Merge branch 'for-linus' of git://git.infradead.org/users/vkoul/slave-dma
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / powerpc / kernel / fadump.c
1 /*
2  * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3  * dump with assistance from firmware. This approach does not use kexec,
4  * instead firmware assists in booting the kdump kernel while preserving
5  * memory contents. The most of the code implementation has been adapted
6  * from phyp assisted dump implementation written by Linas Vepstas and
7  * Manish Ahuja
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  *
23  * Copyright 2011 IBM Corporation
24  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25  */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53
54 /* Scan the Firmware Assisted dump configuration details. */
55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56                         const char *uname, int depth, void *data)
57 {
58         __be32 *sections;
59         int i, num_sections;
60         unsigned long size;
61         const int *token;
62
63         if (depth != 1 || strcmp(uname, "rtas") != 0)
64                 return 0;
65
66         /*
67          * Check if Firmware Assisted dump is supported. if yes, check
68          * if dump has been initiated on last reboot.
69          */
70         token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71         if (!token)
72                 return 0;
73
74         fw_dump.fadump_supported = 1;
75         fw_dump.ibm_configure_kernel_dump = *token;
76
77         /*
78          * The 'ibm,kernel-dump' rtas node is present only if there is
79          * dump data waiting for us.
80          */
81         fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82         if (fdm_active)
83                 fw_dump.dump_active = 1;
84
85         /* Get the sizes required to store dump data for the firmware provided
86          * dump sections.
87          * For each dump section type supported, a 32bit cell which defines
88          * the ID of a supported section followed by two 32 bit cells which
89          * gives teh size of the section in bytes.
90          */
91         sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92                                         &size);
93
94         if (!sections)
95                 return 0;
96
97         num_sections = size / (3 * sizeof(u32));
98
99         for (i = 0; i < num_sections; i++, sections += 3) {
100                 u32 type = (u32)of_read_number(sections, 1);
101
102                 switch (type) {
103                 case FADUMP_CPU_STATE_DATA:
104                         fw_dump.cpu_state_data_size =
105                                         of_read_ulong(&sections[1], 2);
106                         break;
107                 case FADUMP_HPTE_REGION:
108                         fw_dump.hpte_region_size =
109                                         of_read_ulong(&sections[1], 2);
110                         break;
111                 }
112         }
113         return 1;
114 }
115
116 int is_fadump_active(void)
117 {
118         return fw_dump.dump_active;
119 }
120
121 /* Print firmware assisted dump configurations for debugging purpose. */
122 static void fadump_show_config(void)
123 {
124         pr_debug("Support for firmware-assisted dump (fadump): %s\n",
125                         (fw_dump.fadump_supported ? "present" : "no support"));
126
127         if (!fw_dump.fadump_supported)
128                 return;
129
130         pr_debug("Fadump enabled    : %s\n",
131                                 (fw_dump.fadump_enabled ? "yes" : "no"));
132         pr_debug("Dump Active       : %s\n",
133                                 (fw_dump.dump_active ? "yes" : "no"));
134         pr_debug("Dump section sizes:\n");
135         pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
136         pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
137         pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
138 }
139
140 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
141                                 unsigned long addr)
142 {
143         if (!fdm)
144                 return 0;
145
146         memset(fdm, 0, sizeof(struct fadump_mem_struct));
147         addr = addr & PAGE_MASK;
148
149         fdm->header.dump_format_version = 0x00000001;
150         fdm->header.dump_num_sections = 3;
151         fdm->header.dump_status_flag = 0;
152         fdm->header.offset_first_dump_section =
153                 (u32)offsetof(struct fadump_mem_struct, cpu_state_data);
154
155         /*
156          * Fields for disk dump option.
157          * We are not using disk dump option, hence set these fields to 0.
158          */
159         fdm->header.dd_block_size = 0;
160         fdm->header.dd_block_offset = 0;
161         fdm->header.dd_num_blocks = 0;
162         fdm->header.dd_offset_disk_path = 0;
163
164         /* set 0 to disable an automatic dump-reboot. */
165         fdm->header.max_time_auto = 0;
166
167         /* Kernel dump sections */
168         /* cpu state data section. */
169         fdm->cpu_state_data.request_flag = FADUMP_REQUEST_FLAG;
170         fdm->cpu_state_data.source_data_type = FADUMP_CPU_STATE_DATA;
171         fdm->cpu_state_data.source_address = 0;
172         fdm->cpu_state_data.source_len = fw_dump.cpu_state_data_size;
173         fdm->cpu_state_data.destination_address = addr;
174         addr += fw_dump.cpu_state_data_size;
175
176         /* hpte region section */
177         fdm->hpte_region.request_flag = FADUMP_REQUEST_FLAG;
178         fdm->hpte_region.source_data_type = FADUMP_HPTE_REGION;
179         fdm->hpte_region.source_address = 0;
180         fdm->hpte_region.source_len = fw_dump.hpte_region_size;
181         fdm->hpte_region.destination_address = addr;
182         addr += fw_dump.hpte_region_size;
183
184         /* RMA region section */
185         fdm->rmr_region.request_flag = FADUMP_REQUEST_FLAG;
186         fdm->rmr_region.source_data_type = FADUMP_REAL_MODE_REGION;
187         fdm->rmr_region.source_address = RMA_START;
188         fdm->rmr_region.source_len = fw_dump.boot_memory_size;
189         fdm->rmr_region.destination_address = addr;
190         addr += fw_dump.boot_memory_size;
191
192         return addr;
193 }
194
195 /**
196  * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
197  *
198  * Function to find the largest memory size we need to reserve during early
199  * boot process. This will be the size of the memory that is required for a
200  * kernel to boot successfully.
201  *
202  * This function has been taken from phyp-assisted dump feature implementation.
203  *
204  * returns larger of 256MB or 5% rounded down to multiples of 256MB.
205  *
206  * TODO: Come up with better approach to find out more accurate memory size
207  * that is required for a kernel to boot successfully.
208  *
209  */
210 static inline unsigned long fadump_calculate_reserve_size(void)
211 {
212         unsigned long size;
213
214         /*
215          * Check if the size is specified through fadump_reserve_mem= cmdline
216          * option. If yes, then use that.
217          */
218         if (fw_dump.reserve_bootvar)
219                 return fw_dump.reserve_bootvar;
220
221         /* divide by 20 to get 5% of value */
222         size = memblock_end_of_DRAM() / 20;
223
224         /* round it down in multiples of 256 */
225         size = size & ~0x0FFFFFFFUL;
226
227         /* Truncate to memory_limit. We don't want to over reserve the memory.*/
228         if (memory_limit && size > memory_limit)
229                 size = memory_limit;
230
231         return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
232 }
233
234 /*
235  * Calculate the total memory size required to be reserved for
236  * firmware-assisted dump registration.
237  */
238 static unsigned long get_fadump_area_size(void)
239 {
240         unsigned long size = 0;
241
242         size += fw_dump.cpu_state_data_size;
243         size += fw_dump.hpte_region_size;
244         size += fw_dump.boot_memory_size;
245         size += sizeof(struct fadump_crash_info_header);
246         size += sizeof(struct elfhdr); /* ELF core header.*/
247         size += sizeof(struct elf_phdr); /* place holder for cpu notes */
248         /* Program headers for crash memory regions. */
249         size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
250
251         size = PAGE_ALIGN(size);
252         return size;
253 }
254
255 int __init fadump_reserve_mem(void)
256 {
257         unsigned long base, size, memory_boundary;
258
259         if (!fw_dump.fadump_enabled)
260                 return 0;
261
262         if (!fw_dump.fadump_supported) {
263                 printk(KERN_INFO "Firmware-assisted dump is not supported on"
264                                 " this hardware\n");
265                 fw_dump.fadump_enabled = 0;
266                 return 0;
267         }
268         /*
269          * Initialize boot memory size
270          * If dump is active then we have already calculated the size during
271          * first kernel.
272          */
273         if (fdm_active)
274                 fw_dump.boot_memory_size = fdm_active->rmr_region.source_len;
275         else
276                 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
277
278         /*
279          * Calculate the memory boundary.
280          * If memory_limit is less than actual memory boundary then reserve
281          * the memory for fadump beyond the memory_limit and adjust the
282          * memory_limit accordingly, so that the running kernel can run with
283          * specified memory_limit.
284          */
285         if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
286                 size = get_fadump_area_size();
287                 if ((memory_limit + size) < memblock_end_of_DRAM())
288                         memory_limit += size;
289                 else
290                         memory_limit = memblock_end_of_DRAM();
291                 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
292                                 " dump, now %#016llx\n", memory_limit);
293         }
294         if (memory_limit)
295                 memory_boundary = memory_limit;
296         else
297                 memory_boundary = memblock_end_of_DRAM();
298
299         if (fw_dump.dump_active) {
300                 printk(KERN_INFO "Firmware-assisted dump is active.\n");
301                 /*
302                  * If last boot has crashed then reserve all the memory
303                  * above boot_memory_size so that we don't touch it until
304                  * dump is written to disk by userspace tool. This memory
305                  * will be released for general use once the dump is saved.
306                  */
307                 base = fw_dump.boot_memory_size;
308                 size = memory_boundary - base;
309                 memblock_reserve(base, size);
310                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
311                                 "for saving crash dump\n",
312                                 (unsigned long)(size >> 20),
313                                 (unsigned long)(base >> 20));
314
315                 fw_dump.fadumphdr_addr =
316                                 fdm_active->rmr_region.destination_address +
317                                 fdm_active->rmr_region.source_len;
318                 pr_debug("fadumphdr_addr = %p\n",
319                                 (void *) fw_dump.fadumphdr_addr);
320         } else {
321                 /* Reserve the memory at the top of memory. */
322                 size = get_fadump_area_size();
323                 base = memory_boundary - size;
324                 memblock_reserve(base, size);
325                 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
326                                 "for firmware-assisted dump\n",
327                                 (unsigned long)(size >> 20),
328                                 (unsigned long)(base >> 20));
329         }
330         fw_dump.reserve_dump_area_start = base;
331         fw_dump.reserve_dump_area_size = size;
332         return 1;
333 }
334
335 /* Look for fadump= cmdline option. */
336 static int __init early_fadump_param(char *p)
337 {
338         if (!p)
339                 return 1;
340
341         if (strncmp(p, "on", 2) == 0)
342                 fw_dump.fadump_enabled = 1;
343         else if (strncmp(p, "off", 3) == 0)
344                 fw_dump.fadump_enabled = 0;
345
346         return 0;
347 }
348 early_param("fadump", early_fadump_param);
349
350 /* Look for fadump_reserve_mem= cmdline option */
351 static int __init early_fadump_reserve_mem(char *p)
352 {
353         if (p)
354                 fw_dump.reserve_bootvar = memparse(p, &p);
355         return 0;
356 }
357 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
358
359 static void register_fw_dump(struct fadump_mem_struct *fdm)
360 {
361         int rc;
362         unsigned int wait_time;
363
364         pr_debug("Registering for firmware-assisted kernel dump...\n");
365
366         /* TODO: Add upper time limit for the delay */
367         do {
368                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
369                         FADUMP_REGISTER, fdm,
370                         sizeof(struct fadump_mem_struct));
371
372                 wait_time = rtas_busy_delay_time(rc);
373                 if (wait_time)
374                         mdelay(wait_time);
375
376         } while (wait_time);
377
378         switch (rc) {
379         case -1:
380                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
381                         " dump. Hardware Error(%d).\n", rc);
382                 break;
383         case -3:
384                 printk(KERN_ERR "Failed to register firmware-assisted kernel"
385                         " dump. Parameter Error(%d).\n", rc);
386                 break;
387         case -9:
388                 printk(KERN_ERR "firmware-assisted kernel dump is already "
389                         " registered.");
390                 fw_dump.dump_registered = 1;
391                 break;
392         case 0:
393                 printk(KERN_INFO "firmware-assisted kernel dump registration"
394                         " is successful\n");
395                 fw_dump.dump_registered = 1;
396                 break;
397         }
398 }
399
400 void crash_fadump(struct pt_regs *regs, const char *str)
401 {
402         struct fadump_crash_info_header *fdh = NULL;
403
404         if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
405                 return;
406
407         fdh = __va(fw_dump.fadumphdr_addr);
408         crashing_cpu = smp_processor_id();
409         fdh->crashing_cpu = crashing_cpu;
410         crash_save_vmcoreinfo();
411
412         if (regs)
413                 fdh->regs = *regs;
414         else
415                 ppc_save_regs(&fdh->regs);
416
417         fdh->cpu_online_mask = *cpu_online_mask;
418
419         /* Call ibm,os-term rtas call to trigger firmware assisted dump */
420         rtas_os_term((char *)str);
421 }
422
423 #define GPR_MASK        0xffffff0000000000
424 static inline int fadump_gpr_index(u64 id)
425 {
426         int i = -1;
427         char str[3];
428
429         if ((id & GPR_MASK) == REG_ID("GPR")) {
430                 /* get the digits at the end */
431                 id &= ~GPR_MASK;
432                 id >>= 24;
433                 str[2] = '\0';
434                 str[1] = id & 0xff;
435                 str[0] = (id >> 8) & 0xff;
436                 sscanf(str, "%d", &i);
437                 if (i > 31)
438                         i = -1;
439         }
440         return i;
441 }
442
443 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
444                                                                 u64 reg_val)
445 {
446         int i;
447
448         i = fadump_gpr_index(reg_id);
449         if (i >= 0)
450                 regs->gpr[i] = (unsigned long)reg_val;
451         else if (reg_id == REG_ID("NIA"))
452                 regs->nip = (unsigned long)reg_val;
453         else if (reg_id == REG_ID("MSR"))
454                 regs->msr = (unsigned long)reg_val;
455         else if (reg_id == REG_ID("CTR"))
456                 regs->ctr = (unsigned long)reg_val;
457         else if (reg_id == REG_ID("LR"))
458                 regs->link = (unsigned long)reg_val;
459         else if (reg_id == REG_ID("XER"))
460                 regs->xer = (unsigned long)reg_val;
461         else if (reg_id == REG_ID("CR"))
462                 regs->ccr = (unsigned long)reg_val;
463         else if (reg_id == REG_ID("DAR"))
464                 regs->dar = (unsigned long)reg_val;
465         else if (reg_id == REG_ID("DSISR"))
466                 regs->dsisr = (unsigned long)reg_val;
467 }
468
469 static struct fadump_reg_entry*
470 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
471 {
472         memset(regs, 0, sizeof(struct pt_regs));
473
474         while (reg_entry->reg_id != REG_ID("CPUEND")) {
475                 fadump_set_regval(regs, reg_entry->reg_id,
476                                         reg_entry->reg_value);
477                 reg_entry++;
478         }
479         reg_entry++;
480         return reg_entry;
481 }
482
483 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
484                                                 void *data, size_t data_len)
485 {
486         struct elf_note note;
487
488         note.n_namesz = strlen(name) + 1;
489         note.n_descsz = data_len;
490         note.n_type   = type;
491         memcpy(buf, &note, sizeof(note));
492         buf += (sizeof(note) + 3)/4;
493         memcpy(buf, name, note.n_namesz);
494         buf += (note.n_namesz + 3)/4;
495         memcpy(buf, data, note.n_descsz);
496         buf += (note.n_descsz + 3)/4;
497
498         return buf;
499 }
500
501 static void fadump_final_note(u32 *buf)
502 {
503         struct elf_note note;
504
505         note.n_namesz = 0;
506         note.n_descsz = 0;
507         note.n_type   = 0;
508         memcpy(buf, &note, sizeof(note));
509 }
510
511 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
512 {
513         struct elf_prstatus prstatus;
514
515         memset(&prstatus, 0, sizeof(prstatus));
516         /*
517          * FIXME: How do i get PID? Do I really need it?
518          * prstatus.pr_pid = ????
519          */
520         elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
521         buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
522                                 &prstatus, sizeof(prstatus));
523         return buf;
524 }
525
526 static void fadump_update_elfcore_header(char *bufp)
527 {
528         struct elfhdr *elf;
529         struct elf_phdr *phdr;
530
531         elf = (struct elfhdr *)bufp;
532         bufp += sizeof(struct elfhdr);
533
534         /* First note is a place holder for cpu notes info. */
535         phdr = (struct elf_phdr *)bufp;
536
537         if (phdr->p_type == PT_NOTE) {
538                 phdr->p_paddr = fw_dump.cpu_notes_buf;
539                 phdr->p_offset  = phdr->p_paddr;
540                 phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
541                 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
542         }
543         return;
544 }
545
546 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
547 {
548         void *vaddr;
549         struct page *page;
550         unsigned long order, count, i;
551
552         order = get_order(size);
553         vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
554         if (!vaddr)
555                 return NULL;
556
557         count = 1 << order;
558         page = virt_to_page(vaddr);
559         for (i = 0; i < count; i++)
560                 SetPageReserved(page + i);
561         return vaddr;
562 }
563
564 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
565 {
566         struct page *page;
567         unsigned long order, count, i;
568
569         order = get_order(size);
570         count = 1 << order;
571         page = virt_to_page(vaddr);
572         for (i = 0; i < count; i++)
573                 ClearPageReserved(page + i);
574         __free_pages(page, order);
575 }
576
577 /*
578  * Read CPU state dump data and convert it into ELF notes.
579  * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
580  * used to access the data to allow for additional fields to be added without
581  * affecting compatibility. Each list of registers for a CPU starts with
582  * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
583  * 8 Byte ASCII identifier and 8 Byte register value. The register entry
584  * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
585  * of register value. For more details refer to PAPR document.
586  *
587  * Only for the crashing cpu we ignore the CPU dump data and get exact
588  * state from fadump crash info structure populated by first kernel at the
589  * time of crash.
590  */
591 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
592 {
593         struct fadump_reg_save_area_header *reg_header;
594         struct fadump_reg_entry *reg_entry;
595         struct fadump_crash_info_header *fdh = NULL;
596         void *vaddr;
597         unsigned long addr;
598         u32 num_cpus, *note_buf;
599         struct pt_regs regs;
600         int i, rc = 0, cpu = 0;
601
602         if (!fdm->cpu_state_data.bytes_dumped)
603                 return -EINVAL;
604
605         addr = fdm->cpu_state_data.destination_address;
606         vaddr = __va(addr);
607
608         reg_header = vaddr;
609         if (reg_header->magic_number != REGSAVE_AREA_MAGIC) {
610                 printk(KERN_ERR "Unable to read register save area.\n");
611                 return -ENOENT;
612         }
613         pr_debug("--------CPU State Data------------\n");
614         pr_debug("Magic Number: %llx\n", reg_header->magic_number);
615         pr_debug("NumCpuOffset: %x\n", reg_header->num_cpu_offset);
616
617         vaddr += reg_header->num_cpu_offset;
618         num_cpus = *((u32 *)(vaddr));
619         pr_debug("NumCpus     : %u\n", num_cpus);
620         vaddr += sizeof(u32);
621         reg_entry = (struct fadump_reg_entry *)vaddr;
622
623         /* Allocate buffer to hold cpu crash notes. */
624         fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
625         fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
626         note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
627         if (!note_buf) {
628                 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
629                         "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
630                 return -ENOMEM;
631         }
632         fw_dump.cpu_notes_buf = __pa(note_buf);
633
634         pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
635                         (num_cpus * sizeof(note_buf_t)), note_buf);
636
637         if (fw_dump.fadumphdr_addr)
638                 fdh = __va(fw_dump.fadumphdr_addr);
639
640         for (i = 0; i < num_cpus; i++) {
641                 if (reg_entry->reg_id != REG_ID("CPUSTRT")) {
642                         printk(KERN_ERR "Unable to read CPU state data\n");
643                         rc = -ENOENT;
644                         goto error_out;
645                 }
646                 /* Lower 4 bytes of reg_value contains logical cpu id */
647                 cpu = reg_entry->reg_value & FADUMP_CPU_ID_MASK;
648                 if (!cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
649                         SKIP_TO_NEXT_CPU(reg_entry);
650                         continue;
651                 }
652                 pr_debug("Reading register data for cpu %d...\n", cpu);
653                 if (fdh && fdh->crashing_cpu == cpu) {
654                         regs = fdh->regs;
655                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
656                         SKIP_TO_NEXT_CPU(reg_entry);
657                 } else {
658                         reg_entry++;
659                         reg_entry = fadump_read_registers(reg_entry, &regs);
660                         note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
661                 }
662         }
663         fadump_final_note(note_buf);
664
665         pr_debug("Updating elfcore header (%llx) with cpu notes\n",
666                                                         fdh->elfcorehdr_addr);
667         fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
668         return 0;
669
670 error_out:
671         fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
672                                         fw_dump.cpu_notes_buf_size);
673         fw_dump.cpu_notes_buf = 0;
674         fw_dump.cpu_notes_buf_size = 0;
675         return rc;
676
677 }
678
679 /*
680  * Validate and process the dump data stored by firmware before exporting
681  * it through '/proc/vmcore'.
682  */
683 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
684 {
685         struct fadump_crash_info_header *fdh;
686         int rc = 0;
687
688         if (!fdm_active || !fw_dump.fadumphdr_addr)
689                 return -EINVAL;
690
691         /* Check if the dump data is valid. */
692         if ((fdm_active->header.dump_status_flag == FADUMP_ERROR_FLAG) ||
693                         (fdm_active->cpu_state_data.error_flags != 0) ||
694                         (fdm_active->rmr_region.error_flags != 0)) {
695                 printk(KERN_ERR "Dump taken by platform is not valid\n");
696                 return -EINVAL;
697         }
698         if ((fdm_active->rmr_region.bytes_dumped !=
699                         fdm_active->rmr_region.source_len) ||
700                         !fdm_active->cpu_state_data.bytes_dumped) {
701                 printk(KERN_ERR "Dump taken by platform is incomplete\n");
702                 return -EINVAL;
703         }
704
705         /* Validate the fadump crash info header */
706         fdh = __va(fw_dump.fadumphdr_addr);
707         if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
708                 printk(KERN_ERR "Crash info header is not valid.\n");
709                 return -EINVAL;
710         }
711
712         rc = fadump_build_cpu_notes(fdm_active);
713         if (rc)
714                 return rc;
715
716         /*
717          * We are done validating dump info and elfcore header is now ready
718          * to be exported. set elfcorehdr_addr so that vmcore module will
719          * export the elfcore header through '/proc/vmcore'.
720          */
721         elfcorehdr_addr = fdh->elfcorehdr_addr;
722
723         return 0;
724 }
725
726 static inline void fadump_add_crash_memory(unsigned long long base,
727                                         unsigned long long end)
728 {
729         if (base == end)
730                 return;
731
732         pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
733                 crash_mem_ranges, base, end - 1, (end - base));
734         crash_memory_ranges[crash_mem_ranges].base = base;
735         crash_memory_ranges[crash_mem_ranges].size = end - base;
736         crash_mem_ranges++;
737 }
738
739 static void fadump_exclude_reserved_area(unsigned long long start,
740                                         unsigned long long end)
741 {
742         unsigned long long ra_start, ra_end;
743
744         ra_start = fw_dump.reserve_dump_area_start;
745         ra_end = ra_start + fw_dump.reserve_dump_area_size;
746
747         if ((ra_start < end) && (ra_end > start)) {
748                 if ((start < ra_start) && (end > ra_end)) {
749                         fadump_add_crash_memory(start, ra_start);
750                         fadump_add_crash_memory(ra_end, end);
751                 } else if (start < ra_start) {
752                         fadump_add_crash_memory(start, ra_start);
753                 } else if (ra_end < end) {
754                         fadump_add_crash_memory(ra_end, end);
755                 }
756         } else
757                 fadump_add_crash_memory(start, end);
758 }
759
760 static int fadump_init_elfcore_header(char *bufp)
761 {
762         struct elfhdr *elf;
763
764         elf = (struct elfhdr *) bufp;
765         bufp += sizeof(struct elfhdr);
766         memcpy(elf->e_ident, ELFMAG, SELFMAG);
767         elf->e_ident[EI_CLASS] = ELF_CLASS;
768         elf->e_ident[EI_DATA] = ELF_DATA;
769         elf->e_ident[EI_VERSION] = EV_CURRENT;
770         elf->e_ident[EI_OSABI] = ELF_OSABI;
771         memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
772         elf->e_type = ET_CORE;
773         elf->e_machine = ELF_ARCH;
774         elf->e_version = EV_CURRENT;
775         elf->e_entry = 0;
776         elf->e_phoff = sizeof(struct elfhdr);
777         elf->e_shoff = 0;
778         elf->e_flags = ELF_CORE_EFLAGS;
779         elf->e_ehsize = sizeof(struct elfhdr);
780         elf->e_phentsize = sizeof(struct elf_phdr);
781         elf->e_phnum = 0;
782         elf->e_shentsize = 0;
783         elf->e_shnum = 0;
784         elf->e_shstrndx = 0;
785
786         return 0;
787 }
788
789 /*
790  * Traverse through memblock structure and setup crash memory ranges. These
791  * ranges will be used create PT_LOAD program headers in elfcore header.
792  */
793 static void fadump_setup_crash_memory_ranges(void)
794 {
795         struct memblock_region *reg;
796         unsigned long long start, end;
797
798         pr_debug("Setup crash memory ranges.\n");
799         crash_mem_ranges = 0;
800         /*
801          * add the first memory chunk (RMA_START through boot_memory_size) as
802          * a separate memory chunk. The reason is, at the time crash firmware
803          * will move the content of this memory chunk to different location
804          * specified during fadump registration. We need to create a separate
805          * program header for this chunk with the correct offset.
806          */
807         fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
808
809         for_each_memblock(memory, reg) {
810                 start = (unsigned long long)reg->base;
811                 end = start + (unsigned long long)reg->size;
812                 if (start == RMA_START && end >= fw_dump.boot_memory_size)
813                         start = fw_dump.boot_memory_size;
814
815                 /* add this range excluding the reserved dump area. */
816                 fadump_exclude_reserved_area(start, end);
817         }
818 }
819
820 /*
821  * If the given physical address falls within the boot memory region then
822  * return the relocated address that points to the dump region reserved
823  * for saving initial boot memory contents.
824  */
825 static inline unsigned long fadump_relocate(unsigned long paddr)
826 {
827         if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
828                 return fdm.rmr_region.destination_address + paddr;
829         else
830                 return paddr;
831 }
832
833 static int fadump_create_elfcore_headers(char *bufp)
834 {
835         struct elfhdr *elf;
836         struct elf_phdr *phdr;
837         int i;
838
839         fadump_init_elfcore_header(bufp);
840         elf = (struct elfhdr *)bufp;
841         bufp += sizeof(struct elfhdr);
842
843         /*
844          * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
845          * will be populated during second kernel boot after crash. Hence
846          * this PT_NOTE will always be the first elf note.
847          *
848          * NOTE: Any new ELF note addition should be placed after this note.
849          */
850         phdr = (struct elf_phdr *)bufp;
851         bufp += sizeof(struct elf_phdr);
852         phdr->p_type = PT_NOTE;
853         phdr->p_flags = 0;
854         phdr->p_vaddr = 0;
855         phdr->p_align = 0;
856
857         phdr->p_offset = 0;
858         phdr->p_paddr = 0;
859         phdr->p_filesz = 0;
860         phdr->p_memsz = 0;
861
862         (elf->e_phnum)++;
863
864         /* setup ELF PT_NOTE for vmcoreinfo */
865         phdr = (struct elf_phdr *)bufp;
866         bufp += sizeof(struct elf_phdr);
867         phdr->p_type    = PT_NOTE;
868         phdr->p_flags   = 0;
869         phdr->p_vaddr   = 0;
870         phdr->p_align   = 0;
871
872         phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
873         phdr->p_offset  = phdr->p_paddr;
874         phdr->p_memsz   = vmcoreinfo_max_size;
875         phdr->p_filesz  = vmcoreinfo_max_size;
876
877         /* Increment number of program headers. */
878         (elf->e_phnum)++;
879
880         /* setup PT_LOAD sections. */
881
882         for (i = 0; i < crash_mem_ranges; i++) {
883                 unsigned long long mbase, msize;
884                 mbase = crash_memory_ranges[i].base;
885                 msize = crash_memory_ranges[i].size;
886
887                 if (!msize)
888                         continue;
889
890                 phdr = (struct elf_phdr *)bufp;
891                 bufp += sizeof(struct elf_phdr);
892                 phdr->p_type    = PT_LOAD;
893                 phdr->p_flags   = PF_R|PF_W|PF_X;
894                 phdr->p_offset  = mbase;
895
896                 if (mbase == RMA_START) {
897                         /*
898                          * The entire RMA region will be moved by firmware
899                          * to the specified destination_address. Hence set
900                          * the correct offset.
901                          */
902                         phdr->p_offset = fdm.rmr_region.destination_address;
903                 }
904
905                 phdr->p_paddr = mbase;
906                 phdr->p_vaddr = (unsigned long)__va(mbase);
907                 phdr->p_filesz = msize;
908                 phdr->p_memsz = msize;
909                 phdr->p_align = 0;
910
911                 /* Increment number of program headers. */
912                 (elf->e_phnum)++;
913         }
914         return 0;
915 }
916
917 static unsigned long init_fadump_header(unsigned long addr)
918 {
919         struct fadump_crash_info_header *fdh;
920
921         if (!addr)
922                 return 0;
923
924         fw_dump.fadumphdr_addr = addr;
925         fdh = __va(addr);
926         addr += sizeof(struct fadump_crash_info_header);
927
928         memset(fdh, 0, sizeof(struct fadump_crash_info_header));
929         fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
930         fdh->elfcorehdr_addr = addr;
931         /* We will set the crashing cpu id in crash_fadump() during crash. */
932         fdh->crashing_cpu = CPU_UNKNOWN;
933
934         return addr;
935 }
936
937 static void register_fadump(void)
938 {
939         unsigned long addr;
940         void *vaddr;
941
942         /*
943          * If no memory is reserved then we can not register for firmware-
944          * assisted dump.
945          */
946         if (!fw_dump.reserve_dump_area_size)
947                 return;
948
949         fadump_setup_crash_memory_ranges();
950
951         addr = fdm.rmr_region.destination_address + fdm.rmr_region.source_len;
952         /* Initialize fadump crash info header. */
953         addr = init_fadump_header(addr);
954         vaddr = __va(addr);
955
956         pr_debug("Creating ELF core headers at %#016lx\n", addr);
957         fadump_create_elfcore_headers(vaddr);
958
959         /* register the future kernel dump with firmware. */
960         register_fw_dump(&fdm);
961 }
962
963 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
964 {
965         int rc = 0;
966         unsigned int wait_time;
967
968         pr_debug("Un-register firmware-assisted dump\n");
969
970         /* TODO: Add upper time limit for the delay */
971         do {
972                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
973                         FADUMP_UNREGISTER, fdm,
974                         sizeof(struct fadump_mem_struct));
975
976                 wait_time = rtas_busy_delay_time(rc);
977                 if (wait_time)
978                         mdelay(wait_time);
979         } while (wait_time);
980
981         if (rc) {
982                 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
983                         " unexpected error(%d).\n", rc);
984                 return rc;
985         }
986         fw_dump.dump_registered = 0;
987         return 0;
988 }
989
990 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
991 {
992         int rc = 0;
993         unsigned int wait_time;
994
995         pr_debug("Invalidating firmware-assisted dump registration\n");
996
997         /* TODO: Add upper time limit for the delay */
998         do {
999                 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1000                         FADUMP_INVALIDATE, fdm,
1001                         sizeof(struct fadump_mem_struct));
1002
1003                 wait_time = rtas_busy_delay_time(rc);
1004                 if (wait_time)
1005                         mdelay(wait_time);
1006         } while (wait_time);
1007
1008         if (rc) {
1009                 printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1010                         "rgistration. unexpected error(%d).\n", rc);
1011                 return rc;
1012         }
1013         fw_dump.dump_active = 0;
1014         fdm_active = NULL;
1015         return 0;
1016 }
1017
1018 void fadump_cleanup(void)
1019 {
1020         /* Invalidate the registration only if dump is active. */
1021         if (fw_dump.dump_active) {
1022                 init_fadump_mem_struct(&fdm,
1023                         fdm_active->cpu_state_data.destination_address);
1024                 fadump_invalidate_dump(&fdm);
1025         }
1026 }
1027
1028 /*
1029  * Release the memory that was reserved in early boot to preserve the memory
1030  * contents. The released memory will be available for general use.
1031  */
1032 static void fadump_release_memory(unsigned long begin, unsigned long end)
1033 {
1034         unsigned long addr;
1035         unsigned long ra_start, ra_end;
1036
1037         ra_start = fw_dump.reserve_dump_area_start;
1038         ra_end = ra_start + fw_dump.reserve_dump_area_size;
1039
1040         for (addr = begin; addr < end; addr += PAGE_SIZE) {
1041                 /*
1042                  * exclude the dump reserve area. Will reuse it for next
1043                  * fadump registration.
1044                  */
1045                 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1046                         continue;
1047
1048                 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1049         }
1050 }
1051
1052 static void fadump_invalidate_release_mem(void)
1053 {
1054         unsigned long reserved_area_start, reserved_area_end;
1055         unsigned long destination_address;
1056
1057         mutex_lock(&fadump_mutex);
1058         if (!fw_dump.dump_active) {
1059                 mutex_unlock(&fadump_mutex);
1060                 return;
1061         }
1062
1063         destination_address = fdm_active->cpu_state_data.destination_address;
1064         fadump_cleanup();
1065         mutex_unlock(&fadump_mutex);
1066
1067         /*
1068          * Save the current reserved memory bounds we will require them
1069          * later for releasing the memory for general use.
1070          */
1071         reserved_area_start = fw_dump.reserve_dump_area_start;
1072         reserved_area_end = reserved_area_start +
1073                         fw_dump.reserve_dump_area_size;
1074         /*
1075          * Setup reserve_dump_area_start and its size so that we can
1076          * reuse this reserved memory for Re-registration.
1077          */
1078         fw_dump.reserve_dump_area_start = destination_address;
1079         fw_dump.reserve_dump_area_size = get_fadump_area_size();
1080
1081         fadump_release_memory(reserved_area_start, reserved_area_end);
1082         if (fw_dump.cpu_notes_buf) {
1083                 fadump_cpu_notes_buf_free(
1084                                 (unsigned long)__va(fw_dump.cpu_notes_buf),
1085                                 fw_dump.cpu_notes_buf_size);
1086                 fw_dump.cpu_notes_buf = 0;
1087                 fw_dump.cpu_notes_buf_size = 0;
1088         }
1089         /* Initialize the kernel dump memory structure for FAD registration. */
1090         init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1091 }
1092
1093 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1094                                         struct kobj_attribute *attr,
1095                                         const char *buf, size_t count)
1096 {
1097         if (!fw_dump.dump_active)
1098                 return -EPERM;
1099
1100         if (buf[0] == '1') {
1101                 /*
1102                  * Take away the '/proc/vmcore'. We are releasing the dump
1103                  * memory, hence it will not be valid anymore.
1104                  */
1105                 vmcore_cleanup();
1106                 fadump_invalidate_release_mem();
1107
1108         } else
1109                 return -EINVAL;
1110         return count;
1111 }
1112
1113 static ssize_t fadump_enabled_show(struct kobject *kobj,
1114                                         struct kobj_attribute *attr,
1115                                         char *buf)
1116 {
1117         return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1118 }
1119
1120 static ssize_t fadump_register_show(struct kobject *kobj,
1121                                         struct kobj_attribute *attr,
1122                                         char *buf)
1123 {
1124         return sprintf(buf, "%d\n", fw_dump.dump_registered);
1125 }
1126
1127 static ssize_t fadump_register_store(struct kobject *kobj,
1128                                         struct kobj_attribute *attr,
1129                                         const char *buf, size_t count)
1130 {
1131         int ret = 0;
1132
1133         if (!fw_dump.fadump_enabled || fdm_active)
1134                 return -EPERM;
1135
1136         mutex_lock(&fadump_mutex);
1137
1138         switch (buf[0]) {
1139         case '0':
1140                 if (fw_dump.dump_registered == 0) {
1141                         ret = -EINVAL;
1142                         goto unlock_out;
1143                 }
1144                 /* Un-register Firmware-assisted dump */
1145                 fadump_unregister_dump(&fdm);
1146                 break;
1147         case '1':
1148                 if (fw_dump.dump_registered == 1) {
1149                         ret = -EINVAL;
1150                         goto unlock_out;
1151                 }
1152                 /* Register Firmware-assisted dump */
1153                 register_fadump();
1154                 break;
1155         default:
1156                 ret = -EINVAL;
1157                 break;
1158         }
1159
1160 unlock_out:
1161         mutex_unlock(&fadump_mutex);
1162         return ret < 0 ? ret : count;
1163 }
1164
1165 static int fadump_region_show(struct seq_file *m, void *private)
1166 {
1167         const struct fadump_mem_struct *fdm_ptr;
1168
1169         if (!fw_dump.fadump_enabled)
1170                 return 0;
1171
1172         mutex_lock(&fadump_mutex);
1173         if (fdm_active)
1174                 fdm_ptr = fdm_active;
1175         else {
1176                 mutex_unlock(&fadump_mutex);
1177                 fdm_ptr = &fdm;
1178         }
1179
1180         seq_printf(m,
1181                         "CPU : [%#016llx-%#016llx] %#llx bytes, "
1182                         "Dumped: %#llx\n",
1183                         fdm_ptr->cpu_state_data.destination_address,
1184                         fdm_ptr->cpu_state_data.destination_address +
1185                         fdm_ptr->cpu_state_data.source_len - 1,
1186                         fdm_ptr->cpu_state_data.source_len,
1187                         fdm_ptr->cpu_state_data.bytes_dumped);
1188         seq_printf(m,
1189                         "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1190                         "Dumped: %#llx\n",
1191                         fdm_ptr->hpte_region.destination_address,
1192                         fdm_ptr->hpte_region.destination_address +
1193                         fdm_ptr->hpte_region.source_len - 1,
1194                         fdm_ptr->hpte_region.source_len,
1195                         fdm_ptr->hpte_region.bytes_dumped);
1196         seq_printf(m,
1197                         "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1198                         "Dumped: %#llx\n",
1199                         fdm_ptr->rmr_region.destination_address,
1200                         fdm_ptr->rmr_region.destination_address +
1201                         fdm_ptr->rmr_region.source_len - 1,
1202                         fdm_ptr->rmr_region.source_len,
1203                         fdm_ptr->rmr_region.bytes_dumped);
1204
1205         if (!fdm_active ||
1206                 (fw_dump.reserve_dump_area_start ==
1207                 fdm_ptr->cpu_state_data.destination_address))
1208                 goto out;
1209
1210         /* Dump is active. Show reserved memory region. */
1211         seq_printf(m,
1212                         "    : [%#016llx-%#016llx] %#llx bytes, "
1213                         "Dumped: %#llx\n",
1214                         (unsigned long long)fw_dump.reserve_dump_area_start,
1215                         fdm_ptr->cpu_state_data.destination_address - 1,
1216                         fdm_ptr->cpu_state_data.destination_address -
1217                         fw_dump.reserve_dump_area_start,
1218                         fdm_ptr->cpu_state_data.destination_address -
1219                         fw_dump.reserve_dump_area_start);
1220 out:
1221         if (fdm_active)
1222                 mutex_unlock(&fadump_mutex);
1223         return 0;
1224 }
1225
1226 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1227                                                 0200, NULL,
1228                                                 fadump_release_memory_store);
1229 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1230                                                 0444, fadump_enabled_show,
1231                                                 NULL);
1232 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1233                                                 0644, fadump_register_show,
1234                                                 fadump_register_store);
1235
1236 static int fadump_region_open(struct inode *inode, struct file *file)
1237 {
1238         return single_open(file, fadump_region_show, inode->i_private);
1239 }
1240
1241 static const struct file_operations fadump_region_fops = {
1242         .open    = fadump_region_open,
1243         .read    = seq_read,
1244         .llseek  = seq_lseek,
1245         .release = single_release,
1246 };
1247
1248 static void fadump_init_files(void)
1249 {
1250         struct dentry *debugfs_file;
1251         int rc = 0;
1252
1253         rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1254         if (rc)
1255                 printk(KERN_ERR "fadump: unable to create sysfs file"
1256                         " fadump_enabled (%d)\n", rc);
1257
1258         rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1259         if (rc)
1260                 printk(KERN_ERR "fadump: unable to create sysfs file"
1261                         " fadump_registered (%d)\n", rc);
1262
1263         debugfs_file = debugfs_create_file("fadump_region", 0444,
1264                                         powerpc_debugfs_root, NULL,
1265                                         &fadump_region_fops);
1266         if (!debugfs_file)
1267                 printk(KERN_ERR "fadump: unable to create debugfs file"
1268                                 " fadump_region\n");
1269
1270         if (fw_dump.dump_active) {
1271                 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1272                 if (rc)
1273                         printk(KERN_ERR "fadump: unable to create sysfs file"
1274                                 " fadump_release_mem (%d)\n", rc);
1275         }
1276         return;
1277 }
1278
1279 /*
1280  * Prepare for firmware-assisted dump.
1281  */
1282 int __init setup_fadump(void)
1283 {
1284         if (!fw_dump.fadump_enabled)
1285                 return 0;
1286
1287         if (!fw_dump.fadump_supported) {
1288                 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1289                         " this hardware\n");
1290                 return 0;
1291         }
1292
1293         fadump_show_config();
1294         /*
1295          * If dump data is available then see if it is valid and prepare for
1296          * saving it to the disk.
1297          */
1298         if (fw_dump.dump_active) {
1299                 /*
1300                  * if dump process fails then invalidate the registration
1301                  * and release memory before proceeding for re-registration.
1302                  */
1303                 if (process_fadump(fdm_active) < 0)
1304                         fadump_invalidate_release_mem();
1305         }
1306         /* Initialize the kernel dump memory structure for FAD registration. */
1307         else if (fw_dump.reserve_dump_area_size)
1308                 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1309         fadump_init_files();
1310
1311         return 1;
1312 }
1313 subsys_initcall(setup_fadump);