */
1696 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1697 {
1698 #ifdef CONFIG_PPC64
1699         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1700
1701 #ifdef CONFIG_PPC_BOOK3S_64
1702         if (!radix_enabled())
1703                 preload_new_slb_context(start, sp);
1704 #endif
1705 #endif
1706
1707         /*
1708          * If we exec out of a kernel thread then thread.regs will not be
1709          * set.  Do it now.
1710          */
1711         if (!current->thread.regs) {
1712                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1713                 current->thread.regs = regs - 1;
1714         }
1715
1716 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1717         /*
1718          * Clear any transactional state, we're exec()ing. The cause is
1719          * not important as there will never be a recheckpoint so it's not
1720          * user visible.
1721          */
1722         if (MSR_TM_SUSPENDED(mfmsr()))
1723                 tm_reclaim_current(0);
1724 #endif
1725
1726         memset(regs->gpr, 0, sizeof(regs->gpr));
1727         regs->ctr = 0;
1728         regs->link = 0;
1729         regs->xer = 0;
1730         regs->ccr = 0;
1731         regs->gpr[1] = sp;
1732
1733         /*
1734          * We have just cleared all the nonvolatile GPRs, so make
1735          * FULL_REGS(regs) return true.  This is necessary to allow
1736          * ptrace to examine the thread immediately after exec.
1737          */
1738         regs->trap &= ~1UL;
1739
1740 #ifdef CONFIG_PPC32
1741         regs->mq = 0;
1742         regs->nip = start;
1743         regs->msr = MSR_USER;
1744 #else
1745         if (!is_32bit_task()) {
1746                 unsigned long entry;
1747
1748                 if (is_elf2_task()) {
1749                         /* Look ma, no function descriptors! */
1750                         entry = start;
1751
1752                         /*
1753                          * Ulrich says:
1754                          *   The latest iteration of the ABI requires that when
1755                          *   calling a function (at its global entry point),
1756                          *   the caller must ensure r12 holds the entry point
1757                          *   address (so that the function can quickly
1758                          *   establish addressability).
1759                          */
1760                         regs->gpr[12] = start;
1761                         /* Make sure that's restored on entry to userspace. */
1762                         set_thread_flag(TIF_RESTOREALL);
1763                 } else {
1764                         unsigned long toc;
1765
1766                         /* start is a relocated pointer to the function
1767                          * descriptor for the elf _start routine.  The first
1768                          * entry in the function descriptor is the entry
1769                          * address of _start and the second entry is the TOC
1770                          * value we need to use.
1771                          */
1772                         __get_user(entry, (unsigned long __user *)start);
1773                         __get_user(toc, (unsigned long __user *)start+1);
1774
1775                         /* Check whether the e_entry function descriptor entries
1776                          * need to be relocated before we can use them.
1777                          */
1778                         if (load_addr != 0) {
1779                                 entry += load_addr;
1780                                 toc   += load_addr;
1781                         }
1782                         regs->gpr[2] = toc;
1783                 }
1784                 regs->nip = entry;
1785                 regs->msr = MSR_USER64;
1786         } else {
1787                 regs->nip = start;
1788                 regs->gpr[2] = 0;
1789                 regs->msr = MSR_USER32;
1790         }
1791 #endif
1792 #ifdef CONFIG_VSX
1793         current->thread.used_vsr = 0;
1794 #endif
1795         current->thread.load_slb = 0;
1796         current->thread.load_fp = 0;
1797         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1798         current->thread.fp_save_area = NULL;
1799 #ifdef CONFIG_ALTIVEC
1800         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1801         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1802         current->thread.vr_save_area = NULL;
1803         current->thread.vrsave = 0;
1804         current->thread.used_vr = 0;
1805         current->thread.load_vec = 0;
1806 #endif /* CONFIG_ALTIVEC */
1807 #ifdef CONFIG_SPE
1808         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1809         current->thread.acc = 0;
1810         current->thread.spefscr = 0;
1811         current->thread.used_spe = 0;
1812 #endif /* CONFIG_SPE */
1813 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1814         current->thread.tm_tfhar = 0;
1815         current->thread.tm_texasr = 0;
1816         current->thread.tm_tfiar = 0;
1817         current->thread.load_tm = 0;
1818 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1819
1820         thread_pkey_regs_init(&current->thread);
1821 }
1822 EXPORT_SYMBOL(start_thread);
1823
1824 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1825                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1826
1827 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1828 {
1829         struct pt_regs *regs = tsk->thread.regs;
1830
1831         /* This is a bit hairy.  If we are an SPE enabled  processor
1832          * (have embedded fp) we store the IEEE exception enable flags in
1833          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1834          * mode (asyn, precise, disabled) for 'Classic' FP. */
1835         if (val & PR_FP_EXC_SW_ENABLE) {
1836 #ifdef CONFIG_SPE
1837                 if (cpu_has_feature(CPU_FTR_SPE)) {
1838                         /*
1839                          * When the sticky exception bits are set
1840                          * directly by userspace, it must call prctl
1841                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1842                          * in the existing prctl settings) or
1843                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1844                          * the bits being set).  <fenv.h> functions
1845                          * saving and restoring the whole
1846                          * floating-point environment need to do so
1847                          * anyway to restore the prctl settings from
1848                          * the saved environment.
1849                          */
1850                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1851                         tsk->thread.fpexc_mode = val &
1852                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1853                         return 0;
1854                 } else {
1855                         return -EINVAL;
1856                 }
1857 #else
1858                 return -EINVAL;
1859 #endif
1860         }
1861
1862         /* on a CONFIG_SPE this does not hurt us.  The bits that
1863          * __pack_fe01 use do not overlap with bits used for
1864          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1865          * on CONFIG_SPE implementations are reserved so writing to
1866          * them does not change anything */
1867         if (val > PR_FP_EXC_PRECISE)
1868                 return -EINVAL;
1869         tsk->thread.fpexc_mode = __pack_fe01(val);
1870         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1871                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1872                         | tsk->thread.fpexc_mode;
1873         return 0;
1874 }
1875
1876 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1877 {
1878         unsigned int val;
1879
1880         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1881 #ifdef CONFIG_SPE
1882                 if (cpu_has_feature(CPU_FTR_SPE)) {
1883                         /*
1884                          * When the sticky exception bits are set
1885                          * directly by userspace, it must call prctl
1886                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1887                          * in the existing prctl settings) or
1888                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1889                          * the bits being set).  <fenv.h> functions
1890                          * saving and restoring the whole
1891                          * floating-point environment need to do so
1892                          * anyway to restore the prctl settings from
1893                          * the saved environment.
1894                          */
1895                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1896                         val = tsk->thread.fpexc_mode;
1897                 } else
1898                         return -EINVAL;
1899 #else
1900                 return -EINVAL;
1901 #endif
1902         else
1903                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1904         return put_user(val, (unsigned int __user *) adr);
1905 }
1906
1907 int set_endian(struct task_struct *tsk, unsigned int val)
1908 {
1909         struct pt_regs *regs = tsk->thread.regs;
1910
1911         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1912             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1913                 return -EINVAL;
1914
1915         if (regs == NULL)
1916                 return -EINVAL;
1917
1918         if (val == PR_ENDIAN_BIG)
1919                 regs->msr &= ~MSR_LE;
1920         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1921                 regs->msr |= MSR_LE;
1922         else
1923                 return -EINVAL;
1924
1925         return 0;
1926 }
1927
1928 int get_endian(struct task_struct *tsk, unsigned long adr)
1929 {
1930         struct pt_regs *regs = tsk->thread.regs;
1931         unsigned int val;
1932
1933         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1934             !cpu_has_feature(CPU_FTR_REAL_LE))
1935                 return -EINVAL;
1936
1937         if (regs == NULL)
1938                 return -EINVAL;
1939
1940         if (regs->msr & MSR_LE) {
1941                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1942                         val = PR_ENDIAN_LITTLE;
1943                 else
1944                         val = PR_ENDIAN_PPC_LITTLE;
1945         } else
1946                 val = PR_ENDIAN_BIG;
1947
1948         return put_user(val, (unsigned int __user *)adr);
1949 }
1950
1951 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1952 {
1953         tsk->thread.align_ctl = val;
1954         return 0;
1955 }
1956
1957 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1958 {
1959         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1960 }
1961
1962 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1963                                   unsigned long nbytes)
1964 {
1965         unsigned long stack_page;
1966         unsigned long cpu = task_cpu(p);
1967
1968         stack_page = (unsigned long)hardirq_ctx[cpu];
1969         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1970                 return 1;
1971
1972         stack_page = (unsigned long)softirq_ctx[cpu];
1973         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1974                 return 1;
1975
1976         return 0;
1977 }
1978
1979 int validate_sp(unsigned long sp, struct task_struct *p,
1980                        unsigned long nbytes)
1981 {
1982         unsigned long stack_page = (unsigned long)task_stack_page(p);
1983
1984         if (sp < THREAD_SIZE)
1985                 return 0;
1986
1987         if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1988                 return 1;
1989
1990         return valid_irq_stack(sp, p, nbytes);
1991 }
1992
1993 EXPORT_SYMBOL(validate_sp);
1994
1995 static unsigned long __get_wchan(struct task_struct *p)
1996 {
1997         unsigned long ip, sp;
1998         int count = 0;
1999
2000         if (!p || p == current || p->state == TASK_RUNNING)
2001                 return 0;
2002
2003         sp = p->thread.ksp;
2004         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2005                 return 0;
2006
2007         do {
2008                 sp = *(unsigned long *)sp;
2009                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2010                     p->state == TASK_RUNNING)
2011                         return 0;
2012                 if (count > 0) {
2013                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2014                         if (!in_sched_functions(ip))
2015                                 return ip;
2016                 }
2017         } while (count++ < 16);
2018         return 0;
2019 }
2020
2021 unsigned long get_wchan(struct task_struct *p)
2022 {
2023         unsigned long ret;
2024
2025         if (!try_get_task_stack(p))
2026                 return 0;
2027
2028         ret = __get_wchan(p);
2029
2030         put_task_stack(p);
2031
2032         return ret;
2033 }
2034
2035 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2036
2037 void show_stack(struct task_struct *tsk, unsigned long *stack)
2038 {
2039         unsigned long sp, ip, lr, newsp;
2040         int count = 0;
2041         int firstframe = 1;
2042 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2043         unsigned long ret_addr;
2044         int ftrace_idx = 0;
2045 #endif
2046
2047         if (tsk == NULL)
2048                 tsk = current;
2049
2050         if (!try_get_task_stack(tsk))
2051                 return;
2052
2053         sp = (unsigned long) stack;
2054         if (sp == 0) {
2055                 if (tsk == current)
2056                         sp = current_stack_pointer();
2057                 else
2058                         sp = tsk->thread.ksp;
2059         }
2060
2061         lr = 0;
2062         printk("Call Trace:\n");
2063         do {
2064                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2065                         break;
2066
2067                 stack = (unsigned long *) sp;
2068                 newsp = stack[0];
2069                 ip = stack[STACK_FRAME_LR_SAVE];
2070                 if (!firstframe || ip != lr) {
2071                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2072 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2073                         ret_addr = ftrace_graph_ret_addr(current,
2074                                                 &ftrace_idx, ip, stack);
2075                         if (ret_addr != ip)
2076                                 pr_cont(" (%pS)", (void *)ret_addr);
2077 #endif
2078                         if (firstframe)
2079                                 pr_cont(" (unreliable)");
2080                         pr_cont("\n");
2081                 }
2082                 firstframe = 0;
2083
2084                 /*
2085                  * See if this is an exception frame.
2086                  * We look for the "regshere" marker in the current frame.
2087                  */
2088                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2089                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2090                         struct pt_regs *regs = (struct pt_regs *)
2091                                 (sp + STACK_FRAME_OVERHEAD);
2092                         lr = regs->link;
2093                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2094                                regs->trap, (void *)regs->nip, (void *)lr);
2095                         firstframe = 1;
2096                 }
2097
2098                 sp = newsp;
2099         } while (count++ < kstack_depth_to_print);
2100
2101         put_task_stack(tsk);
2102 }
2103
2104 #ifdef CONFIG_PPC64
2105 /* Called with hard IRQs off */
2106 void notrace __ppc64_runlatch_on(void)
2107 {
2108         struct thread_info *ti = current_thread_info();
2109
2110         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2111                 /*
2112                  * Least significant bit (RUN) is the only writable bit of
2113                  * the CTRL register, so we can avoid mfspr. 2.06 is not the
2114                  * earliest ISA where this is the case, but it's convenient.
2115                  */
2116                 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2117         } else {
2118                 unsigned long ctrl;
2119
2120                 /*
2121                  * Some architectures (e.g., Cell) have writable fields other
2122                  * than RUN, so do the read-modify-write.
2123                  */
2124                 ctrl = mfspr(SPRN_CTRLF);
2125                 ctrl |= CTRL_RUNLATCH;
2126                 mtspr(SPRN_CTRLT, ctrl);
2127         }
2128
2129         ti->local_flags |= _TLF_RUNLATCH;
2130 }
2131
2132 /* Called with hard IRQs off */
2133 void notrace __ppc64_runlatch_off(void)
2134 {
2135         struct thread_info *ti = current_thread_info();
2136
2137         ti->local_flags &= ~_TLF_RUNLATCH;
2138
2139         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2140                 mtspr(SPRN_CTRLT, 0);
2141         } else {
2142                 unsigned long ctrl;
2143
2144                 ctrl = mfspr(SPRN_CTRLF);
2145                 ctrl &= ~CTRL_RUNLATCH;
2146                 mtspr(SPRN_CTRLT, ctrl);
2147         }
2148 }
2149 #endif /* CONFIG_PPC64 */
2150
2151 unsigned long arch_align_stack(unsigned long sp)
2152 {
2153         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2154                 sp -= get_random_int() & ~PAGE_MASK;
2155         return sp & ~0xf;
2156 }
2157
2158 static inline unsigned long brk_rnd(void)
2159 {
2160         unsigned long rnd = 0;
2161
2162         /* 8MB for 32bit, 1GB for 64bit */
2163         if (is_32bit_task())
2164                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2165         else
2166                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2167
2168         return rnd << PAGE_SHIFT;
2169 }
2170
2171 unsigned long arch_randomize_brk(struct mm_struct *mm)
2172 {
2173         unsigned long base = mm->brk;
2174         unsigned long ret;
2175
2176 #ifdef CONFIG_PPC_BOOK3S_64
2177         /*
2178          * If we are using 1TB segments and we are allowed to randomise
2179          * the heap, we can put it above 1TB so it is backed by a 1TB
2180          * segment. Otherwise the heap will be in the bottom 1TB
2181          * which always uses 256MB segments and this may result in a
2182          * performance penalty. We don't need to worry about radix. For
2183          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2184          */
2185         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2186                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2187 #endif
2188
2189         ret = PAGE_ALIGN(base + brk_rnd());
2190
2191         if (ret < mm->brk)
2192                 return mm->brk;
2193
2194         return ret;
2195 }
2196