2 * Just-In-Time compiler for BPF filters on MIPS
4 * Copyright (c) 2014 Imagination Technologies Ltd.
5 * Author: Markos Chandras <markos.chandras@imgtec.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
12 #include <linux/bitops.h>
13 #include <linux/compiler.h>
14 #include <linux/errno.h>
15 #include <linux/filter.h>
16 #include <linux/if_vlan.h>
17 #include <linux/moduleloader.h>
18 #include <linux/netdevice.h>
19 #include <linux/string.h>
20 #include <linux/slab.h>
21 #include <linux/types.h>
23 #include <asm/bitops.h>
24 #include <asm/cacheflush.h>
25 #include <asm/cpu-features.h>
31 * r_skb_hl SKB header length
32 * r_data SKB data pointer
38 * r_skb_len SKB length
40 * On entry (*bpf_func)(*skb, *filter)
41 * a0 = MIPS_R_A0 = skb;
42 * a1 = MIPS_R_A1 = filter;
54 * saved reg 0 <-- r_sp
59 * <--------------------- len ------------------------>
60 * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------>
61 * ----------------------------------------------------
63 * ----------------------------------------------------
66 #define ptr typeof(unsigned long)
68 #define SCRATCH_OFF(k) (4 * (k))
71 #define SEEN_CALL (1 << BPF_MEMWORDS)
72 #define SEEN_SREG_SFT (BPF_MEMWORDS + 1)
73 #define SEEN_SREG_BASE (1 << SEEN_SREG_SFT)
74 #define SEEN_SREG(x) (SEEN_SREG_BASE << (x))
75 #define SEEN_OFF SEEN_SREG(2)
76 #define SEEN_A SEEN_SREG(3)
77 #define SEEN_X SEEN_SREG(4)
78 #define SEEN_SKB SEEN_SREG(5)
79 #define SEEN_MEM SEEN_SREG(6)
80 /* SEEN_SK_DATA also implies skb_hl an skb_len */
81 #define SEEN_SKB_DATA (SEEN_SREG(7) | SEEN_SREG(1) | SEEN_SREG(0))
83 /* Arguments used by JIT */
84 #define ARGS_USED_BY_JIT 2 /* only applicable to 64-bit */
86 #define SBIT(x) (1 << (x)) /* Signed version of BIT() */
89 * struct jit_ctx - JIT context
91 * @prologue_bytes: Number of bytes for prologue
92 * @idx: Instruction index
94 * @offsets: Instruction offsets
95 * @target: Memory location for the compiled filter
98 const struct bpf_prog *skf;
99 unsigned int prologue_bytes;
107 static inline int optimize_div(u32 *k)
109 /* power of 2 divides can be implemented with right shift */
110 if (!(*k & (*k-1))) {
118 static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx);
120 /* Simply emit the instruction if the JIT memory space has been allocated */
121 #define emit_instr(ctx, func, ...) \
123 if ((ctx)->target != NULL) { \
124 u32 *p = &(ctx)->target[ctx->idx]; \
125 uasm_i_##func(&p, ##__VA_ARGS__); \
131 * Similar to emit_instr but it must be used when we need to emit
132 * 32-bit or 64-bit instructions
134 #define emit_long_instr(ctx, func, ...) \
136 if ((ctx)->target != NULL) { \
137 u32 *p = &(ctx)->target[ctx->idx]; \
138 UASM_i_##func(&p, ##__VA_ARGS__); \
143 /* Determine if immediate is within the 16-bit signed range */
144 static inline bool is_range16(s32 imm)
146 return !(imm >= SBIT(15) || imm < -SBIT(15));
149 static inline void emit_addu(unsigned int dst, unsigned int src1,
150 unsigned int src2, struct jit_ctx *ctx)
152 emit_instr(ctx, addu, dst, src1, src2);
155 static inline void emit_nop(struct jit_ctx *ctx)
157 emit_instr(ctx, nop);
160 /* Load a u32 immediate to a register */
161 static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx)
163 if (ctx->target != NULL) {
164 /* addiu can only handle s16 */
165 if (!is_range16(imm)) {
166 u32 *p = &ctx->target[ctx->idx];
167 uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16);
168 p = &ctx->target[ctx->idx + 1];
169 uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff);
171 u32 *p = &ctx->target[ctx->idx];
172 uasm_i_addiu(&p, dst, r_zero, imm);
177 if (!is_range16(imm))
181 static inline void emit_or(unsigned int dst, unsigned int src1,
182 unsigned int src2, struct jit_ctx *ctx)
184 emit_instr(ctx, or, dst, src1, src2);
187 static inline void emit_ori(unsigned int dst, unsigned src, u32 imm,
190 if (imm >= BIT(16)) {
191 emit_load_imm(r_tmp, imm, ctx);
192 emit_or(dst, src, r_tmp, ctx);
194 emit_instr(ctx, ori, dst, src, imm);
198 static inline void emit_daddiu(unsigned int dst, unsigned int src,
199 int imm, struct jit_ctx *ctx)
202 * Only used for stack, so the imm is relatively small
203 * and it fits in 15-bits
205 emit_instr(ctx, daddiu, dst, src, imm);
208 static inline void emit_addiu(unsigned int dst, unsigned int src,
209 u32 imm, struct jit_ctx *ctx)
211 if (!is_range16(imm)) {
212 emit_load_imm(r_tmp, imm, ctx);
213 emit_addu(dst, r_tmp, src, ctx);
215 emit_instr(ctx, addiu, dst, src, imm);
219 static inline void emit_and(unsigned int dst, unsigned int src1,
220 unsigned int src2, struct jit_ctx *ctx)
222 emit_instr(ctx, and, dst, src1, src2);
225 static inline void emit_andi(unsigned int dst, unsigned int src,
226 u32 imm, struct jit_ctx *ctx)
228 /* If imm does not fit in u16 then load it to register */
229 if (imm >= BIT(16)) {
230 emit_load_imm(r_tmp, imm, ctx);
231 emit_and(dst, src, r_tmp, ctx);
233 emit_instr(ctx, andi, dst, src, imm);
237 static inline void emit_xor(unsigned int dst, unsigned int src1,
238 unsigned int src2, struct jit_ctx *ctx)
240 emit_instr(ctx, xor, dst, src1, src2);
243 static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx)
245 /* If imm does not fit in u16 then load it to register */
246 if (imm >= BIT(16)) {
247 emit_load_imm(r_tmp, imm, ctx);
248 emit_xor(dst, src, r_tmp, ctx);
250 emit_instr(ctx, xori, dst, src, imm);
254 static inline void emit_stack_offset(int offset, struct jit_ctx *ctx)
256 emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset);
259 static inline void emit_subu(unsigned int dst, unsigned int src1,
260 unsigned int src2, struct jit_ctx *ctx)
262 emit_instr(ctx, subu, dst, src1, src2);
265 static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx)
267 emit_subu(reg, r_zero, reg, ctx);
270 static inline void emit_sllv(unsigned int dst, unsigned int src,
271 unsigned int sa, struct jit_ctx *ctx)
273 emit_instr(ctx, sllv, dst, src, sa);
276 static inline void emit_sll(unsigned int dst, unsigned int src,
277 unsigned int sa, struct jit_ctx *ctx)
279 /* sa is 5-bits long */
281 /* Shifting >= 32 results in zero */
282 emit_jit_reg_move(dst, r_zero, ctx);
284 emit_instr(ctx, sll, dst, src, sa);
287 static inline void emit_srlv(unsigned int dst, unsigned int src,
288 unsigned int sa, struct jit_ctx *ctx)
290 emit_instr(ctx, srlv, dst, src, sa);
293 static inline void emit_srl(unsigned int dst, unsigned int src,
294 unsigned int sa, struct jit_ctx *ctx)
296 /* sa is 5-bits long */
298 /* Shifting >= 32 results in zero */
299 emit_jit_reg_move(dst, r_zero, ctx);
301 emit_instr(ctx, srl, dst, src, sa);
304 static inline void emit_slt(unsigned int dst, unsigned int src1,
305 unsigned int src2, struct jit_ctx *ctx)
307 emit_instr(ctx, slt, dst, src1, src2);
310 static inline void emit_sltu(unsigned int dst, unsigned int src1,
311 unsigned int src2, struct jit_ctx *ctx)
313 emit_instr(ctx, sltu, dst, src1, src2);
316 static inline void emit_sltiu(unsigned dst, unsigned int src,
317 unsigned int imm, struct jit_ctx *ctx)
319 /* 16 bit immediate */
320 if (!is_range16((s32)imm)) {
321 emit_load_imm(r_tmp, imm, ctx);
322 emit_sltu(dst, src, r_tmp, ctx);
324 emit_instr(ctx, sltiu, dst, src, imm);
329 /* Store register on the stack */
330 static inline void emit_store_stack_reg(ptr reg, ptr base,
334 emit_long_instr(ctx, SW, reg, offset, base);
337 static inline void emit_store(ptr reg, ptr base, unsigned int offset,
340 emit_instr(ctx, sw, reg, offset, base);
343 static inline void emit_load_stack_reg(ptr reg, ptr base,
347 emit_long_instr(ctx, LW, reg, offset, base);
350 static inline void emit_load(unsigned int reg, unsigned int base,
351 unsigned int offset, struct jit_ctx *ctx)
353 emit_instr(ctx, lw, reg, offset, base);
356 static inline void emit_load_byte(unsigned int reg, unsigned int base,
357 unsigned int offset, struct jit_ctx *ctx)
359 emit_instr(ctx, lb, reg, offset, base);
362 static inline void emit_half_load(unsigned int reg, unsigned int base,
363 unsigned int offset, struct jit_ctx *ctx)
365 emit_instr(ctx, lh, reg, offset, base);
368 static inline void emit_half_load_unsigned(unsigned int reg, unsigned int base,
369 unsigned int offset, struct jit_ctx *ctx)
371 emit_instr(ctx, lhu, reg, offset, base);
374 static inline void emit_mul(unsigned int dst, unsigned int src1,
375 unsigned int src2, struct jit_ctx *ctx)
377 emit_instr(ctx, mul, dst, src1, src2);
380 static inline void emit_div(unsigned int dst, unsigned int src,
383 if (ctx->target != NULL) {
384 u32 *p = &ctx->target[ctx->idx];
385 uasm_i_divu(&p, dst, src);
386 p = &ctx->target[ctx->idx + 1];
387 uasm_i_mflo(&p, dst);
389 ctx->idx += 2; /* 2 insts */
392 static inline void emit_mod(unsigned int dst, unsigned int src,
395 if (ctx->target != NULL) {
396 u32 *p = &ctx->target[ctx->idx];
397 uasm_i_divu(&p, dst, src);
398 p = &ctx->target[ctx->idx + 1];
399 uasm_i_mfhi(&p, dst);
401 ctx->idx += 2; /* 2 insts */
404 static inline void emit_dsll(unsigned int dst, unsigned int src,
405 unsigned int sa, struct jit_ctx *ctx)
407 emit_instr(ctx, dsll, dst, src, sa);
410 static inline void emit_dsrl32(unsigned int dst, unsigned int src,
411 unsigned int sa, struct jit_ctx *ctx)
413 emit_instr(ctx, dsrl32, dst, src, sa);
416 static inline void emit_wsbh(unsigned int dst, unsigned int src,
419 emit_instr(ctx, wsbh, dst, src);
422 /* load pointer to register */
423 static inline void emit_load_ptr(unsigned int dst, unsigned int src,
424 int imm, struct jit_ctx *ctx)
426 /* src contains the base addr of the 32/64-pointer */
427 emit_long_instr(ctx, LW, dst, imm, src);
430 /* load a function pointer to register */
431 static inline void emit_load_func(unsigned int reg, ptr imm,
434 if (IS_ENABLED(CONFIG_64BIT)) {
435 /* At this point imm is always 64-bit */
436 emit_load_imm(r_tmp, (u64)imm >> 32, ctx);
437 emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
438 emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx);
439 emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
440 emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx);
442 emit_load_imm(reg, imm, ctx);
446 /* Move to real MIPS register */
447 static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
449 emit_long_instr(ctx, ADDU, dst, src, r_zero);
452 /* Move to JIT (32-bit) register */
453 static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
455 emit_addu(dst, src, r_zero, ctx);
458 /* Compute the immediate value for PC-relative branches. */
459 static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
461 if (ctx->target == NULL)
465 * We want a pc-relative branch. We only do forward branches
466 * so tgt is always after pc. tgt is the instruction offset
467 * we want to jump to.
470 * I: target_offset <- sign_extend(offset)
471 * I+1: PC += target_offset (delay slot)
473 * ctx->idx currently points to the branch instruction
474 * but the offset is added to the delay slot so we need
477 return ctx->offsets[tgt] -
478 (ctx->idx * 4 - ctx->prologue_bytes) - 4;
481 static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2,
482 unsigned int imm, struct jit_ctx *ctx)
484 if (ctx->target != NULL) {
485 u32 *p = &ctx->target[ctx->idx];
489 uasm_i_beq(&p, reg1, reg2, imm);
492 uasm_i_bne(&p, reg1, reg2, imm);
498 pr_warn("%s: Unhandled branch conditional: %d\n",
505 static inline void emit_b(unsigned int imm, struct jit_ctx *ctx)
507 emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx);
510 static inline void emit_jalr(unsigned int link, unsigned int reg,
513 emit_instr(ctx, jalr, link, reg);
516 static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx)
518 emit_instr(ctx, jr, reg);
521 static inline u16 align_sp(unsigned int num)
523 /* Double word alignment for 32-bit, quadword for 64-bit */
524 unsigned int align = IS_ENABLED(CONFIG_64BIT) ? 16 : 8;
525 num = (num + (align - 1)) & -align;
529 static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset)
531 int i = 0, real_off = 0;
532 u32 sflags, tmp_flags;
534 /* Adjust the stack pointer */
536 emit_stack_offset(-align_sp(offset), ctx);
538 tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
539 /* sflags is essentially a bitmap */
541 if ((sflags >> i) & 0x1) {
542 emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
550 /* save return address */
551 if (ctx->flags & SEEN_CALL) {
552 emit_store_stack_reg(r_ra, r_sp, real_off, ctx);
556 /* Setup r_M leaving the alignment gap if necessary */
557 if (ctx->flags & SEEN_MEM) {
558 if (real_off % (SZREG * 2))
560 emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off);
564 static void restore_bpf_jit_regs(struct jit_ctx *ctx,
568 u32 sflags, tmp_flags;
570 tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
571 /* sflags is a bitmap */
574 if ((sflags >> i) & 0x1) {
575 emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
583 /* restore return address */
584 if (ctx->flags & SEEN_CALL)
585 emit_load_stack_reg(r_ra, r_sp, real_off, ctx);
587 /* Restore the sp and discard the scrach memory */
589 emit_stack_offset(align_sp(offset), ctx);
592 static unsigned int get_stack_depth(struct jit_ctx *ctx)
597 /* How may s* regs do we need to preserved? */
598 sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * SZREG;
600 if (ctx->flags & SEEN_MEM)
601 sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */
603 if (ctx->flags & SEEN_CALL)
604 sp_off += SZREG; /* Space for our ra register */
609 static void build_prologue(struct jit_ctx *ctx)
613 /* Calculate the total offset for the stack pointer */
614 sp_off = get_stack_depth(ctx);
615 save_bpf_jit_regs(ctx, sp_off);
617 if (ctx->flags & SEEN_SKB)
618 emit_reg_move(r_skb, MIPS_R_A0, ctx);
620 if (ctx->flags & SEEN_SKB_DATA) {
621 /* Load packet length */
622 emit_load(r_skb_len, r_skb, offsetof(struct sk_buff, len),
624 emit_load(r_tmp, r_skb, offsetof(struct sk_buff, data_len),
626 /* Load the data pointer */
627 emit_load_ptr(r_skb_data, r_skb,
628 offsetof(struct sk_buff, data), ctx);
629 /* Load the header length */
630 emit_subu(r_skb_hl, r_skb_len, r_tmp, ctx);
633 if (ctx->flags & SEEN_X)
634 emit_jit_reg_move(r_X, r_zero, ctx);
637 * Do not leak kernel data to userspace, we only need to clear
638 * r_A if it is ever used. In fact if it is never used, we
639 * will not save/restore it, so clearing it in this case would
640 * corrupt the state of the caller.
642 if (bpf_needs_clear_a(&ctx->skf->insns[0]) &&
643 (ctx->flags & SEEN_A))
644 emit_jit_reg_move(r_A, r_zero, ctx);
647 static void build_epilogue(struct jit_ctx *ctx)
651 /* Calculate the total offset for the stack pointer */
653 sp_off = get_stack_depth(ctx);
654 restore_bpf_jit_regs(ctx, sp_off);
661 #define CHOOSE_LOAD_FUNC(K, func) \
662 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative : func) : \
665 static bool is_bad_offset(int b_off)
667 return b_off > 0x1ffff || b_off < -0x20000;
670 static int build_body(struct jit_ctx *ctx)
672 const struct bpf_prog *prog = ctx->skf;
673 const struct sock_filter *inst;
674 unsigned int i, off, condt;
675 u32 k, b_off __maybe_unused;
676 u8 (*sk_load_func)(unsigned long *skb, int offset);
678 for (i = 0; i < prog->len; i++) {
681 inst = &(prog->insns[i]);
682 pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n",
683 __func__, inst->code, inst->jt, inst->jf, inst->k);
685 code = bpf_anc_helper(inst);
687 if (ctx->target == NULL)
688 ctx->offsets[i] = ctx->idx * 4;
691 case BPF_LD | BPF_IMM:
692 /* A <- k ==> li r_A, k */
693 ctx->flags |= SEEN_A;
694 emit_load_imm(r_A, k, ctx);
696 case BPF_LD | BPF_W | BPF_LEN:
697 BUILD_BUG_ON(sizeof_field(struct sk_buff, len) != 4);
698 /* A <- len ==> lw r_A, offset(skb) */
699 ctx->flags |= SEEN_SKB | SEEN_A;
700 off = offsetof(struct sk_buff, len);
701 emit_load(r_A, r_skb, off, ctx);
703 case BPF_LD | BPF_MEM:
704 /* A <- M[k] ==> lw r_A, offset(M) */
705 ctx->flags |= SEEN_MEM | SEEN_A;
706 emit_load(r_A, r_M, SCRATCH_OFF(k), ctx);
708 case BPF_LD | BPF_W | BPF_ABS:
710 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_word);
712 case BPF_LD | BPF_H | BPF_ABS:
714 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_half);
716 case BPF_LD | BPF_B | BPF_ABS:
718 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_byte);
720 emit_load_imm(r_off, k, ctx);
722 ctx->flags |= SEEN_CALL | SEEN_OFF |
723 SEEN_SKB | SEEN_A | SEEN_SKB_DATA;
725 emit_load_func(r_s0, (ptr)sk_load_func, ctx);
726 emit_reg_move(MIPS_R_A0, r_skb, ctx);
727 emit_jalr(MIPS_R_RA, r_s0, ctx);
728 /* Load second argument to delay slot */
729 emit_reg_move(MIPS_R_A1, r_off, ctx);
730 /* Check the error value */
731 emit_bcond(MIPS_COND_EQ, r_ret, 0, b_imm(i + 1, ctx),
733 /* Load return register on DS for failures */
734 emit_reg_move(r_ret, r_zero, ctx);
735 /* Return with error */
736 b_off = b_imm(prog->len, ctx);
737 if (is_bad_offset(b_off))
742 case BPF_LD | BPF_W | BPF_IND:
743 /* A <- P[X + k:4] */
744 sk_load_func = sk_load_word;
746 case BPF_LD | BPF_H | BPF_IND:
747 /* A <- P[X + k:2] */
748 sk_load_func = sk_load_half;
750 case BPF_LD | BPF_B | BPF_IND:
751 /* A <- P[X + k:1] */
752 sk_load_func = sk_load_byte;
754 ctx->flags |= SEEN_OFF | SEEN_X;
755 emit_addiu(r_off, r_X, k, ctx);
757 case BPF_LDX | BPF_IMM:
759 ctx->flags |= SEEN_X;
760 emit_load_imm(r_X, k, ctx);
762 case BPF_LDX | BPF_MEM:
764 ctx->flags |= SEEN_X | SEEN_MEM;
765 emit_load(r_X, r_M, SCRATCH_OFF(k), ctx);
767 case BPF_LDX | BPF_W | BPF_LEN:
769 ctx->flags |= SEEN_X | SEEN_SKB;
770 off = offsetof(struct sk_buff, len);
771 emit_load(r_X, r_skb, off, ctx);
773 case BPF_LDX | BPF_B | BPF_MSH:
774 /* X <- 4 * (P[k:1] & 0xf) */
775 ctx->flags |= SEEN_X | SEEN_CALL | SEEN_SKB;
776 /* Load offset to a1 */
777 emit_load_func(r_s0, (ptr)sk_load_byte, ctx);
779 * This may emit two instructions so it may not fit
780 * in the delay slot. So use a0 in the delay slot.
782 emit_load_imm(MIPS_R_A1, k, ctx);
783 emit_jalr(MIPS_R_RA, r_s0, ctx);
784 emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */
785 /* Check the error value */
786 b_off = b_imm(prog->len, ctx);
787 if (is_bad_offset(b_off))
789 emit_bcond(MIPS_COND_NE, r_ret, 0, b_off, ctx);
790 emit_reg_move(r_ret, r_zero, ctx);
792 /* X <- P[1:K] & 0xf */
793 emit_andi(r_X, r_A, 0xf, ctx);
795 emit_b(b_imm(i + 1, ctx), ctx);
796 emit_sll(r_X, r_X, 2, ctx); /* delay slot */
800 ctx->flags |= SEEN_MEM | SEEN_A;
801 emit_store(r_A, r_M, SCRATCH_OFF(k), ctx);
805 ctx->flags |= SEEN_MEM | SEEN_X;
806 emit_store(r_X, r_M, SCRATCH_OFF(k), ctx);
808 case BPF_ALU | BPF_ADD | BPF_K:
810 ctx->flags |= SEEN_A;
811 emit_addiu(r_A, r_A, k, ctx);
813 case BPF_ALU | BPF_ADD | BPF_X:
815 ctx->flags |= SEEN_A | SEEN_X;
816 emit_addu(r_A, r_A, r_X, ctx);
818 case BPF_ALU | BPF_SUB | BPF_K:
820 ctx->flags |= SEEN_A;
821 emit_addiu(r_A, r_A, -k, ctx);
823 case BPF_ALU | BPF_SUB | BPF_X:
825 ctx->flags |= SEEN_A | SEEN_X;
826 emit_subu(r_A, r_A, r_X, ctx);
828 case BPF_ALU | BPF_MUL | BPF_K:
830 /* Load K to scratch register before MUL */
831 ctx->flags |= SEEN_A;
832 emit_load_imm(r_s0, k, ctx);
833 emit_mul(r_A, r_A, r_s0, ctx);
835 case BPF_ALU | BPF_MUL | BPF_X:
837 ctx->flags |= SEEN_A | SEEN_X;
838 emit_mul(r_A, r_A, r_X, ctx);
840 case BPF_ALU | BPF_DIV | BPF_K:
844 if (optimize_div(&k)) {
845 ctx->flags |= SEEN_A;
846 emit_srl(r_A, r_A, k, ctx);
849 ctx->flags |= SEEN_A;
850 emit_load_imm(r_s0, k, ctx);
851 emit_div(r_A, r_s0, ctx);
853 case BPF_ALU | BPF_MOD | BPF_K:
856 ctx->flags |= SEEN_A;
857 emit_jit_reg_move(r_A, r_zero, ctx);
859 ctx->flags |= SEEN_A;
860 emit_load_imm(r_s0, k, ctx);
861 emit_mod(r_A, r_s0, ctx);
864 case BPF_ALU | BPF_DIV | BPF_X:
866 ctx->flags |= SEEN_X | SEEN_A;
867 /* Check if r_X is zero */
868 b_off = b_imm(prog->len, ctx);
869 if (is_bad_offset(b_off))
871 emit_bcond(MIPS_COND_EQ, r_X, r_zero, b_off, ctx);
872 emit_load_imm(r_ret, 0, ctx); /* delay slot */
873 emit_div(r_A, r_X, ctx);
875 case BPF_ALU | BPF_MOD | BPF_X:
877 ctx->flags |= SEEN_X | SEEN_A;
878 /* Check if r_X is zero */
879 b_off = b_imm(prog->len, ctx);
880 if (is_bad_offset(b_off))
882 emit_bcond(MIPS_COND_EQ, r_X, r_zero, b_off, ctx);
883 emit_load_imm(r_ret, 0, ctx); /* delay slot */
884 emit_mod(r_A, r_X, ctx);
886 case BPF_ALU | BPF_OR | BPF_K:
888 ctx->flags |= SEEN_A;
889 emit_ori(r_A, r_A, k, ctx);
891 case BPF_ALU | BPF_OR | BPF_X:
893 ctx->flags |= SEEN_A;
894 emit_ori(r_A, r_A, r_X, ctx);
896 case BPF_ALU | BPF_XOR | BPF_K:
898 ctx->flags |= SEEN_A;
899 emit_xori(r_A, r_A, k, ctx);
901 case BPF_ANC | SKF_AD_ALU_XOR_X:
902 case BPF_ALU | BPF_XOR | BPF_X:
904 ctx->flags |= SEEN_A;
905 emit_xor(r_A, r_A, r_X, ctx);
907 case BPF_ALU | BPF_AND | BPF_K:
909 ctx->flags |= SEEN_A;
910 emit_andi(r_A, r_A, k, ctx);
912 case BPF_ALU | BPF_AND | BPF_X:
914 ctx->flags |= SEEN_A | SEEN_X;
915 emit_and(r_A, r_A, r_X, ctx);
917 case BPF_ALU | BPF_LSH | BPF_K:
919 ctx->flags |= SEEN_A;
920 emit_sll(r_A, r_A, k, ctx);
922 case BPF_ALU | BPF_LSH | BPF_X:
924 ctx->flags |= SEEN_A | SEEN_X;
925 emit_sllv(r_A, r_A, r_X, ctx);
927 case BPF_ALU | BPF_RSH | BPF_K:
929 ctx->flags |= SEEN_A;
930 emit_srl(r_A, r_A, k, ctx);
932 case BPF_ALU | BPF_RSH | BPF_X:
933 ctx->flags |= SEEN_A | SEEN_X;
934 emit_srlv(r_A, r_A, r_X, ctx);
936 case BPF_ALU | BPF_NEG:
938 ctx->flags |= SEEN_A;
941 case BPF_JMP | BPF_JA:
943 b_off = b_imm(i + k + 1, ctx);
944 if (is_bad_offset(b_off))
949 case BPF_JMP | BPF_JEQ | BPF_K:
950 /* pc += ( A == K ) ? pc->jt : pc->jf */
951 condt = MIPS_COND_EQ | MIPS_COND_K;
953 case BPF_JMP | BPF_JEQ | BPF_X:
954 ctx->flags |= SEEN_X;
955 /* pc += ( A == X ) ? pc->jt : pc->jf */
956 condt = MIPS_COND_EQ | MIPS_COND_X;
958 case BPF_JMP | BPF_JGE | BPF_K:
959 /* pc += ( A >= K ) ? pc->jt : pc->jf */
960 condt = MIPS_COND_GE | MIPS_COND_K;
962 case BPF_JMP | BPF_JGE | BPF_X:
963 ctx->flags |= SEEN_X;
964 /* pc += ( A >= X ) ? pc->jt : pc->jf */
965 condt = MIPS_COND_GE | MIPS_COND_X;
967 case BPF_JMP | BPF_JGT | BPF_K:
968 /* pc += ( A > K ) ? pc->jt : pc->jf */
969 condt = MIPS_COND_GT | MIPS_COND_K;
971 case BPF_JMP | BPF_JGT | BPF_X:
972 ctx->flags |= SEEN_X;
973 /* pc += ( A > X ) ? pc->jt : pc->jf */
974 condt = MIPS_COND_GT | MIPS_COND_X;
976 /* Greater or Equal */
977 if ((condt & MIPS_COND_GE) ||
978 (condt & MIPS_COND_GT)) {
979 if (condt & MIPS_COND_K) { /* K */
980 ctx->flags |= SEEN_A;
981 emit_sltiu(r_s0, r_A, k, ctx);
983 ctx->flags |= SEEN_A |
985 emit_sltu(r_s0, r_A, r_X, ctx);
987 /* A < (K|X) ? r_scrach = 1 */
988 b_off = b_imm(i + inst->jf + 1, ctx);
989 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off,
992 /* A > (K|X) ? scratch = 0 */
993 if (condt & MIPS_COND_GT) {
994 /* Checking for equality */
995 ctx->flags |= SEEN_A | SEEN_X;
996 if (condt & MIPS_COND_K)
997 emit_load_imm(r_s0, k, ctx);
999 emit_jit_reg_move(r_s0, r_X,
1001 b_off = b_imm(i + inst->jf + 1, ctx);
1002 emit_bcond(MIPS_COND_EQ, r_A, r_s0,
1005 /* Finally, A > K|X */
1006 b_off = b_imm(i + inst->jt + 1, ctx);
1010 /* A >= (K|X) so jump */
1011 b_off = b_imm(i + inst->jt + 1, ctx);
1017 if (condt & MIPS_COND_K) { /* K */
1018 ctx->flags |= SEEN_A;
1019 emit_load_imm(r_s0, k, ctx);
1021 b_off = b_imm(i + inst->jt + 1, ctx);
1022 emit_bcond(MIPS_COND_EQ, r_A, r_s0,
1026 b_off = b_imm(i + inst->jf + 1,
1028 emit_bcond(MIPS_COND_NE, r_A, r_s0,
1033 ctx->flags |= SEEN_A | SEEN_X;
1034 b_off = b_imm(i + inst->jt + 1,
1036 emit_bcond(MIPS_COND_EQ, r_A, r_X,
1040 b_off = b_imm(i + inst->jf + 1, ctx);
1041 emit_bcond(MIPS_COND_NE, r_A, r_X,
1047 case BPF_JMP | BPF_JSET | BPF_K:
1048 ctx->flags |= SEEN_A;
1049 /* pc += (A & K) ? pc -> jt : pc -> jf */
1050 emit_load_imm(r_s1, k, ctx);
1051 emit_and(r_s0, r_A, r_s1, ctx);
1053 b_off = b_imm(i + inst->jt + 1, ctx);
1054 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1057 b_off = b_imm(i + inst->jf + 1, ctx);
1061 case BPF_JMP | BPF_JSET | BPF_X:
1062 ctx->flags |= SEEN_X | SEEN_A;
1063 /* pc += (A & X) ? pc -> jt : pc -> jf */
1064 emit_and(r_s0, r_A, r_X, ctx);
1066 b_off = b_imm(i + inst->jt + 1, ctx);
1067 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1070 b_off = b_imm(i + inst->jf + 1, ctx);
1074 case BPF_RET | BPF_A:
1075 ctx->flags |= SEEN_A;
1076 if (i != prog->len - 1) {
1078 * If this is not the last instruction
1079 * then jump to the epilogue
1081 b_off = b_imm(prog->len, ctx);
1082 if (is_bad_offset(b_off))
1086 emit_reg_move(r_ret, r_A, ctx); /* delay slot */
1088 case BPF_RET | BPF_K:
1090 * It can emit two instructions so it does not fit on
1093 emit_load_imm(r_ret, k, ctx);
1094 if (i != prog->len - 1) {
1096 * If this is not the last instruction
1097 * then jump to the epilogue
1099 b_off = b_imm(prog->len, ctx);
1100 if (is_bad_offset(b_off))
1106 case BPF_MISC | BPF_TAX:
1108 ctx->flags |= SEEN_X | SEEN_A;
1109 emit_jit_reg_move(r_X, r_A, ctx);
1111 case BPF_MISC | BPF_TXA:
1113 ctx->flags |= SEEN_A | SEEN_X;
1114 emit_jit_reg_move(r_A, r_X, ctx);
1117 case BPF_ANC | SKF_AD_PROTOCOL:
1118 /* A = ntohs(skb->protocol */
1119 ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A;
1120 BUILD_BUG_ON(sizeof_field(struct sk_buff,
1122 off = offsetof(struct sk_buff, protocol);
1123 emit_half_load(r_A, r_skb, off, ctx);
1124 #ifdef CONFIG_CPU_LITTLE_ENDIAN
1125 /* This needs little endian fixup */
1127 /* R2 and later have the wsbh instruction */
1128 emit_wsbh(r_A, r_A, ctx);
1130 /* Get first byte */
1131 emit_andi(r_tmp_imm, r_A, 0xff, ctx);
1133 emit_sll(r_tmp, r_tmp_imm, 8, ctx);
1134 /* Get second byte */
1135 emit_srl(r_tmp_imm, r_A, 8, ctx);
1136 emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx);
1137 /* Put everyting together in r_A */
1138 emit_or(r_A, r_tmp, r_tmp_imm, ctx);
1142 case BPF_ANC | SKF_AD_CPU:
1143 ctx->flags |= SEEN_A | SEEN_OFF;
1144 /* A = current_thread_info()->cpu */
1145 BUILD_BUG_ON(sizeof_field(struct thread_info,
1147 off = offsetof(struct thread_info, cpu);
1148 /* $28/gp points to the thread_info struct */
1149 emit_load(r_A, 28, off, ctx);
1151 case BPF_ANC | SKF_AD_IFINDEX:
1152 /* A = skb->dev->ifindex */
1153 case BPF_ANC | SKF_AD_HATYPE:
1154 /* A = skb->dev->type */
1155 ctx->flags |= SEEN_SKB | SEEN_A;
1156 off = offsetof(struct sk_buff, dev);
1157 /* Load *dev pointer */
1158 emit_load_ptr(r_s0, r_skb, off, ctx);
1159 /* error (0) in the delay slot */
1160 b_off = b_imm(prog->len, ctx);
1161 if (is_bad_offset(b_off))
1163 emit_bcond(MIPS_COND_EQ, r_s0, r_zero, b_off, ctx);
1164 emit_reg_move(r_ret, r_zero, ctx);
1165 if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
1166 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
1167 off = offsetof(struct net_device, ifindex);
1168 emit_load(r_A, r_s0, off, ctx);
1169 } else { /* (code == (BPF_ANC | SKF_AD_HATYPE) */
1170 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
1171 off = offsetof(struct net_device, type);
1172 emit_half_load_unsigned(r_A, r_s0, off, ctx);
1175 case BPF_ANC | SKF_AD_MARK:
1176 ctx->flags |= SEEN_SKB | SEEN_A;
1177 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
1178 off = offsetof(struct sk_buff, mark);
1179 emit_load(r_A, r_skb, off, ctx);
1181 case BPF_ANC | SKF_AD_RXHASH:
1182 ctx->flags |= SEEN_SKB | SEEN_A;
1183 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
1184 off = offsetof(struct sk_buff, hash);
1185 emit_load(r_A, r_skb, off, ctx);
1187 case BPF_ANC | SKF_AD_VLAN_TAG:
1188 ctx->flags |= SEEN_SKB | SEEN_A;
1189 BUILD_BUG_ON(sizeof_field(struct sk_buff,
1191 off = offsetof(struct sk_buff, vlan_tci);
1192 emit_half_load_unsigned(r_A, r_skb, off, ctx);
1194 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
1195 ctx->flags |= SEEN_SKB | SEEN_A;
1196 emit_load_byte(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET(), ctx);
1197 if (PKT_VLAN_PRESENT_BIT)
1198 emit_srl(r_A, r_A, PKT_VLAN_PRESENT_BIT, ctx);
1199 if (PKT_VLAN_PRESENT_BIT < 7)
1200 emit_andi(r_A, r_A, 1, ctx);
1202 case BPF_ANC | SKF_AD_PKTTYPE:
1203 ctx->flags |= SEEN_SKB;
1205 emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx);
1206 /* Keep only the last 3 bits */
1207 emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx);
1208 #ifdef __BIG_ENDIAN_BITFIELD
1209 /* Get the actual packet type to the lower 3 bits */
1210 emit_srl(r_A, r_A, 5, ctx);
1213 case BPF_ANC | SKF_AD_QUEUE:
1214 ctx->flags |= SEEN_SKB | SEEN_A;
1215 BUILD_BUG_ON(sizeof_field(struct sk_buff,
1216 queue_mapping) != 2);
1217 BUILD_BUG_ON(offsetof(struct sk_buff,
1218 queue_mapping) > 0xff);
1219 off = offsetof(struct sk_buff, queue_mapping);
1220 emit_half_load_unsigned(r_A, r_skb, off, ctx);
1223 pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__,
1229 /* compute offsets only during the first pass */
1230 if (ctx->target == NULL)
1231 ctx->offsets[i] = ctx->idx * 4;
1236 void bpf_jit_compile(struct bpf_prog *fp)
1239 unsigned int alloc_size, tmp_idx;
1241 if (!bpf_jit_enable)
1244 memset(&ctx, 0, sizeof(ctx));
1246 ctx.offsets = kcalloc(fp->len + 1, sizeof(*ctx.offsets), GFP_KERNEL);
1247 if (ctx.offsets == NULL)
1252 if (build_body(&ctx))
1256 build_prologue(&ctx);
1257 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1258 /* just to complete the ctx.idx count */
1259 build_epilogue(&ctx);
1261 alloc_size = 4 * ctx.idx;
1262 ctx.target = module_alloc(alloc_size);
1263 if (ctx.target == NULL)
1267 memset(ctx.target, 0, alloc_size);
1271 /* Generate the actual JIT code */
1272 build_prologue(&ctx);
1273 if (build_body(&ctx)) {
1274 module_memfree(ctx.target);
1277 build_epilogue(&ctx);
1279 /* Update the icache */
1280 flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx));
1282 if (bpf_jit_enable > 1)
1284 bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1286 fp->bpf_func = (void *)ctx.target;
1293 void bpf_jit_free(struct bpf_prog *fp)
1296 module_memfree(fp->bpf_func);
1298 bpf_prog_unlock_free(fp);