1 /* Kernel dynamically loadable module help for PARISC.
3 * The best reference for this stuff is probably the Processor-
4 * Specific ELF Supplement for PA-RISC:
5 * http://ftp.parisc-linux.org/docs/arch/elf-pa-hp.pdf
7 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
8 * Copyright (C) 2003 Randolph Chung <tausq at debian . org>
9 * Copyright (C) 2008 Helge Deller <deller@gmx.de>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * On 32bit (and sometimes 64bit) and with big kernel modules like xfs or
30 * ipv6 the relocation types R_PARISC_PCREL17F and R_PARISC_PCREL22F may
31 * fail to reach their PLT stub if we only create one big stub array for
32 * all sections at the beginning of the core or init section.
33 * Instead we now insert individual PLT stub entries directly in front of
34 * of the code sections where the stubs are actually called.
35 * This reduces the distance between the PCREL location and the stub entry
36 * so that the relocations can be fulfilled.
37 * While calculating the final layout of the kernel module in memory, the
38 * kernel module loader calls arch_mod_section_prepend() to request the
39 * to be reserved amount of memory in front of each individual section.
42 * We are not doing SEGREL32 handling correctly. According to the ABI, we
43 * should do a value offset, like this:
44 * if (in_init(me, (void *)val))
45 * val -= (uint32_t)me->module_init;
47 * val -= (uint32_t)me->module_core;
48 * However, SEGREL32 is used only for PARISC unwind entries, and we want
49 * those entries to have an absolute address, and not just an offset.
51 * The unwind table mechanism has the ability to specify an offset for
52 * the unwind table; however, because we split off the init functions into
53 * a different piece of memory, it is not possible to do this using a
54 * single offset. Instead, we use the above hack for now.
57 #include <linux/moduleloader.h>
58 #include <linux/elf.h>
59 #include <linux/vmalloc.h>
61 #include <linux/string.h>
62 #include <linux/kernel.h>
63 #include <linux/bug.h>
65 #include <asm/unwind.h>
70 #define DEBUGP(fmt...)
73 #define RELOC_REACHABLE(val, bits) \
74 (( ( !((val) & (1<<((bits)-1))) && ((val)>>(bits)) != 0 ) || \
75 ( ((val) & (1<<((bits)-1))) && ((val)>>(bits)) != (((__typeof__(val))(~0))>>((bits)+2)))) ? \
78 #define CHECK_RELOC(val, bits) \
79 if (!RELOC_REACHABLE(val, bits)) { \
80 printk(KERN_ERR "module %s relocation of symbol %s is out of range (0x%lx in %d bits)\n", \
81 me->name, strtab + sym->st_name, (unsigned long)val, bits); \
85 /* Maximum number of GOT entries. We use a long displacement ldd from
86 * the bottom of the table, which has a maximum signed displacement of
87 * 0x3fff; however, since we're only going forward, this becomes
88 * 0x1fff, and thus, since each GOT entry is 8 bytes long we can have
89 * at most 1023 entries */
92 /* three functions to determine where in the module core
93 * or init pieces the location is */
94 static inline int in_init(struct module *me, void *loc)
96 return (loc >= me->module_init &&
97 loc <= (me->module_init + me->init_size));
100 static inline int in_core(struct module *me, void *loc)
102 return (loc >= me->module_core &&
103 loc <= (me->module_core + me->core_size));
106 static inline int in_local(struct module *me, void *loc)
108 return in_init(me, loc) || in_core(me, loc);
117 Elf32_Word insns[2]; /* each stub entry has two insns */
125 Elf64_Word insns[4]; /* each stub entry has four insns */
129 /* Field selection types defined by hppa */
130 #define rnd(x) (((x)+0x1000)&~0x1fff)
131 /* fsel: full 32 bits */
132 #define fsel(v,a) ((v)+(a))
133 /* lsel: select left 21 bits */
134 #define lsel(v,a) (((v)+(a))>>11)
135 /* rsel: select right 11 bits */
136 #define rsel(v,a) (((v)+(a))&0x7ff)
137 /* lrsel with rounding of addend to nearest 8k */
138 #define lrsel(v,a) (((v)+rnd(a))>>11)
139 /* rrsel with rounding of addend to nearest 8k */
140 #define rrsel(v,a) ((((v)+rnd(a))&0x7ff)+((a)-rnd(a)))
142 #define mask(x,sz) ((x) & ~((1<<(sz))-1))
145 /* The reassemble_* functions prepare an immediate value for
146 insertion into an opcode. pa-risc uses all sorts of weird bitfields
147 in the instruction to hold the value. */
148 static inline int reassemble_14(int as14)
150 return (((as14 & 0x1fff) << 1) |
151 ((as14 & 0x2000) >> 13));
154 static inline int reassemble_17(int as17)
156 return (((as17 & 0x10000) >> 16) |
157 ((as17 & 0x0f800) << 5) |
158 ((as17 & 0x00400) >> 8) |
159 ((as17 & 0x003ff) << 3));
162 static inline int reassemble_21(int as21)
164 return (((as21 & 0x100000) >> 20) |
165 ((as21 & 0x0ffe00) >> 8) |
166 ((as21 & 0x000180) << 7) |
167 ((as21 & 0x00007c) << 14) |
168 ((as21 & 0x000003) << 12));
171 static inline int reassemble_22(int as22)
173 return (((as22 & 0x200000) >> 21) |
174 ((as22 & 0x1f0000) << 5) |
175 ((as22 & 0x00f800) << 5) |
176 ((as22 & 0x000400) >> 8) |
177 ((as22 & 0x0003ff) << 3));
180 void *module_alloc(unsigned long size)
184 return vmalloc(size);
188 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
193 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
198 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
200 unsigned long cnt = 0;
202 for (; n > 0; n--, rela++)
204 switch (ELF32_R_TYPE(rela->r_info)) {
205 case R_PARISC_PCREL17F:
206 case R_PARISC_PCREL22F:
214 static inline unsigned long count_gots(const Elf_Rela *rela, unsigned long n)
216 unsigned long cnt = 0;
218 for (; n > 0; n--, rela++)
220 switch (ELF64_R_TYPE(rela->r_info)) {
221 case R_PARISC_LTOFF21L:
222 case R_PARISC_LTOFF14R:
223 case R_PARISC_PCREL22F:
231 static inline unsigned long count_fdescs(const Elf_Rela *rela, unsigned long n)
233 unsigned long cnt = 0;
235 for (; n > 0; n--, rela++)
237 switch (ELF64_R_TYPE(rela->r_info)) {
238 case R_PARISC_FPTR64:
246 static inline unsigned long count_stubs(const Elf_Rela *rela, unsigned long n)
248 unsigned long cnt = 0;
250 for (; n > 0; n--, rela++)
252 switch (ELF64_R_TYPE(rela->r_info)) {
253 case R_PARISC_PCREL22F:
263 /* Free memory returned from module_alloc */
264 void module_free(struct module *mod, void *module_region)
266 kfree(mod->arch.section);
267 mod->arch.section = NULL;
269 vfree(module_region);
270 /* FIXME: If module_region == mod->init_region, trim exception
274 /* Additional bytes needed in front of individual sections */
275 unsigned int arch_mod_section_prepend(struct module *mod,
276 unsigned int section)
278 /* size needed for all stubs of this section (including
279 * one additional for correct alignment of the stubs) */
280 return (mod->arch.section[section].stub_entries + 1)
281 * sizeof(struct stub_entry);
285 int module_frob_arch_sections(CONST Elf_Ehdr *hdr,
286 CONST Elf_Shdr *sechdrs,
287 CONST char *secstrings,
290 unsigned long gots = 0, fdescs = 0, len;
293 len = hdr->e_shnum * sizeof(me->arch.section[0]);
294 me->arch.section = kzalloc(len, GFP_KERNEL);
295 if (!me->arch.section)
298 for (i = 1; i < hdr->e_shnum; i++) {
299 const Elf_Rela *rels = (void *)sechdrs[i].sh_addr;
300 unsigned long nrels = sechdrs[i].sh_size / sizeof(*rels);
301 unsigned int count, s;
303 if (strncmp(secstrings + sechdrs[i].sh_name,
304 ".PARISC.unwind", 14) == 0)
305 me->arch.unwind_section = i;
307 if (sechdrs[i].sh_type != SHT_RELA)
310 /* some of these are not relevant for 32-bit/64-bit
311 * we leave them here to make the code common. the
312 * compiler will do its thing and optimize out the
313 * stuff we don't need
315 gots += count_gots(rels, nrels);
316 fdescs += count_fdescs(rels, nrels);
318 /* XXX: By sorting the relocs and finding duplicate entries
319 * we could reduce the number of necessary stubs and save
321 count = count_stubs(rels, nrels);
325 /* so we need relocation stubs. reserve necessary memory. */
326 /* sh_info gives the section for which we need to add stubs. */
327 s = sechdrs[i].sh_info;
329 /* each code section should only have one relocation section */
330 WARN_ON(me->arch.section[s].stub_entries);
332 /* store number of stubs we need for this section */
333 me->arch.section[s].stub_entries += count;
336 /* align things a bit */
337 me->core_size = ALIGN(me->core_size, 16);
338 me->arch.got_offset = me->core_size;
339 me->core_size += gots * sizeof(struct got_entry);
341 me->core_size = ALIGN(me->core_size, 16);
342 me->arch.fdesc_offset = me->core_size;
343 me->core_size += fdescs * sizeof(Elf_Fdesc);
345 me->arch.got_max = gots;
346 me->arch.fdesc_max = fdescs;
352 static Elf64_Word get_got(struct module *me, unsigned long value, long addend)
355 struct got_entry *got;
361 got = me->module_core + me->arch.got_offset;
362 for (i = 0; got[i].addr; i++)
363 if (got[i].addr == value)
366 BUG_ON(++me->arch.got_count > me->arch.got_max);
370 DEBUGP("GOT ENTRY %d[%x] val %lx\n", i, i*sizeof(struct got_entry),
372 return i * sizeof(struct got_entry);
374 #endif /* CONFIG_64BIT */
377 static Elf_Addr get_fdesc(struct module *me, unsigned long value)
379 Elf_Fdesc *fdesc = me->module_core + me->arch.fdesc_offset;
382 printk(KERN_ERR "%s: zero OPD requested!\n", me->name);
386 /* Look for existing fdesc entry. */
387 while (fdesc->addr) {
388 if (fdesc->addr == value)
389 return (Elf_Addr)fdesc;
393 BUG_ON(++me->arch.fdesc_count > me->arch.fdesc_max);
397 fdesc->gp = (Elf_Addr)me->module_core + me->arch.got_offset;
398 return (Elf_Addr)fdesc;
400 #endif /* CONFIG_64BIT */
408 static Elf_Addr get_stub(struct module *me, unsigned long value, long addend,
409 enum elf_stub_type stub_type, Elf_Addr loc0, unsigned int targetsec)
411 struct stub_entry *stub;
413 /* initialize stub_offset to point in front of the section */
414 if (!me->arch.section[targetsec].stub_offset) {
415 loc0 -= (me->arch.section[targetsec].stub_entries + 1) *
416 sizeof(struct stub_entry);
417 /* get correct alignment for the stubs */
418 loc0 = ALIGN(loc0, sizeof(struct stub_entry));
419 me->arch.section[targetsec].stub_offset = loc0;
422 /* get address of stub entry */
423 stub = (void *) me->arch.section[targetsec].stub_offset;
424 me->arch.section[targetsec].stub_offset += sizeof(struct stub_entry);
426 /* do not write outside available stub area */
427 BUG_ON(0 == me->arch.section[targetsec].stub_entries--);
431 /* for 32-bit the stub looks like this:
433 * be,n R'XXX(%sr4,%r1)
435 //value = *(unsigned long *)((value + addend) & ~3); /* why? */
437 stub->insns[0] = 0x20200000; /* ldil L'XXX,%r1 */
438 stub->insns[1] = 0xe0202002; /* be,n R'XXX(%sr4,%r1) */
440 stub->insns[0] |= reassemble_21(lrsel(value, addend));
441 stub->insns[1] |= reassemble_17(rrsel(value, addend) / 4);
444 /* for 64-bit we have three kinds of stubs:
445 * for normal function calls:
457 * for direct branches (jumps between different section of the
465 stub->insns[0] = 0x537b0000; /* ldd 0(%dp),%dp */
466 stub->insns[1] = 0x53610020; /* ldd 10(%dp),%r1 */
467 stub->insns[2] = 0xe820d000; /* bve (%r1) */
468 stub->insns[3] = 0x537b0030; /* ldd 18(%dp),%dp */
470 stub->insns[0] |= reassemble_14(get_got(me, value, addend) & 0x3fff);
473 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
474 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
475 stub->insns[2] = 0x50210020; /* ldd 10(%r1),%r1 */
476 stub->insns[3] = 0xe820d002; /* bve,n (%r1) */
478 stub->insns[0] |= reassemble_21(lrsel(value, addend));
479 stub->insns[1] |= reassemble_14(rrsel(value, addend));
481 case ELF_STUB_DIRECT:
482 stub->insns[0] = 0x20200000; /* ldil 0,%r1 */
483 stub->insns[1] = 0x34210000; /* ldo 0(%r1), %r1 */
484 stub->insns[2] = 0xe820d002; /* bve,n (%r1) */
486 stub->insns[0] |= reassemble_21(lrsel(value, addend));
487 stub->insns[1] |= reassemble_14(rrsel(value, addend));
493 return (Elf_Addr)stub;
496 int apply_relocate(Elf_Shdr *sechdrs,
498 unsigned int symindex,
502 /* parisc should not need this ... */
503 printk(KERN_ERR "module %s: RELOCATION unsupported\n",
509 int apply_relocate_add(Elf_Shdr *sechdrs,
511 unsigned int symindex,
516 Elf32_Rela *rel = (void *)sechdrs[relsec].sh_addr;
523 unsigned int targetsec = sechdrs[relsec].sh_info;
524 //unsigned long dp = (unsigned long)$global$;
525 register unsigned long dp asm ("r27");
527 DEBUGP("Applying relocate section %u to %u\n", relsec,
529 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
530 /* This is where to make the change */
531 loc = (void *)sechdrs[targetsec].sh_addr
533 /* This is the start of the target section */
534 loc0 = sechdrs[targetsec].sh_addr;
535 /* This is the symbol it is referring to */
536 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
537 + ELF32_R_SYM(rel[i].r_info);
538 if (!sym->st_value) {
539 printk(KERN_WARNING "%s: Unknown symbol %s\n",
540 me->name, strtab + sym->st_name);
543 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
544 dot = (Elf32_Addr)loc & ~0x03;
547 addend = rel[i].r_addend;
550 #define r(t) ELF32_R_TYPE(rel[i].r_info)==t ? #t :
551 DEBUGP("Symbol %s loc 0x%x val 0x%x addend 0x%x: %s\n",
552 strtab + sym->st_name,
553 (uint32_t)loc, val, addend,
567 switch (ELF32_R_TYPE(rel[i].r_info)) {
568 case R_PARISC_PLABEL32:
569 /* 32-bit function address */
570 /* no function descriptors... */
571 *loc = fsel(val, addend);
574 /* direct 32-bit ref */
575 *loc = fsel(val, addend);
577 case R_PARISC_DIR21L:
578 /* left 21 bits of effective address */
579 val = lrsel(val, addend);
580 *loc = mask(*loc, 21) | reassemble_21(val);
582 case R_PARISC_DIR14R:
583 /* right 14 bits of effective address */
584 val = rrsel(val, addend);
585 *loc = mask(*loc, 14) | reassemble_14(val);
587 case R_PARISC_SEGREL32:
588 /* 32-bit segment relative address */
589 /* See note about special handling of SEGREL32 at
590 * the beginning of this file.
592 *loc = fsel(val, addend);
594 case R_PARISC_DPREL21L:
595 /* left 21 bit of relative address */
596 val = lrsel(val - dp, addend);
597 *loc = mask(*loc, 21) | reassemble_21(val);
599 case R_PARISC_DPREL14R:
600 /* right 14 bit of relative address */
601 val = rrsel(val - dp, addend);
602 *loc = mask(*loc, 14) | reassemble_14(val);
604 case R_PARISC_PCREL17F:
605 /* 17-bit PC relative address */
606 /* calculate direct call offset */
608 val = (val - dot - 8)/4;
609 if (!RELOC_REACHABLE(val, 17)) {
610 /* direct distance too far, create
611 * stub entry instead */
612 val = get_stub(me, sym->st_value, addend,
613 ELF_STUB_DIRECT, loc0, targetsec);
614 val = (val - dot - 8)/4;
615 CHECK_RELOC(val, 17);
617 *loc = (*loc & ~0x1f1ffd) | reassemble_17(val);
619 case R_PARISC_PCREL22F:
620 /* 22-bit PC relative address; only defined for pa20 */
621 /* calculate direct call offset */
623 val = (val - dot - 8)/4;
624 if (!RELOC_REACHABLE(val, 22)) {
625 /* direct distance too far, create
626 * stub entry instead */
627 val = get_stub(me, sym->st_value, addend,
628 ELF_STUB_DIRECT, loc0, targetsec);
629 val = (val - dot - 8)/4;
630 CHECK_RELOC(val, 22);
632 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
636 printk(KERN_ERR "module %s: Unknown relocation: %u\n",
637 me->name, ELF32_R_TYPE(rel[i].r_info));
646 int apply_relocate_add(Elf_Shdr *sechdrs,
648 unsigned int symindex,
653 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
661 unsigned int targetsec = sechdrs[relsec].sh_info;
663 DEBUGP("Applying relocate section %u to %u\n", relsec,
665 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
666 /* This is where to make the change */
667 loc = (void *)sechdrs[targetsec].sh_addr
669 /* This is the start of the target section */
670 loc0 = sechdrs[targetsec].sh_addr;
671 /* This is the symbol it is referring to */
672 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
673 + ELF64_R_SYM(rel[i].r_info);
674 if (!sym->st_value) {
675 printk(KERN_WARNING "%s: Unknown symbol %s\n",
676 me->name, strtab + sym->st_name);
679 //dot = (sechdrs[relsec].sh_addr + rel->r_offset) & ~0x03;
680 dot = (Elf64_Addr)loc & ~0x03;
681 loc64 = (Elf64_Xword *)loc;
684 addend = rel[i].r_addend;
687 #define r(t) ELF64_R_TYPE(rel[i].r_info)==t ? #t :
688 printk("Symbol %s loc %p val 0x%Lx addend 0x%Lx: %s\n",
689 strtab + sym->st_name,
701 switch (ELF64_R_TYPE(rel[i].r_info)) {
702 case R_PARISC_LTOFF21L:
703 /* LT-relative; left 21 bits */
704 val = get_got(me, val, addend);
705 DEBUGP("LTOFF21L Symbol %s loc %p val %lx\n",
706 strtab + sym->st_name,
709 *loc = mask(*loc, 21) | reassemble_21(val);
711 case R_PARISC_LTOFF14R:
712 /* L(ltoff(val+addend)) */
713 /* LT-relative; right 14 bits */
714 val = get_got(me, val, addend);
716 DEBUGP("LTOFF14R Symbol %s loc %p val %lx\n",
717 strtab + sym->st_name,
719 *loc = mask(*loc, 14) | reassemble_14(val);
721 case R_PARISC_PCREL22F:
722 /* PC-relative; 22 bits */
723 DEBUGP("PCREL22F Symbol %s loc %p val %lx\n",
724 strtab + sym->st_name,
727 /* can we reach it locally? */
728 if (in_local(me, (void *)val)) {
729 /* this is the case where the symbol is local
730 * to the module, but in a different section,
731 * so stub the jump in case it's more than 22
733 val = (val - dot - 8)/4;
734 if (!RELOC_REACHABLE(val, 22)) {
735 /* direct distance too far, create
736 * stub entry instead */
737 val = get_stub(me, sym->st_value,
738 addend, ELF_STUB_DIRECT,
741 /* Ok, we can reach it directly. */
747 if (strncmp(strtab + sym->st_name, "$$", 2)
749 val = get_stub(me, val, addend, ELF_STUB_MILLI,
752 val = get_stub(me, val, addend, ELF_STUB_GOT,
755 DEBUGP("STUB FOR %s loc %lx, val %lx+%lx at %lx\n",
756 strtab + sym->st_name, loc, sym->st_value,
758 val = (val - dot - 8)/4;
759 CHECK_RELOC(val, 22);
760 *loc = (*loc & ~0x3ff1ffd) | reassemble_22(val);
763 /* 64-bit effective address */
764 *loc64 = val + addend;
766 case R_PARISC_SEGREL32:
767 /* 32-bit segment relative address */
768 /* See note about special handling of SEGREL32 at
769 * the beginning of this file.
771 *loc = fsel(val, addend);
773 case R_PARISC_FPTR64:
774 /* 64-bit function address */
775 if(in_local(me, (void *)(val + addend))) {
776 *loc64 = get_fdesc(me, val+addend);
777 DEBUGP("FDESC for %s at %p points to %lx\n",
778 strtab + sym->st_name, *loc64,
779 ((Elf_Fdesc *)*loc64)->addr);
781 /* if the symbol is not local to this
782 * module then val+addend is a pointer
783 * to the function descriptor */
784 DEBUGP("Non local FPTR64 Symbol %s loc %p val %lx\n",
785 strtab + sym->st_name,
787 *loc64 = val + addend;
792 printk(KERN_ERR "module %s: Unknown relocation: %Lu\n",
793 me->name, ELF64_R_TYPE(rel[i].r_info));
802 register_unwind_table(struct module *me,
803 const Elf_Shdr *sechdrs)
805 unsigned char *table, *end;
808 if (!me->arch.unwind_section)
811 table = (unsigned char *)sechdrs[me->arch.unwind_section].sh_addr;
812 end = table + sechdrs[me->arch.unwind_section].sh_size;
813 gp = (Elf_Addr)me->module_core + me->arch.got_offset;
815 DEBUGP("register_unwind_table(), sect = %d at 0x%p - 0x%p (gp=0x%lx)\n",
816 me->arch.unwind_section, table, end, gp);
817 me->arch.unwind = unwind_table_add(me->name, 0, gp, table, end);
821 deregister_unwind_table(struct module *me)
824 unwind_table_remove(me->arch.unwind);
827 int module_finalize(const Elf_Ehdr *hdr,
828 const Elf_Shdr *sechdrs,
833 const char *strtab = NULL;
834 Elf_Sym *newptr, *oldptr;
835 Elf_Shdr *symhdr = NULL;
840 entry = (Elf_Fdesc *)me->init;
841 printk("FINALIZE, ->init FPTR is %p, GP %lx ADDR %lx\n", entry,
842 entry->gp, entry->addr);
843 addr = (u32 *)entry->addr;
844 printk("INSNS: %x %x %x %x\n",
845 addr[0], addr[1], addr[2], addr[3]);
846 printk("got entries used %ld, gots max %ld\n"
847 "fdescs used %ld, fdescs max %ld\n",
848 me->arch.got_count, me->arch.got_max,
849 me->arch.fdesc_count, me->arch.fdesc_max);
852 register_unwind_table(me, sechdrs);
854 /* haven't filled in me->symtab yet, so have to find it
856 for (i = 1; i < hdr->e_shnum; i++) {
857 if(sechdrs[i].sh_type == SHT_SYMTAB
858 && (sechdrs[i].sh_type & SHF_ALLOC)) {
859 int strindex = sechdrs[i].sh_link;
861 * The cast is to drop the const from
862 * the sechdrs pointer */
863 symhdr = (Elf_Shdr *)&sechdrs[i];
864 strtab = (char *)sechdrs[strindex].sh_addr;
869 DEBUGP("module %s: strtab %p, symhdr %p\n",
870 me->name, strtab, symhdr);
872 if(me->arch.got_count > MAX_GOTS) {
873 printk(KERN_ERR "%s: Global Offset Table overflow (used %ld, allowed %d)\n",
874 me->name, me->arch.got_count, MAX_GOTS);
878 kfree(me->arch.section);
879 me->arch.section = NULL;
881 /* no symbol table */
885 oldptr = (void *)symhdr->sh_addr;
886 newptr = oldptr + 1; /* we start counting at 1 */
887 nsyms = symhdr->sh_size / sizeof(Elf_Sym);
888 DEBUGP("OLD num_symtab %lu\n", nsyms);
890 for (i = 1; i < nsyms; i++) {
891 oldptr++; /* note, count starts at 1 so preincrement */
892 if(strncmp(strtab + oldptr->st_name,
902 nsyms = newptr - (Elf_Sym *)symhdr->sh_addr;
903 DEBUGP("NEW num_symtab %lu\n", nsyms);
904 symhdr->sh_size = nsyms * sizeof(Elf_Sym);
905 return module_bug_finalize(hdr, sechdrs, me);
908 void module_arch_cleanup(struct module *mod)
910 deregister_unwind_table(mod);
911 module_bug_cleanup(mod);