1 // SPDX-License-Identifier: GPL-2.0
3 * linux/arch/parisc/mm/init.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright 1999 SuSE GmbH
7 * changed by Philipp Rumpf
8 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9 * Copyright 2004 Randolph Chung (tausq@debian.org)
10 * Copyright 2006-2007 Helge Deller (deller@gmx.de)
15 #include <linux/module.h>
17 #include <linux/memblock.h>
18 #include <linux/gfp.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h> /* for node_online_map */
25 #include <linux/pagemap.h> /* for release_pages */
26 #include <linux/compat.h>
28 #include <asm/pgalloc.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33 #include <asm/msgbuf.h>
34 #include <asm/sparsemem.h>
36 extern int data_start;
37 extern void parisc_kernel_start(void); /* Kernel entry point in head.S */
39 #if CONFIG_PGTABLE_LEVELS == 3
40 pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
43 pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
44 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
46 static struct resource data_resource = {
47 .name = "Kernel data",
48 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
51 static struct resource code_resource = {
52 .name = "Kernel code",
53 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
56 static struct resource pdcdata_resource = {
57 .name = "PDC data (Page Zero)",
60 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
63 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
65 /* The following array is initialized from the firmware specific
66 * information retrieved in kernel/inventory.c.
69 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
70 int npmem_ranges __initdata;
73 #define MAX_MEM (1UL << MAX_PHYSMEM_BITS)
74 #else /* !CONFIG_64BIT */
75 #define MAX_MEM (3584U*1024U*1024U)
76 #endif /* !CONFIG_64BIT */
78 static unsigned long mem_limit __read_mostly = MAX_MEM;
80 static void __init mem_limit_func(void)
85 /* We need this before __setup() functions are called */
88 for (cp = boot_command_line; *cp; ) {
89 if (memcmp(cp, "mem=", 4) == 0) {
91 limit = memparse(cp, &end);
96 while (*cp != ' ' && *cp)
103 if (limit < mem_limit)
107 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
109 static void __init setup_bootmem(void)
111 unsigned long mem_max;
112 #ifndef CONFIG_SPARSEMEM
113 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
116 int i, sysram_resource_count;
118 disable_sr_hashing(); /* Turn off space register hashing */
121 * Sort the ranges. Since the number of ranges is typically
122 * small, and performance is not an issue here, just do
123 * a simple insertion sort.
126 for (i = 1; i < npmem_ranges; i++) {
129 for (j = i; j > 0; j--) {
130 if (pmem_ranges[j-1].start_pfn <
131 pmem_ranges[j].start_pfn) {
135 swap(pmem_ranges[j-1], pmem_ranges[j]);
139 #ifndef CONFIG_SPARSEMEM
141 * Throw out ranges that are too far apart (controlled by
145 for (i = 1; i < npmem_ranges; i++) {
146 if (pmem_ranges[i].start_pfn -
147 (pmem_ranges[i-1].start_pfn +
148 pmem_ranges[i-1].pages) > MAX_GAP) {
150 printk("Large gap in memory detected (%ld pages). "
151 "Consider turning on CONFIG_SPARSEMEM\n",
152 pmem_ranges[i].start_pfn -
153 (pmem_ranges[i-1].start_pfn +
154 pmem_ranges[i-1].pages));
160 /* Print the memory ranges */
161 pr_info("Memory Ranges:\n");
163 for (i = 0; i < npmem_ranges; i++) {
164 struct resource *res = &sysram_resources[i];
168 size = (pmem_ranges[i].pages << PAGE_SHIFT);
169 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
170 pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
171 i, start, start + (size - 1), size >> 20);
173 /* request memory resource */
174 res->name = "System RAM";
176 res->end = start + size - 1;
177 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
178 request_resource(&iomem_resource, res);
181 sysram_resource_count = npmem_ranges;
184 * For 32 bit kernels we limit the amount of memory we can
185 * support, in order to preserve enough kernel address space
186 * for other purposes. For 64 bit kernels we don't normally
187 * limit the memory, but this mechanism can be used to
188 * artificially limit the amount of memory (and it is written
189 * to work with multiple memory ranges).
192 mem_limit_func(); /* check for "mem=" argument */
195 for (i = 0; i < npmem_ranges; i++) {
198 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
199 if ((mem_max + rsize) > mem_limit) {
200 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
201 if (mem_max == mem_limit)
204 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
205 - (mem_max >> PAGE_SHIFT);
206 npmem_ranges = i + 1;
214 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
216 #ifndef CONFIG_SPARSEMEM
217 /* Merge the ranges, keeping track of the holes */
219 unsigned long end_pfn;
220 unsigned long hole_pages;
223 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
224 for (i = 1; i < npmem_ranges; i++) {
226 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
228 pmem_holes[npmem_holes].start_pfn = end_pfn;
229 pmem_holes[npmem_holes++].pages = hole_pages;
230 end_pfn += hole_pages;
232 end_pfn += pmem_ranges[i].pages;
235 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
241 * Initialize and free the full range of memory in each range.
245 for (i = 0; i < npmem_ranges; i++) {
246 unsigned long start_pfn;
247 unsigned long npages;
251 start_pfn = pmem_ranges[i].start_pfn;
252 npages = pmem_ranges[i].pages;
254 start = start_pfn << PAGE_SHIFT;
255 size = npages << PAGE_SHIFT;
257 /* add system RAM memblock */
258 memblock_add(start, size);
260 if ((start_pfn + npages) > max_pfn)
261 max_pfn = start_pfn + npages;
265 * We can't use memblock top-down allocations because we only
266 * created the initial mapping up to KERNEL_INITIAL_SIZE in
267 * the assembly bootup code.
269 memblock_set_bottom_up(true);
271 /* IOMMU is always used to access "high mem" on those boxes
272 * that can support enough mem that a PCI device couldn't
273 * directly DMA to any physical addresses.
274 * ISA DMA support will need to revisit this.
276 max_low_pfn = max_pfn;
278 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
280 #define PDC_CONSOLE_IO_IODC_SIZE 32768
282 memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
283 PDC_CONSOLE_IO_IODC_SIZE));
284 memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
285 (unsigned long)(_end - KERNEL_BINARY_TEXT_START));
287 #ifndef CONFIG_SPARSEMEM
289 /* reserve the holes */
291 for (i = 0; i < npmem_holes; i++) {
292 memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
293 (pmem_holes[i].pages << PAGE_SHIFT));
297 #ifdef CONFIG_BLK_DEV_INITRD
299 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
300 if (__pa(initrd_start) < mem_max) {
301 unsigned long initrd_reserve;
303 if (__pa(initrd_end) > mem_max) {
304 initrd_reserve = mem_max - __pa(initrd_start);
306 initrd_reserve = initrd_end - initrd_start;
308 initrd_below_start_ok = 1;
309 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
311 memblock_reserve(__pa(initrd_start), initrd_reserve);
316 data_resource.start = virt_to_phys(&data_start);
317 data_resource.end = virt_to_phys(_end) - 1;
318 code_resource.start = virt_to_phys(_text);
319 code_resource.end = virt_to_phys(&data_start)-1;
321 /* We don't know which region the kernel will be in, so try
324 for (i = 0; i < sysram_resource_count; i++) {
325 struct resource *res = &sysram_resources[i];
326 request_resource(res, &code_resource);
327 request_resource(res, &data_resource);
329 request_resource(&sysram_resources[0], &pdcdata_resource);
331 /* Initialize Page Deallocation Table (PDT) and check for bad memory. */
334 memblock_allow_resize();
338 static bool kernel_set_to_readonly;
340 static void __ref map_pages(unsigned long start_vaddr,
341 unsigned long start_paddr, unsigned long size,
342 pgprot_t pgprot, int force)
346 unsigned long end_paddr;
347 unsigned long start_pmd;
348 unsigned long start_pte;
351 unsigned long address;
353 unsigned long ro_start;
354 unsigned long ro_end;
355 unsigned long kernel_start, kernel_end;
357 ro_start = __pa((unsigned long)_text);
358 ro_end = __pa((unsigned long)&data_start);
359 kernel_start = __pa((unsigned long)&__init_begin);
360 kernel_end = __pa((unsigned long)&_end);
362 end_paddr = start_paddr + size;
364 /* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
365 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
366 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
368 address = start_paddr;
370 while (address < end_paddr) {
371 pgd_t *pgd = pgd_offset_k(vaddr);
372 p4d_t *p4d = p4d_offset(pgd, vaddr);
373 pud_t *pud = pud_offset(p4d, vaddr);
375 #if CONFIG_PGTABLE_LEVELS == 3
376 if (pud_none(*pud)) {
377 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
378 PAGE_SIZE << PMD_TABLE_ORDER);
380 panic("pmd allocation failed.\n");
381 pud_populate(NULL, pud, pmd);
385 pmd = pmd_offset(pud, vaddr);
386 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
387 if (pmd_none(*pmd)) {
388 pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
390 panic("page table allocation failed\n");
391 pmd_populate_kernel(NULL, pmd, pg_table);
394 pg_table = pte_offset_kernel(pmd, vaddr);
395 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
402 } else if (address < kernel_start || address >= kernel_end) {
403 /* outside kernel memory */
405 } else if (!kernel_set_to_readonly) {
406 /* still initializing, allow writing to RO memory */
407 prot = PAGE_KERNEL_RWX;
409 } else if (address >= ro_start) {
410 /* Code (ro) and Data areas */
411 prot = (address < ro_end) ?
412 PAGE_KERNEL_EXEC : PAGE_KERNEL;
418 pte = __mk_pte(address, prot);
420 pte = pte_mkhuge(pte);
422 if (address >= end_paddr)
425 set_pte(pg_table, pte);
427 address += PAGE_SIZE;
432 if (address >= end_paddr)
439 void __init set_kernel_text_rw(int enable_read_write)
441 unsigned long start = (unsigned long) __init_begin;
442 unsigned long end = (unsigned long) &data_start;
444 map_pages(start, __pa(start), end-start,
445 PAGE_KERNEL_RWX, enable_read_write ? 1:0);
447 /* force the kernel to see the new page table entries */
452 void free_initmem(void)
454 unsigned long init_begin = (unsigned long)__init_begin;
455 unsigned long init_end = (unsigned long)__init_end;
456 unsigned long kernel_end = (unsigned long)&_end;
458 /* Remap kernel text and data, but do not touch init section yet. */
459 kernel_set_to_readonly = true;
460 map_pages(init_end, __pa(init_end), kernel_end - init_end,
463 /* The init text pages are marked R-X. We have to
464 * flush the icache and mark them RW-
466 * Do a dummy remap of the data section first (the data
467 * section is already PAGE_KERNEL) to pull in the TLB entries
469 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
471 /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
473 map_pages(init_begin, __pa(init_begin), init_end - init_begin,
476 /* force the kernel to see the new TLB entries */
477 __flush_tlb_range(0, init_begin, kernel_end);
479 /* finally dump all the instructions which were cached, since the
480 * pages are no-longer executable */
481 flush_icache_range(init_begin, init_end);
483 free_initmem_default(POISON_FREE_INITMEM);
485 /* set up a new led state on systems shipped LED State panel */
486 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
490 #ifdef CONFIG_STRICT_KERNEL_RWX
491 void mark_rodata_ro(void)
493 /* rodata memory was already mapped with KERNEL_RO access rights by
494 pagetable_init() and map_pages(). No need to do additional stuff here */
495 unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
497 pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
503 * Just an arbitrary offset to serve as a "hole" between mapping areas
504 * (between top of physical memory and a potential pcxl dma mapping
505 * area, and below the vmalloc mapping area).
507 * The current 32K value just means that there will be a 32K "hole"
508 * between mapping areas. That means that any out-of-bounds memory
509 * accesses will hopefully be caught. The vmalloc() routines leaves
510 * a hole of 4kB between each vmalloced area for the same reason.
513 /* Leave room for gateway page expansion */
514 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
515 #error KERNEL_MAP_START is in gateway reserved region
517 #define MAP_START (KERNEL_MAP_START)
519 #define VM_MAP_OFFSET (32*1024)
520 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
521 & ~(VM_MAP_OFFSET-1)))
523 void *parisc_vmalloc_start __ro_after_init;
524 EXPORT_SYMBOL(parisc_vmalloc_start);
526 void __init mem_init(void)
528 /* Do sanity checks on IPC (compat) structures */
529 BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
531 BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
532 BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
533 BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
536 BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
537 BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
538 BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
539 BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
542 /* Do sanity checks on page table constants */
543 BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
544 BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
545 BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
546 BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
548 #if CONFIG_PGTABLE_LEVELS == 3
549 BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
551 BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
555 /* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
556 BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000);
557 BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000);
560 high_memory = __va((max_pfn << PAGE_SHIFT));
561 set_max_mapnr(max_low_pfn);
565 if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
566 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
567 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
568 + PCXL_DMA_MAP_SIZE);
571 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
575 * Do not expose the virtual kernel memory layout to userspace.
576 * But keep code for debugging purposes.
578 printk("virtual kernel memory layout:\n"
579 " vmalloc : 0x%px - 0x%px (%4ld MB)\n"
580 " fixmap : 0x%px - 0x%px (%4ld kB)\n"
581 " memory : 0x%px - 0x%px (%4ld MB)\n"
582 " .init : 0x%px - 0x%px (%4ld kB)\n"
583 " .data : 0x%px - 0x%px (%4ld kB)\n"
584 " .text : 0x%px - 0x%px (%4ld kB)\n",
586 (void*)VMALLOC_START, (void*)VMALLOC_END,
587 (VMALLOC_END - VMALLOC_START) >> 20,
589 (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
590 (unsigned long)(FIXMAP_SIZE / 1024),
592 __va(0), high_memory,
593 ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
595 __init_begin, __init_end,
596 ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
599 ((unsigned long)_edata - (unsigned long)_etext) >> 10,
602 ((unsigned long)_etext - (unsigned long)_text) >> 10);
606 unsigned long *empty_zero_page __ro_after_init;
607 EXPORT_SYMBOL(empty_zero_page);
610 * pagetable_init() sets up the page tables
612 * Note that gateway_init() places the Linux gateway page at page 0.
613 * Since gateway pages cannot be dereferenced this has the desirable
614 * side effect of trapping those pesky NULL-reference errors in the
617 static void __init pagetable_init(void)
621 /* Map each physical memory range to its kernel vaddr */
623 for (range = 0; range < npmem_ranges; range++) {
624 unsigned long start_paddr;
627 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
628 size = pmem_ranges[range].pages << PAGE_SHIFT;
630 map_pages((unsigned long)__va(start_paddr), start_paddr,
631 size, PAGE_KERNEL, 0);
634 #ifdef CONFIG_BLK_DEV_INITRD
635 if (initrd_end && initrd_end > mem_limit) {
636 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
637 map_pages(initrd_start, __pa(initrd_start),
638 initrd_end - initrd_start, PAGE_KERNEL, 0);
642 empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
643 if (!empty_zero_page)
644 panic("zero page allocation failed.\n");
648 static void __init gateway_init(void)
650 unsigned long linux_gateway_page_addr;
651 /* FIXME: This is 'const' in order to trick the compiler
652 into not treating it as DP-relative data. */
653 extern void * const linux_gateway_page;
655 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
658 * Setup Linux Gateway page.
660 * The Linux gateway page will reside in kernel space (on virtual
661 * page 0), so it doesn't need to be aliased into user space.
664 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
665 PAGE_SIZE, PAGE_GATEWAY, 1);
668 static void __init fixmap_init(void)
670 unsigned long addr = FIXMAP_START;
671 unsigned long end = FIXMAP_START + FIXMAP_SIZE;
672 pgd_t *pgd = pgd_offset_k(addr);
673 p4d_t *p4d = p4d_offset(pgd, addr);
674 pud_t *pud = pud_offset(p4d, addr);
677 BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE);
679 #if CONFIG_PGTABLE_LEVELS == 3
680 if (pud_none(*pud)) {
681 pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
682 PAGE_SIZE << PMD_TABLE_ORDER);
684 panic("fixmap: pmd allocation failed.\n");
685 pud_populate(NULL, pud, pmd);
689 pmd = pmd_offset(pud, addr);
691 pte_t *pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
693 panic("fixmap: pte allocation failed.\n");
695 pmd_populate_kernel(&init_mm, pmd, pte);
698 } while (addr < end);
701 static void __init parisc_bootmem_free(void)
703 unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
705 max_zone_pfn[0] = memblock_end_of_DRAM();
707 free_area_init(max_zone_pfn);
710 void __init paging_init(void)
716 flush_cache_all_local(); /* start with known state */
717 flush_tlb_all_local(NULL);
720 parisc_bootmem_free();
726 * Currently, all PA20 chips have 18 bit protection IDs, which is the
727 * limiting factor (space ids are 32 bits).
730 #define NR_SPACE_IDS 262144
735 * Currently we have a one-to-one relationship between space IDs and
736 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
737 * support 15 bit protection IDs, so that is the limiting factor.
738 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
739 * probably not worth the effort for a special case here.
742 #define NR_SPACE_IDS 32768
744 #endif /* !CONFIG_PA20 */
746 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
747 #define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
749 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
750 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
751 static unsigned long space_id_index;
752 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
753 static unsigned long dirty_space_ids;
755 static DEFINE_SPINLOCK(sid_lock);
757 unsigned long alloc_sid(void)
761 spin_lock(&sid_lock);
763 if (free_space_ids == 0) {
764 if (dirty_space_ids != 0) {
765 spin_unlock(&sid_lock);
766 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
767 spin_lock(&sid_lock);
769 BUG_ON(free_space_ids == 0);
774 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
775 space_id[BIT_WORD(index)] |= BIT_MASK(index);
776 space_id_index = index;
778 spin_unlock(&sid_lock);
780 return index << SPACEID_SHIFT;
783 void free_sid(unsigned long spaceid)
785 unsigned long index = spaceid >> SPACEID_SHIFT;
786 unsigned long *dirty_space_offset, mask;
788 dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
789 mask = BIT_MASK(index);
791 spin_lock(&sid_lock);
793 BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
795 *dirty_space_offset |= mask;
798 spin_unlock(&sid_lock);
803 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
807 /* NOTE: sid_lock must be held upon entry */
809 *ndirtyptr = dirty_space_ids;
810 if (dirty_space_ids != 0) {
811 for (i = 0; i < SID_ARRAY_SIZE; i++) {
812 dirty_array[i] = dirty_space_id[i];
813 dirty_space_id[i] = 0;
821 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
825 /* NOTE: sid_lock must be held upon entry */
828 for (i = 0; i < SID_ARRAY_SIZE; i++) {
829 space_id[i] ^= dirty_array[i];
832 free_space_ids += ndirty;
837 #else /* CONFIG_SMP */
839 static void recycle_sids(void)
843 /* NOTE: sid_lock must be held upon entry */
845 if (dirty_space_ids != 0) {
846 for (i = 0; i < SID_ARRAY_SIZE; i++) {
847 space_id[i] ^= dirty_space_id[i];
848 dirty_space_id[i] = 0;
851 free_space_ids += dirty_space_ids;
859 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
860 * purged, we can safely reuse the space ids that were released but
861 * not flushed from the tlb.
866 static unsigned long recycle_ndirty;
867 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
868 static unsigned int recycle_inuse;
870 void flush_tlb_all(void)
875 spin_lock(&sid_lock);
876 __inc_irq_stat(irq_tlb_count);
877 if (dirty_space_ids > RECYCLE_THRESHOLD) {
878 BUG_ON(recycle_inuse); /* FIXME: Use a semaphore/wait queue here */
879 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
883 spin_unlock(&sid_lock);
884 on_each_cpu(flush_tlb_all_local, NULL, 1);
886 spin_lock(&sid_lock);
887 recycle_sids(recycle_ndirty,recycle_dirty_array);
889 spin_unlock(&sid_lock);
893 void flush_tlb_all(void)
895 spin_lock(&sid_lock);
896 __inc_irq_stat(irq_tlb_count);
897 flush_tlb_all_local(NULL);
899 spin_unlock(&sid_lock);
903 static const pgprot_t protection_map[16] = {
904 [VM_NONE] = PAGE_NONE,
905 [VM_READ] = PAGE_READONLY,
906 [VM_WRITE] = PAGE_NONE,
907 [VM_WRITE | VM_READ] = PAGE_READONLY,
908 [VM_EXEC] = PAGE_EXECREAD,
909 [VM_EXEC | VM_READ] = PAGE_EXECREAD,
910 [VM_EXEC | VM_WRITE] = PAGE_EXECREAD,
911 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_EXECREAD,
912 [VM_SHARED] = PAGE_NONE,
913 [VM_SHARED | VM_READ] = PAGE_READONLY,
914 [VM_SHARED | VM_WRITE] = PAGE_WRITEONLY,
915 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
916 [VM_SHARED | VM_EXEC] = PAGE_EXECREAD,
917 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_EXECREAD,
918 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_RWX,
919 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_RWX
921 DECLARE_VM_GET_PAGE_PROT