2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2005-2009, 2010 Cavium Networks
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-sli-defs.h>
19 #include <asm/octeon/cvmx-pexp-defs.h>
20 #include <asm/octeon/pci-octeon.h>
23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
26 static u64 msi_free_irq_bitmask[4];
29 * Each bit in msi_multiple_irq_bitmask tells that the device using
30 * this bit in msi_free_irq_bitmask is also using the next bit. This
31 * is used so we can disable all of the MSI interrupts when a device
34 static u64 msi_multiple_irq_bitmask[4];
37 * This lock controls updates to msi_free_irq_bitmask and
38 * msi_multiple_irq_bitmask.
40 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock);
43 * Number of MSI IRQs used. This variable is set up in
44 * the module init time.
46 static int msi_irq_size;
49 * Called when a driver request MSI interrupts instead of the
50 * legacy INT A-D. This routine will allocate multiple interrupts
51 * for MSI devices that support them. A device can override this by
52 * programming the MSI control bits [6:4] before calling
55 * @dev: Device requesting MSI interrupts
56 * @desc: MSI descriptor
58 * Returns 0 on success.
60 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
64 int configured_private_bits;
65 int request_private_bits;
71 if (desc->pci.msi_attrib.is_msix)
75 * Read the MSI config to figure out how many IRQs this device
76 * wants. Most devices only want 1, which will give
77 * configured_private_bits and request_private_bits equal 0.
79 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
82 * If the number of private bits has been configured then use
83 * that value instead of the requested number. This gives the
84 * driver the chance to override the number of interrupts
85 * before calling pci_enable_msi().
87 configured_private_bits = (control & PCI_MSI_FLAGS_QSIZE) >> 4;
88 if (configured_private_bits == 0) {
89 /* Nothing is configured, so use the hardware requested size */
90 request_private_bits = (control & PCI_MSI_FLAGS_QMASK) >> 1;
93 * Use the number of configured bits, assuming the
94 * driver wanted to override the hardware request
97 request_private_bits = configured_private_bits;
101 * The PCI 2.3 spec mandates that there are at most 32
102 * interrupts. If this device asks for more, only give it one.
104 if (request_private_bits > 5)
105 request_private_bits = 0;
109 * The IRQs have to be aligned on a power of two based on the
110 * number being requested.
112 irq_step = 1 << request_private_bits;
114 /* Mask with one bit for each IRQ */
115 search_mask = (1 << irq_step) - 1;
118 * We're going to search msi_free_irq_bitmask_lock for zero
119 * bits. This represents an MSI interrupt number that isn't in
122 spin_lock(&msi_free_irq_bitmask_lock);
123 for (index = 0; index < msi_irq_size/64; index++) {
124 for (irq = 0; irq < 64; irq += irq_step) {
125 if ((msi_free_irq_bitmask[index] & (search_mask << irq)) == 0) {
126 msi_free_irq_bitmask[index] |= search_mask << irq;
127 msi_multiple_irq_bitmask[index] |= (search_mask >> 1) << irq;
128 goto msi_irq_allocated;
133 spin_unlock(&msi_free_irq_bitmask_lock);
135 /* Make sure the search for available interrupts didn't fail */
137 if (request_private_bits) {
138 pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
139 1 << request_private_bits);
140 request_private_bits = 0;
143 panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
146 /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
148 irq += OCTEON_IRQ_MSI_BIT0;
150 switch (octeon_dma_bar_type) {
151 case OCTEON_DMA_BAR_TYPE_SMALL:
152 /* When not using big bar, Bar 0 is based at 128MB */
154 ((128ul << 20) + CVMX_PCI_MSI_RCV) & 0xffffffff;
155 msg.address_hi = ((128ul << 20) + CVMX_PCI_MSI_RCV) >> 32;
157 case OCTEON_DMA_BAR_TYPE_BIG:
158 /* When using big bar, Bar 0 is based at 0 */
159 msg.address_lo = (0 + CVMX_PCI_MSI_RCV) & 0xffffffff;
160 msg.address_hi = (0 + CVMX_PCI_MSI_RCV) >> 32;
162 case OCTEON_DMA_BAR_TYPE_PCIE:
163 /* When using PCIe, Bar 0 is based at 0 */
164 /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
165 msg.address_lo = (0 + CVMX_NPEI_PCIE_MSI_RCV) & 0xffffffff;
166 msg.address_hi = (0 + CVMX_NPEI_PCIE_MSI_RCV) >> 32;
168 case OCTEON_DMA_BAR_TYPE_PCIE2:
169 /* When using PCIe2, Bar 0 is based at 0 */
170 msg.address_lo = (0 + CVMX_SLI_PCIE_MSI_RCV) & 0xffffffff;
171 msg.address_hi = (0 + CVMX_SLI_PCIE_MSI_RCV) >> 32;
174 panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
176 msg.data = irq - OCTEON_IRQ_MSI_BIT0;
178 /* Update the number of IRQs the device has available to it */
179 control &= ~PCI_MSI_FLAGS_QSIZE;
180 control |= request_private_bits << 4;
181 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
183 irq_set_msi_desc(irq, desc);
184 pci_write_msi_msg(irq, &msg);
189 * Called when a device no longer needs its MSI interrupts. All
190 * MSI interrupts for the device are freed.
192 * @irq: The devices first irq number. There may be multple in sequence.
194 void arch_teardown_msi_irq(unsigned int irq)
201 if ((irq < OCTEON_IRQ_MSI_BIT0)
202 || (irq > msi_irq_size + OCTEON_IRQ_MSI_BIT0))
203 panic("arch_teardown_msi_irq: Attempted to teardown illegal "
204 "MSI interrupt (%d)", irq);
206 irq -= OCTEON_IRQ_MSI_BIT0;
211 * Count the number of IRQs we need to free by looking at the
212 * msi_multiple_irq_bitmask. Each bit set means that the next
213 * IRQ is also owned by this device.
216 while ((irq0 + number_irqs < 64) &&
217 (msi_multiple_irq_bitmask[index]
218 & (1ull << (irq0 + number_irqs))))
221 /* Mask with one bit for each IRQ */
222 bitmask = (1 << number_irqs) - 1;
223 /* Shift the mask to the correct bit location */
225 if ((msi_free_irq_bitmask[index] & bitmask) != bitmask)
226 panic("arch_teardown_msi_irq: Attempted to teardown MSI "
227 "interrupt (%d) not in use", irq);
229 /* Checks are done, update the in use bitmask */
230 spin_lock(&msi_free_irq_bitmask_lock);
231 msi_free_irq_bitmask[index] &= ~bitmask;
232 msi_multiple_irq_bitmask[index] &= ~bitmask;
233 spin_unlock(&msi_free_irq_bitmask_lock);
236 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock);
238 static u64 msi_rcv_reg[4];
239 static u64 mis_ena_reg[4];
241 static void octeon_irq_msi_enable_pcie(struct irq_data *data)
245 int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
246 int irq_index = msi_number >> 6;
247 int irq_bit = msi_number & 0x3f;
249 raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
250 en = cvmx_read_csr(mis_ena_reg[irq_index]);
251 en |= 1ull << irq_bit;
252 cvmx_write_csr(mis_ena_reg[irq_index], en);
253 cvmx_read_csr(mis_ena_reg[irq_index]);
254 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
257 static void octeon_irq_msi_disable_pcie(struct irq_data *data)
261 int msi_number = data->irq - OCTEON_IRQ_MSI_BIT0;
262 int irq_index = msi_number >> 6;
263 int irq_bit = msi_number & 0x3f;
265 raw_spin_lock_irqsave(&octeon_irq_msi_lock, flags);
266 en = cvmx_read_csr(mis_ena_reg[irq_index]);
267 en &= ~(1ull << irq_bit);
268 cvmx_write_csr(mis_ena_reg[irq_index], en);
269 cvmx_read_csr(mis_ena_reg[irq_index]);
270 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
273 static struct irq_chip octeon_irq_chip_msi_pcie = {
275 .irq_enable = octeon_irq_msi_enable_pcie,
276 .irq_disable = octeon_irq_msi_disable_pcie,
279 static void octeon_irq_msi_enable_pci(struct irq_data *data)
282 * Octeon PCI doesn't have the ability to mask/unmask MSI
283 * interrupts individually. Instead of masking/unmasking them
284 * in groups of 16, we simple assume MSI devices are well
285 * behaved. MSI interrupts are always enable and the ACK is
286 * assumed to be enough
290 static void octeon_irq_msi_disable_pci(struct irq_data *data)
292 /* See comment in enable */
295 static struct irq_chip octeon_irq_chip_msi_pci = {
297 .irq_enable = octeon_irq_msi_enable_pci,
298 .irq_disable = octeon_irq_msi_disable_pci,
302 * Called by the interrupt handling code when an MSI interrupt
305 static irqreturn_t __octeon_msi_do_interrupt(int index, u64 msi_bits)
310 bit = fls64(msi_bits);
313 /* Acknowledge it first. */
314 cvmx_write_csr(msi_rcv_reg[index], 1ull << bit);
316 irq = bit + OCTEON_IRQ_MSI_BIT0 + 64 * index;
323 #define OCTEON_MSI_INT_HANDLER_X(x) \
324 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \
326 u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \
327 return __octeon_msi_do_interrupt((x), msi_bits); \
331 * Create octeon_msi_interrupt{0-3} function body
333 OCTEON_MSI_INT_HANDLER_X(0);
334 OCTEON_MSI_INT_HANDLER_X(1);
335 OCTEON_MSI_INT_HANDLER_X(2);
336 OCTEON_MSI_INT_HANDLER_X(3);
339 * Initializes the MSI interrupt handling code
341 int __init octeon_msi_initialize(void)
344 struct irq_chip *msi;
346 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_INVALID) {
348 } else if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_PCIE) {
349 msi_rcv_reg[0] = CVMX_PEXP_NPEI_MSI_RCV0;
350 msi_rcv_reg[1] = CVMX_PEXP_NPEI_MSI_RCV1;
351 msi_rcv_reg[2] = CVMX_PEXP_NPEI_MSI_RCV2;
352 msi_rcv_reg[3] = CVMX_PEXP_NPEI_MSI_RCV3;
353 mis_ena_reg[0] = CVMX_PEXP_NPEI_MSI_ENB0;
354 mis_ena_reg[1] = CVMX_PEXP_NPEI_MSI_ENB1;
355 mis_ena_reg[2] = CVMX_PEXP_NPEI_MSI_ENB2;
356 mis_ena_reg[3] = CVMX_PEXP_NPEI_MSI_ENB3;
357 msi = &octeon_irq_chip_msi_pcie;
359 msi_rcv_reg[0] = CVMX_NPI_NPI_MSI_RCV;
360 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
361 msi_rcv_reg[1] = INVALID_GENERATE_ADE;
362 msi_rcv_reg[2] = INVALID_GENERATE_ADE;
363 msi_rcv_reg[3] = INVALID_GENERATE_ADE;
364 mis_ena_reg[0] = INVALID_GENERATE_ADE;
365 mis_ena_reg[1] = INVALID_GENERATE_ADE;
366 mis_ena_reg[2] = INVALID_GENERATE_ADE;
367 mis_ena_reg[3] = INVALID_GENERATE_ADE;
368 msi = &octeon_irq_chip_msi_pci;
371 for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_LAST; irq++)
372 irq_set_chip_and_handler(irq, msi, handle_simple_irq);
374 if (octeon_has_feature(OCTEON_FEATURE_PCIE)) {
375 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
376 0, "MSI[0:63]", octeon_msi_interrupt0))
377 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
379 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt1,
380 0, "MSI[64:127]", octeon_msi_interrupt1))
381 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
383 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt2,
384 0, "MSI[127:191]", octeon_msi_interrupt2))
385 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
387 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt3,
388 0, "MSI[192:255]", octeon_msi_interrupt3))
389 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
392 } else if (octeon_is_pci_host()) {
393 if (request_irq(OCTEON_IRQ_PCI_MSI0, octeon_msi_interrupt0,
394 0, "MSI[0:15]", octeon_msi_interrupt0))
395 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
397 if (request_irq(OCTEON_IRQ_PCI_MSI1, octeon_msi_interrupt0,
398 0, "MSI[16:31]", octeon_msi_interrupt0))
399 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
401 if (request_irq(OCTEON_IRQ_PCI_MSI2, octeon_msi_interrupt0,
402 0, "MSI[32:47]", octeon_msi_interrupt0))
403 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
405 if (request_irq(OCTEON_IRQ_PCI_MSI3, octeon_msi_interrupt0,
406 0, "MSI[48:63]", octeon_msi_interrupt0))
407 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
412 subsys_initcall(octeon_msi_initialize);