KVM: MIPS: Add CPUCFG emulation for Loongson-3
[platform/kernel/linux-starfive.git] / arch / mips / kvm / vz.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Support for hardware virtualization extensions
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Yann Le Du <ledu@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/preempt.h>
16 #include <linux/vmalloc.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cacheops.h>
19 #include <asm/cmpxchg.h>
20 #include <asm/fpu.h>
21 #include <asm/hazards.h>
22 #include <asm/inst.h>
23 #include <asm/mmu_context.h>
24 #include <asm/r4kcache.h>
25 #include <asm/time.h>
26 #include <asm/tlb.h>
27 #include <asm/tlbex.h>
28
29 #include <linux/kvm_host.h>
30
31 #include "interrupt.h"
32 #include "loongson_regs.h"
33
34 #include "trace.h"
35
36 /* Pointers to last VCPU loaded on each physical CPU */
37 static struct kvm_vcpu *last_vcpu[NR_CPUS];
38 /* Pointers to last VCPU executed on each physical CPU */
39 static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
40
41 /*
42  * Number of guest VTLB entries to use, so we can catch inconsistency between
43  * CPUs.
44  */
45 static unsigned int kvm_vz_guest_vtlb_size;
46
47 static inline long kvm_vz_read_gc0_ebase(void)
48 {
49         if (sizeof(long) == 8 && cpu_has_ebase_wg)
50                 return read_gc0_ebase_64();
51         else
52                 return read_gc0_ebase();
53 }
54
55 static inline void kvm_vz_write_gc0_ebase(long v)
56 {
57         /*
58          * First write with WG=1 to write upper bits, then write again in case
59          * WG should be left at 0.
60          * write_gc0_ebase_64() is no longer UNDEFINED since R6.
61          */
62         if (sizeof(long) == 8 &&
63             (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
64                 write_gc0_ebase_64(v | MIPS_EBASE_WG);
65                 write_gc0_ebase_64(v);
66         } else {
67                 write_gc0_ebase(v | MIPS_EBASE_WG);
68                 write_gc0_ebase(v);
69         }
70 }
71
72 /*
73  * These Config bits may be writable by the guest:
74  * Config:      [K23, KU] (!TLB), K0
75  * Config1:     (none)
76  * Config2:     [TU, SU] (impl)
77  * Config3:     ISAOnExc
78  * Config4:     FTLBPageSize
79  * Config5:     K, CV, MSAEn, UFE, FRE, SBRI, UFR
80  */
81
82 static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
83 {
84         return CONF_CM_CMASK;
85 }
86
87 static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
88 {
89         return 0;
90 }
91
92 static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
93 {
94         return 0;
95 }
96
97 static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
98 {
99         return MIPS_CONF3_ISA_OE;
100 }
101
102 static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
103 {
104         /* no need to be exact */
105         return MIPS_CONF4_VFTLBPAGESIZE;
106 }
107
108 static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
109 {
110         unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
111
112         /* Permit MSAEn changes if MSA supported and enabled */
113         if (kvm_mips_guest_has_msa(&vcpu->arch))
114                 mask |= MIPS_CONF5_MSAEN;
115
116         /*
117          * Permit guest FPU mode changes if FPU is enabled and the relevant
118          * feature exists according to FIR register.
119          */
120         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
121                 if (cpu_has_ufr)
122                         mask |= MIPS_CONF5_UFR;
123                 if (cpu_has_fre)
124                         mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
125         }
126
127         return mask;
128 }
129
130 /*
131  * VZ optionally allows these additional Config bits to be written by root:
132  * Config:      M, [MT]
133  * Config1:     M, [MMUSize-1, C2, MD, PC, WR, CA], FP
134  * Config2:     M
135  * Config3:     M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
136  *              VInt, SP, CDMM, MT, SM, TL]
137  * Config4:     M, [VTLBSizeExt, MMUSizeExt]
138  * Config5:     MRP
139  */
140
141 static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
142 {
143         return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
144 }
145
146 static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
147 {
148         unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
149
150         /* Permit FPU to be present if FPU is supported */
151         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
152                 mask |= MIPS_CONF1_FP;
153
154         return mask;
155 }
156
157 static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
158 {
159         return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
160 }
161
162 static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
163 {
164         unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
165                 MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
166
167         /* Permit MSA to be present if MSA is supported */
168         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
169                 mask |= MIPS_CONF3_MSA;
170
171         return mask;
172 }
173
174 static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
175 {
176         return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
177 }
178
179 static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
180 {
181         return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
182 }
183
184 static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
185 {
186         /* VZ guest has already converted gva to gpa */
187         return gva;
188 }
189
190 static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
191 {
192         set_bit(priority, &vcpu->arch.pending_exceptions);
193         clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
194 }
195
196 static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
197 {
198         clear_bit(priority, &vcpu->arch.pending_exceptions);
199         set_bit(priority, &vcpu->arch.pending_exceptions_clr);
200 }
201
202 static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
203 {
204         /*
205          * timer expiry is asynchronous to vcpu execution therefore defer guest
206          * cp0 accesses
207          */
208         kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
209 }
210
211 static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
212 {
213         /*
214          * timer expiry is asynchronous to vcpu execution therefore defer guest
215          * cp0 accesses
216          */
217         kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
218 }
219
220 static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
221                                    struct kvm_mips_interrupt *irq)
222 {
223         int intr = (int)irq->irq;
224
225         /*
226          * interrupts are asynchronous to vcpu execution therefore defer guest
227          * cp0 accesses
228          */
229         kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr));
230 }
231
232 static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
233                                      struct kvm_mips_interrupt *irq)
234 {
235         int intr = (int)irq->irq;
236
237         /*
238          * interrupts are asynchronous to vcpu execution therefore defer guest
239          * cp0 accesses
240          */
241         kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr));
242 }
243
244 static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
245                                  u32 cause)
246 {
247         u32 irq = (priority < MIPS_EXC_MAX) ?
248                 kvm_priority_to_irq[priority] : 0;
249
250         switch (priority) {
251         case MIPS_EXC_INT_TIMER:
252                 set_gc0_cause(C_TI);
253                 break;
254
255         case MIPS_EXC_INT_IO_1:
256         case MIPS_EXC_INT_IO_2:
257         case MIPS_EXC_INT_IPI_1:
258         case MIPS_EXC_INT_IPI_2:
259                 if (cpu_has_guestctl2)
260                         set_c0_guestctl2(irq);
261                 else
262                         set_gc0_cause(irq);
263                 break;
264
265         default:
266                 break;
267         }
268
269         clear_bit(priority, &vcpu->arch.pending_exceptions);
270         return 1;
271 }
272
273 static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
274                                u32 cause)
275 {
276         u32 irq = (priority < MIPS_EXC_MAX) ?
277                 kvm_priority_to_irq[priority] : 0;
278
279         switch (priority) {
280         case MIPS_EXC_INT_TIMER:
281                 /*
282                  * Call to kvm_write_c0_guest_compare() clears Cause.TI in
283                  * kvm_mips_emulate_CP0(). Explicitly clear irq associated with
284                  * Cause.IP[IPTI] if GuestCtl2 virtual interrupt register not
285                  * supported or if not using GuestCtl2 Hardware Clear.
286                  */
287                 if (cpu_has_guestctl2) {
288                         if (!(read_c0_guestctl2() & (irq << 14)))
289                                 clear_c0_guestctl2(irq);
290                 } else {
291                         clear_gc0_cause(irq);
292                 }
293                 break;
294
295         case MIPS_EXC_INT_IO_1:
296         case MIPS_EXC_INT_IO_2:
297         case MIPS_EXC_INT_IPI_1:
298         case MIPS_EXC_INT_IPI_2:
299                 /* Clear GuestCtl2.VIP irq if not using Hardware Clear */
300                 if (cpu_has_guestctl2) {
301                         if (!(read_c0_guestctl2() & (irq << 14)))
302                                 clear_c0_guestctl2(irq);
303                 } else {
304                         clear_gc0_cause(irq);
305                 }
306                 break;
307
308         default:
309                 break;
310         }
311
312         clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
313         return 1;
314 }
315
316 /*
317  * VZ guest timer handling.
318  */
319
320 /**
321  * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
322  * @vcpu:       Virtual CPU.
323  *
324  * Returns:     true if the VZ GTOffset & real guest CP0_Count should be used
325  *              instead of software emulation of guest timer.
326  *              false otherwise.
327  */
328 static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
329 {
330         if (kvm_mips_count_disabled(vcpu))
331                 return false;
332
333         /* Chosen frequency must match real frequency */
334         if (mips_hpt_frequency != vcpu->arch.count_hz)
335                 return false;
336
337         /* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
338         if (current_cpu_data.gtoffset_mask != 0xffffffff)
339                 return false;
340
341         return true;
342 }
343
344 /**
345  * _kvm_vz_restore_stimer() - Restore soft timer state.
346  * @vcpu:       Virtual CPU.
347  * @compare:    CP0_Compare register value, restored by caller.
348  * @cause:      CP0_Cause register to restore.
349  *
350  * Restore VZ state relating to the soft timer. The hard timer can be enabled
351  * later.
352  */
353 static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
354                                    u32 cause)
355 {
356         /*
357          * Avoid spurious counter interrupts by setting Guest CP0_Count to just
358          * after Guest CP0_Compare.
359          */
360         write_c0_gtoffset(compare - read_c0_count());
361
362         back_to_back_c0_hazard();
363         write_gc0_cause(cause);
364 }
365
366 /**
367  * _kvm_vz_restore_htimer() - Restore hard timer state.
368  * @vcpu:       Virtual CPU.
369  * @compare:    CP0_Compare register value, restored by caller.
370  * @cause:      CP0_Cause register to restore.
371  *
372  * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
373  * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
374  */
375 static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
376                                    u32 compare, u32 cause)
377 {
378         u32 start_count, after_count;
379         ktime_t freeze_time;
380         unsigned long flags;
381
382         /*
383          * Freeze the soft-timer and sync the guest CP0_Count with it. We do
384          * this with interrupts disabled to avoid latency.
385          */
386         local_irq_save(flags);
387         freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count);
388         write_c0_gtoffset(start_count - read_c0_count());
389         local_irq_restore(flags);
390
391         /* restore guest CP0_Cause, as TI may already be set */
392         back_to_back_c0_hazard();
393         write_gc0_cause(cause);
394
395         /*
396          * The above sequence isn't atomic and would result in lost timer
397          * interrupts if we're not careful. Detect if a timer interrupt is due
398          * and assert it.
399          */
400         back_to_back_c0_hazard();
401         after_count = read_gc0_count();
402         if (after_count - start_count > compare - start_count - 1)
403                 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
404 }
405
406 /**
407  * kvm_vz_restore_timer() - Restore timer state.
408  * @vcpu:       Virtual CPU.
409  *
410  * Restore soft timer state from saved context.
411  */
412 static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
413 {
414         struct mips_coproc *cop0 = vcpu->arch.cop0;
415         u32 cause, compare;
416
417         compare = kvm_read_sw_gc0_compare(cop0);
418         cause = kvm_read_sw_gc0_cause(cop0);
419
420         write_gc0_compare(compare);
421         _kvm_vz_restore_stimer(vcpu, compare, cause);
422 }
423
424 /**
425  * kvm_vz_acquire_htimer() - Switch to hard timer state.
426  * @vcpu:       Virtual CPU.
427  *
428  * Restore hard timer state on top of existing soft timer state if possible.
429  *
430  * Since hard timer won't remain active over preemption, preemption should be
431  * disabled by the caller.
432  */
433 void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
434 {
435         u32 gctl0;
436
437         gctl0 = read_c0_guestctl0();
438         if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
439                 /* enable guest access to hard timer */
440                 write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
441
442                 _kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
443                                        read_gc0_cause());
444         }
445 }
446
447 /**
448  * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
449  * @vcpu:       Virtual CPU.
450  * @compare:    Pointer to write compare value to.
451  * @cause:      Pointer to write cause value to.
452  *
453  * Save VZ guest timer state and switch to software emulation of guest CP0
454  * timer. The hard timer must already be in use, so preemption should be
455  * disabled.
456  */
457 static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
458                                 u32 *out_compare, u32 *out_cause)
459 {
460         u32 cause, compare, before_count, end_count;
461         ktime_t before_time;
462
463         compare = read_gc0_compare();
464         *out_compare = compare;
465
466         before_time = ktime_get();
467
468         /*
469          * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
470          * at which no pending timer interrupt is missing.
471          */
472         before_count = read_gc0_count();
473         back_to_back_c0_hazard();
474         cause = read_gc0_cause();
475         *out_cause = cause;
476
477         /*
478          * Record a final CP0_Count which we will transfer to the soft-timer.
479          * This is recorded *after* saving CP0_Cause, so we don't get any timer
480          * interrupts from just after the final CP0_Count point.
481          */
482         back_to_back_c0_hazard();
483         end_count = read_gc0_count();
484
485         /*
486          * The above sequence isn't atomic, so we could miss a timer interrupt
487          * between reading CP0_Cause and end_count. Detect and record any timer
488          * interrupt due between before_count and end_count.
489          */
490         if (end_count - before_count > compare - before_count - 1)
491                 kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
492
493         /*
494          * Restore soft-timer, ignoring a small amount of negative drift due to
495          * delay between freeze_hrtimer and setting CP0_GTOffset.
496          */
497         kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
498 }
499
500 /**
501  * kvm_vz_save_timer() - Save guest timer state.
502  * @vcpu:       Virtual CPU.
503  *
504  * Save VZ guest timer state and switch to soft guest timer if hard timer was in
505  * use.
506  */
507 static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
508 {
509         struct mips_coproc *cop0 = vcpu->arch.cop0;
510         u32 gctl0, compare, cause;
511
512         gctl0 = read_c0_guestctl0();
513         if (gctl0 & MIPS_GCTL0_GT) {
514                 /* disable guest use of hard timer */
515                 write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
516
517                 /* save hard timer state */
518                 _kvm_vz_save_htimer(vcpu, &compare, &cause);
519         } else {
520                 compare = read_gc0_compare();
521                 cause = read_gc0_cause();
522         }
523
524         /* save timer-related state to VCPU context */
525         kvm_write_sw_gc0_cause(cop0, cause);
526         kvm_write_sw_gc0_compare(cop0, compare);
527 }
528
529 /**
530  * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
531  * @vcpu:       Virtual CPU.
532  *
533  * Transfers the state of the hard guest timer to the soft guest timer, leaving
534  * guest state intact so it can continue to be used with the soft timer.
535  */
536 void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
537 {
538         u32 gctl0, compare, cause;
539
540         preempt_disable();
541         gctl0 = read_c0_guestctl0();
542         if (gctl0 & MIPS_GCTL0_GT) {
543                 /* disable guest use of timer */
544                 write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
545
546                 /* switch to soft timer */
547                 _kvm_vz_save_htimer(vcpu, &compare, &cause);
548
549                 /* leave soft timer in usable state */
550                 _kvm_vz_restore_stimer(vcpu, compare, cause);
551         }
552         preempt_enable();
553 }
554
555 /**
556  * is_eva_access() - Find whether an instruction is an EVA memory accessor.
557  * @inst:       32-bit instruction encoding.
558  *
559  * Finds whether @inst encodes an EVA memory access instruction, which would
560  * indicate that emulation of it should access the user mode address space
561  * instead of the kernel mode address space. This matters for MUSUK segments
562  * which are TLB mapped for user mode but unmapped for kernel mode.
563  *
564  * Returns:     Whether @inst encodes an EVA accessor instruction.
565  */
566 static bool is_eva_access(union mips_instruction inst)
567 {
568         if (inst.spec3_format.opcode != spec3_op)
569                 return false;
570
571         switch (inst.spec3_format.func) {
572         case lwle_op:
573         case lwre_op:
574         case cachee_op:
575         case sbe_op:
576         case she_op:
577         case sce_op:
578         case swe_op:
579         case swle_op:
580         case swre_op:
581         case prefe_op:
582         case lbue_op:
583         case lhue_op:
584         case lbe_op:
585         case lhe_op:
586         case lle_op:
587         case lwe_op:
588                 return true;
589         default:
590                 return false;
591         }
592 }
593
594 /**
595  * is_eva_am_mapped() - Find whether an access mode is mapped.
596  * @vcpu:       KVM VCPU state.
597  * @am:         3-bit encoded access mode.
598  * @eu:         Segment becomes unmapped and uncached when Status.ERL=1.
599  *
600  * Decode @am to find whether it encodes a mapped segment for the current VCPU
601  * state. Where necessary @eu and the actual instruction causing the fault are
602  * taken into account to make the decision.
603  *
604  * Returns:     Whether the VCPU faulted on a TLB mapped address.
605  */
606 static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
607 {
608         u32 am_lookup;
609         int err;
610
611         /*
612          * Interpret access control mode. We assume address errors will already
613          * have been caught by the guest, leaving us with:
614          *      AM      UM  SM  KM  31..24 23..16
615          * UK    0 000          Unm   0      0
616          * MK    1 001          TLB   1
617          * MSK   2 010      TLB TLB   1
618          * MUSK  3 011  TLB TLB TLB   1
619          * MUSUK 4 100  TLB TLB Unm   0      1
620          * USK   5 101      Unm Unm   0      0
621          * -     6 110                0      0
622          * UUSK  7 111  Unm Unm Unm   0      0
623          *
624          * We shift a magic value by AM across the sign bit to find if always
625          * TLB mapped, and if not shift by 8 again to find if it depends on KM.
626          */
627         am_lookup = 0x70080000 << am;
628         if ((s32)am_lookup < 0) {
629                 /*
630                  * MK, MSK, MUSK
631                  * Always TLB mapped, unless SegCtl.EU && ERL
632                  */
633                 if (!eu || !(read_gc0_status() & ST0_ERL))
634                         return true;
635         } else {
636                 am_lookup <<= 8;
637                 if ((s32)am_lookup < 0) {
638                         union mips_instruction inst;
639                         unsigned int status;
640                         u32 *opc;
641
642                         /*
643                          * MUSUK
644                          * TLB mapped if not in kernel mode
645                          */
646                         status = read_gc0_status();
647                         if (!(status & (ST0_EXL | ST0_ERL)) &&
648                             (status & ST0_KSU))
649                                 return true;
650                         /*
651                          * EVA access instructions in kernel
652                          * mode access user address space.
653                          */
654                         opc = (u32 *)vcpu->arch.pc;
655                         if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
656                                 opc += 1;
657                         err = kvm_get_badinstr(opc, vcpu, &inst.word);
658                         if (!err && is_eva_access(inst))
659                                 return true;
660                 }
661         }
662
663         return false;
664 }
665
666 /**
667  * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
668  * @vcpu:       KVM VCPU state.
669  * @gva:        Guest virtual address to convert.
670  * @gpa:        Output guest physical address.
671  *
672  * Convert a guest virtual address (GVA) which is valid according to the guest
673  * context, to a guest physical address (GPA).
674  *
675  * Returns:     0 on success.
676  *              -errno on failure.
677  */
678 static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
679                              unsigned long *gpa)
680 {
681         u32 gva32 = gva;
682         unsigned long segctl;
683
684         if ((long)gva == (s32)gva32) {
685                 /* Handle canonical 32-bit virtual address */
686                 if (cpu_guest_has_segments) {
687                         unsigned long mask, pa;
688
689                         switch (gva32 >> 29) {
690                         case 0:
691                         case 1: /* CFG5 (1GB) */
692                                 segctl = read_gc0_segctl2() >> 16;
693                                 mask = (unsigned long)0xfc0000000ull;
694                                 break;
695                         case 2:
696                         case 3: /* CFG4 (1GB) */
697                                 segctl = read_gc0_segctl2();
698                                 mask = (unsigned long)0xfc0000000ull;
699                                 break;
700                         case 4: /* CFG3 (512MB) */
701                                 segctl = read_gc0_segctl1() >> 16;
702                                 mask = (unsigned long)0xfe0000000ull;
703                                 break;
704                         case 5: /* CFG2 (512MB) */
705                                 segctl = read_gc0_segctl1();
706                                 mask = (unsigned long)0xfe0000000ull;
707                                 break;
708                         case 6: /* CFG1 (512MB) */
709                                 segctl = read_gc0_segctl0() >> 16;
710                                 mask = (unsigned long)0xfe0000000ull;
711                                 break;
712                         case 7: /* CFG0 (512MB) */
713                                 segctl = read_gc0_segctl0();
714                                 mask = (unsigned long)0xfe0000000ull;
715                                 break;
716                         default:
717                                 /*
718                                  * GCC 4.9 isn't smart enough to figure out that
719                                  * segctl and mask are always initialised.
720                                  */
721                                 unreachable();
722                         }
723
724                         if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
725                                              segctl & 0x0008))
726                                 goto tlb_mapped;
727
728                         /* Unmapped, find guest physical address */
729                         pa = (segctl << 20) & mask;
730                         pa |= gva32 & ~mask;
731                         *gpa = pa;
732                         return 0;
733                 } else if ((s32)gva32 < (s32)0xc0000000) {
734                         /* legacy unmapped KSeg0 or KSeg1 */
735                         *gpa = gva32 & 0x1fffffff;
736                         return 0;
737                 }
738 #ifdef CONFIG_64BIT
739         } else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
740                 /* XKPHYS */
741                 if (cpu_guest_has_segments) {
742                         /*
743                          * Each of the 8 regions can be overridden by SegCtl2.XR
744                          * to use SegCtl1.XAM.
745                          */
746                         segctl = read_gc0_segctl2();
747                         if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
748                                 segctl = read_gc0_segctl1();
749                                 if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
750                                                      0))
751                                         goto tlb_mapped;
752                         }
753
754                 }
755                 /*
756                  * Traditionally fully unmapped.
757                  * Bits 61:59 specify the CCA, which we can just mask off here.
758                  * Bits 58:PABITS should be zero, but we shouldn't have got here
759                  * if it wasn't.
760                  */
761                 *gpa = gva & 0x07ffffffffffffff;
762                 return 0;
763 #endif
764         }
765
766 tlb_mapped:
767         return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
768 }
769
770 /**
771  * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
772  * @vcpu:       KVM VCPU state.
773  * @badvaddr:   Root BadVAddr.
774  * @gpa:        Output guest physical address.
775  *
776  * VZ implementations are permitted to report guest virtual addresses (GVA) in
777  * BadVAddr on a root exception during guest execution, instead of the more
778  * convenient guest physical addresses (GPA). When we get a GVA, this function
779  * converts it to a GPA, taking into account guest segmentation and guest TLB
780  * state.
781  *
782  * Returns:     0 on success.
783  *              -errno on failure.
784  */
785 static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
786                                   unsigned long *gpa)
787 {
788         unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
789                                  MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
790
791         /* If BadVAddr is GPA, then all is well in the world */
792         if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
793                 *gpa = badvaddr;
794                 return 0;
795         }
796
797         /* Otherwise we'd expect it to be GVA ... */
798         if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
799                  "Unexpected gexccode %#x\n", gexccode))
800                 return -EINVAL;
801
802         /* ... and we need to perform the GVA->GPA translation in software */
803         return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
804 }
805
806 static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
807 {
808         u32 *opc = (u32 *) vcpu->arch.pc;
809         u32 cause = vcpu->arch.host_cp0_cause;
810         u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
811         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
812         u32 inst = 0;
813
814         /*
815          *  Fetch the instruction.
816          */
817         if (cause & CAUSEF_BD)
818                 opc += 1;
819         kvm_get_badinstr(opc, vcpu, &inst);
820
821         kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
822                 exccode, opc, inst, badvaddr,
823                 read_gc0_status());
824         kvm_arch_vcpu_dump_regs(vcpu);
825         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
826         return RESUME_HOST;
827 }
828
829 static unsigned long mips_process_maar(unsigned int op, unsigned long val)
830 {
831         /* Mask off unused bits */
832         unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
833
834         if (read_gc0_pagegrain() & PG_ELPA)
835                 mask |= 0x00ffffff00000000ull;
836         if (cpu_guest_has_mvh)
837                 mask |= MIPS_MAAR_VH;
838
839         /* Set or clear VH */
840         if (op == mtc_op) {
841                 /* clear VH */
842                 val &= ~MIPS_MAAR_VH;
843         } else if (op == dmtc_op) {
844                 /* set VH to match VL */
845                 val &= ~MIPS_MAAR_VH;
846                 if (val & MIPS_MAAR_VL)
847                         val |= MIPS_MAAR_VH;
848         }
849
850         return val & mask;
851 }
852
853 static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
854 {
855         struct mips_coproc *cop0 = vcpu->arch.cop0;
856
857         val &= MIPS_MAARI_INDEX;
858         if (val == MIPS_MAARI_INDEX)
859                 kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
860         else if (val < ARRAY_SIZE(vcpu->arch.maar))
861                 kvm_write_sw_gc0_maari(cop0, val);
862 }
863
864 static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
865                                               u32 *opc, u32 cause,
866                                               struct kvm_run *run,
867                                               struct kvm_vcpu *vcpu)
868 {
869         struct mips_coproc *cop0 = vcpu->arch.cop0;
870         enum emulation_result er = EMULATE_DONE;
871         u32 rt, rd, sel;
872         unsigned long curr_pc;
873         unsigned long val;
874
875         /*
876          * Update PC and hold onto current PC in case there is
877          * an error and we want to rollback the PC
878          */
879         curr_pc = vcpu->arch.pc;
880         er = update_pc(vcpu, cause);
881         if (er == EMULATE_FAIL)
882                 return er;
883
884         if (inst.co_format.co) {
885                 switch (inst.co_format.func) {
886                 case wait_op:
887                         er = kvm_mips_emul_wait(vcpu);
888                         break;
889                 default:
890                         er = EMULATE_FAIL;
891                 }
892         } else {
893                 rt = inst.c0r_format.rt;
894                 rd = inst.c0r_format.rd;
895                 sel = inst.c0r_format.sel;
896
897                 switch (inst.c0r_format.rs) {
898                 case dmfc_op:
899                 case mfc_op:
900 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
901                         cop0->stat[rd][sel]++;
902 #endif
903                         if (rd == MIPS_CP0_COUNT &&
904                             sel == 0) {                 /* Count */
905                                 val = kvm_mips_read_count(vcpu);
906                         } else if (rd == MIPS_CP0_COMPARE &&
907                                    sel == 0) {          /* Compare */
908                                 val = read_gc0_compare();
909                         } else if (rd == MIPS_CP0_LLADDR &&
910                                    sel == 0) {          /* LLAddr */
911                                 if (cpu_guest_has_rw_llb)
912                                         val = read_gc0_lladdr() &
913                                                 MIPS_LLADDR_LLB;
914                                 else
915                                         val = 0;
916                         } else if (rd == MIPS_CP0_LLADDR &&
917                                    sel == 1 &&          /* MAAR */
918                                    cpu_guest_has_maar &&
919                                    !cpu_guest_has_dyn_maar) {
920                                 /* MAARI must be in range */
921                                 BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
922                                                 ARRAY_SIZE(vcpu->arch.maar));
923                                 val = vcpu->arch.maar[
924                                         kvm_read_sw_gc0_maari(cop0)];
925                         } else if ((rd == MIPS_CP0_PRID &&
926                                     (sel == 0 ||        /* PRid */
927                                      sel == 2 ||        /* CDMMBase */
928                                      sel == 3)) ||      /* CMGCRBase */
929                                    (rd == MIPS_CP0_STATUS &&
930                                     (sel == 2 ||        /* SRSCtl */
931                                      sel == 3)) ||      /* SRSMap */
932                                    (rd == MIPS_CP0_CONFIG &&
933                                     (sel == 7)) ||      /* Config7 */
934                                    (rd == MIPS_CP0_LLADDR &&
935                                     (sel == 2) &&       /* MAARI */
936                                     cpu_guest_has_maar &&
937                                     !cpu_guest_has_dyn_maar) ||
938                                    (rd == MIPS_CP0_ERRCTL &&
939                                     (sel == 0))) {      /* ErrCtl */
940                                 val = cop0->reg[rd][sel];
941                         } else {
942                                 val = 0;
943                                 er = EMULATE_FAIL;
944                         }
945
946                         if (er != EMULATE_FAIL) {
947                                 /* Sign extend */
948                                 if (inst.c0r_format.rs == mfc_op)
949                                         val = (int)val;
950                                 vcpu->arch.gprs[rt] = val;
951                         }
952
953                         trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
954                                         KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
955                                       KVM_TRACE_COP0(rd, sel), val);
956                         break;
957
958                 case dmtc_op:
959                 case mtc_op:
960 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
961                         cop0->stat[rd][sel]++;
962 #endif
963                         val = vcpu->arch.gprs[rt];
964                         trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
965                                         KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
966                                       KVM_TRACE_COP0(rd, sel), val);
967
968                         if (rd == MIPS_CP0_COUNT &&
969                             sel == 0) {                 /* Count */
970                                 kvm_vz_lose_htimer(vcpu);
971                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
972                         } else if (rd == MIPS_CP0_COMPARE &&
973                                    sel == 0) {          /* Compare */
974                                 kvm_mips_write_compare(vcpu,
975                                                        vcpu->arch.gprs[rt],
976                                                        true);
977                         } else if (rd == MIPS_CP0_LLADDR &&
978                                    sel == 0) {          /* LLAddr */
979                                 /*
980                                  * P5600 generates GPSI on guest MTC0 LLAddr.
981                                  * Only allow the guest to clear LLB.
982                                  */
983                                 if (cpu_guest_has_rw_llb &&
984                                     !(val & MIPS_LLADDR_LLB))
985                                         write_gc0_lladdr(0);
986                         } else if (rd == MIPS_CP0_LLADDR &&
987                                    sel == 1 &&          /* MAAR */
988                                    cpu_guest_has_maar &&
989                                    !cpu_guest_has_dyn_maar) {
990                                 val = mips_process_maar(inst.c0r_format.rs,
991                                                         val);
992
993                                 /* MAARI must be in range */
994                                 BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
995                                                 ARRAY_SIZE(vcpu->arch.maar));
996                                 vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
997                                                                         val;
998                         } else if (rd == MIPS_CP0_LLADDR &&
999                                    (sel == 2) &&        /* MAARI */
1000                                    cpu_guest_has_maar &&
1001                                    !cpu_guest_has_dyn_maar) {
1002                                 kvm_write_maari(vcpu, val);
1003                         } else if (rd == MIPS_CP0_ERRCTL &&
1004                                    (sel == 0)) {        /* ErrCtl */
1005                                 /* ignore the written value */
1006                         } else {
1007                                 er = EMULATE_FAIL;
1008                         }
1009                         break;
1010
1011                 default:
1012                         er = EMULATE_FAIL;
1013                         break;
1014                 }
1015         }
1016         /* Rollback PC only if emulation was unsuccessful */
1017         if (er == EMULATE_FAIL) {
1018                 kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
1019                         curr_pc, __func__, inst.word);
1020
1021                 vcpu->arch.pc = curr_pc;
1022         }
1023
1024         return er;
1025 }
1026
1027 static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
1028                                                u32 *opc, u32 cause,
1029                                                struct kvm_run *run,
1030                                                struct kvm_vcpu *vcpu)
1031 {
1032         enum emulation_result er = EMULATE_DONE;
1033         u32 cache, op_inst, op, base;
1034         s16 offset;
1035         struct kvm_vcpu_arch *arch = &vcpu->arch;
1036         unsigned long va, curr_pc;
1037
1038         /*
1039          * Update PC and hold onto current PC in case there is
1040          * an error and we want to rollback the PC
1041          */
1042         curr_pc = vcpu->arch.pc;
1043         er = update_pc(vcpu, cause);
1044         if (er == EMULATE_FAIL)
1045                 return er;
1046
1047         base = inst.i_format.rs;
1048         op_inst = inst.i_format.rt;
1049         if (cpu_has_mips_r6)
1050                 offset = inst.spec3_format.simmediate;
1051         else
1052                 offset = inst.i_format.simmediate;
1053         cache = op_inst & CacheOp_Cache;
1054         op = op_inst & CacheOp_Op;
1055
1056         va = arch->gprs[base] + offset;
1057
1058         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1059                   cache, op, base, arch->gprs[base], offset);
1060
1061         /* Secondary or tirtiary cache ops ignored */
1062         if (cache != Cache_I && cache != Cache_D)
1063                 return EMULATE_DONE;
1064
1065         switch (op_inst) {
1066         case Index_Invalidate_I:
1067                 flush_icache_line_indexed(va);
1068                 return EMULATE_DONE;
1069         case Index_Writeback_Inv_D:
1070                 flush_dcache_line_indexed(va);
1071                 return EMULATE_DONE;
1072         case Hit_Invalidate_I:
1073         case Hit_Invalidate_D:
1074         case Hit_Writeback_Inv_D:
1075                 if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
1076                         /* We can just flush entire icache */
1077                         local_flush_icache_range(0, 0);
1078                         return EMULATE_DONE;
1079                 }
1080
1081                 /* So far, other platforms support guest hit cache ops */
1082                 break;
1083         default:
1084                 break;
1085         }
1086
1087         kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1088                 curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
1089                 offset);
1090         /* Rollback PC */
1091         vcpu->arch.pc = curr_pc;
1092
1093         return EMULATE_FAIL;
1094 }
1095
1096 #ifdef CONFIG_CPU_LOONGSON64
1097 static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst,
1098                                               u32 *opc, u32 cause,
1099                                               struct kvm_run *run,
1100                                               struct kvm_vcpu *vcpu)
1101 {
1102         unsigned int rs, rd;
1103         unsigned int hostcfg;
1104         unsigned long curr_pc;
1105         enum emulation_result er = EMULATE_DONE;
1106
1107         /*
1108          * Update PC and hold onto current PC in case there is
1109          * an error and we want to rollback the PC
1110          */
1111         curr_pc = vcpu->arch.pc;
1112         er = update_pc(vcpu, cause);
1113         if (er == EMULATE_FAIL)
1114                 return er;
1115
1116         rs = inst.loongson3_lscsr_format.rs;
1117         rd = inst.loongson3_lscsr_format.rd;
1118         switch (inst.loongson3_lscsr_format.fr) {
1119         case 0x8:  /* Read CPUCFG */
1120                 ++vcpu->stat.vz_cpucfg_exits;
1121                 hostcfg = read_cpucfg(vcpu->arch.gprs[rs]);
1122
1123                 switch (vcpu->arch.gprs[rs]) {
1124                 case LOONGSON_CFG0:
1125                         vcpu->arch.gprs[rd] = 0x14c000;
1126                         break;
1127                 case LOONGSON_CFG1:
1128                         hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI |
1129                                     LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 |
1130                                     LOONGSON_CFG1_SFBP);
1131                         vcpu->arch.gprs[rd] = hostcfg;
1132                         break;
1133                 case LOONGSON_CFG2:
1134                         hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 |
1135                                     LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW);
1136                         vcpu->arch.gprs[rd] = hostcfg;
1137                         break;
1138                 case LOONGSON_CFG3:
1139                         vcpu->arch.gprs[rd] = hostcfg;
1140                         break;
1141                 default:
1142                         /* Don't export any other advanced features to guest */
1143                         vcpu->arch.gprs[rd] = 0;
1144                         break;
1145                 }
1146                 break;
1147
1148         default:
1149                 kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n",
1150                         inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc);
1151                 er = EMULATE_FAIL;
1152                 break;
1153         }
1154
1155         /* Rollback PC only if emulation was unsuccessful */
1156         if (er == EMULATE_FAIL) {
1157                 kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n",
1158                         curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr);
1159
1160                 vcpu->arch.pc = curr_pc;
1161         }
1162
1163         return er;
1164 }
1165 #endif
1166
1167 static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
1168                                                      struct kvm_vcpu *vcpu)
1169 {
1170         enum emulation_result er = EMULATE_DONE;
1171         struct kvm_vcpu_arch *arch = &vcpu->arch;
1172         struct kvm_run *run = vcpu->run;
1173         union mips_instruction inst;
1174         int rd, rt, sel;
1175         int err;
1176
1177         /*
1178          *  Fetch the instruction.
1179          */
1180         if (cause & CAUSEF_BD)
1181                 opc += 1;
1182         err = kvm_get_badinstr(opc, vcpu, &inst.word);
1183         if (err)
1184                 return EMULATE_FAIL;
1185
1186         switch (inst.r_format.opcode) {
1187         case cop0_op:
1188                 er = kvm_vz_gpsi_cop0(inst, opc, cause, run, vcpu);
1189                 break;
1190 #ifndef CONFIG_CPU_MIPSR6
1191         case cache_op:
1192                 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1193                 er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
1194                 break;
1195 #endif
1196 #ifdef CONFIG_CPU_LOONGSON64
1197         case lwc2_op:
1198                 er = kvm_vz_gpsi_lwc2(inst, opc, cause, run, vcpu);
1199                 break;
1200 #endif
1201         case spec3_op:
1202                 switch (inst.spec3_format.func) {
1203 #ifdef CONFIG_CPU_MIPSR6
1204                 case cache6_op:
1205                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1206                         er = kvm_vz_gpsi_cache(inst, opc, cause, run, vcpu);
1207                         break;
1208 #endif
1209                 case rdhwr_op:
1210                         if (inst.r_format.rs || (inst.r_format.re >> 3))
1211                                 goto unknown;
1212
1213                         rd = inst.r_format.rd;
1214                         rt = inst.r_format.rt;
1215                         sel = inst.r_format.re & 0x7;
1216
1217                         switch (rd) {
1218                         case MIPS_HWR_CC:       /* Read count register */
1219                                 arch->gprs[rt] =
1220                                         (long)(int)kvm_mips_read_count(vcpu);
1221                                 break;
1222                         default:
1223                                 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1224                                               KVM_TRACE_HWR(rd, sel), 0);
1225                                 goto unknown;
1226                         }
1227
1228                         trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1229                                       KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
1230
1231                         er = update_pc(vcpu, cause);
1232                         break;
1233                 default:
1234                         goto unknown;
1235                 }
1236                 break;
1237 unknown:
1238
1239         default:
1240                 kvm_err("GPSI exception not supported (%p/%#x)\n",
1241                                 opc, inst.word);
1242                 kvm_arch_vcpu_dump_regs(vcpu);
1243                 er = EMULATE_FAIL;
1244                 break;
1245         }
1246
1247         return er;
1248 }
1249
1250 static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
1251                                                      struct kvm_vcpu *vcpu)
1252 {
1253         enum emulation_result er = EMULATE_DONE;
1254         struct kvm_vcpu_arch *arch = &vcpu->arch;
1255         union mips_instruction inst;
1256         int err;
1257
1258         /*
1259          *  Fetch the instruction.
1260          */
1261         if (cause & CAUSEF_BD)
1262                 opc += 1;
1263         err = kvm_get_badinstr(opc, vcpu, &inst.word);
1264         if (err)
1265                 return EMULATE_FAIL;
1266
1267         /* complete MTC0 on behalf of guest and advance EPC */
1268         if (inst.c0r_format.opcode == cop0_op &&
1269             inst.c0r_format.rs == mtc_op &&
1270             inst.c0r_format.z == 0) {
1271                 int rt = inst.c0r_format.rt;
1272                 int rd = inst.c0r_format.rd;
1273                 int sel = inst.c0r_format.sel;
1274                 unsigned int val = arch->gprs[rt];
1275                 unsigned int old_val, change;
1276
1277                 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
1278                               val);
1279
1280                 if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1281                         /* FR bit should read as zero if no FPU */
1282                         if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1283                                 val &= ~(ST0_CU1 | ST0_FR);
1284
1285                         /*
1286                          * Also don't allow FR to be set if host doesn't support
1287                          * it.
1288                          */
1289                         if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
1290                                 val &= ~ST0_FR;
1291
1292                         old_val = read_gc0_status();
1293                         change = val ^ old_val;
1294
1295                         if (change & ST0_FR) {
1296                                 /*
1297                                  * FPU and Vector register state is made
1298                                  * UNPREDICTABLE by a change of FR, so don't
1299                                  * even bother saving it.
1300                                  */
1301                                 kvm_drop_fpu(vcpu);
1302                         }
1303
1304                         /*
1305                          * If MSA state is already live, it is undefined how it
1306                          * interacts with FR=0 FPU state, and we don't want to
1307                          * hit reserved instruction exceptions trying to save
1308                          * the MSA state later when CU=1 && FR=1, so play it
1309                          * safe and save it first.
1310                          */
1311                         if (change & ST0_CU1 && !(val & ST0_FR) &&
1312                             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1313                                 kvm_lose_fpu(vcpu);
1314
1315                         write_gc0_status(val);
1316                 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1317                         u32 old_cause = read_gc0_cause();
1318                         u32 change = old_cause ^ val;
1319
1320                         /* DC bit enabling/disabling timer? */
1321                         if (change & CAUSEF_DC) {
1322                                 if (val & CAUSEF_DC) {
1323                                         kvm_vz_lose_htimer(vcpu);
1324                                         kvm_mips_count_disable_cause(vcpu);
1325                                 } else {
1326                                         kvm_mips_count_enable_cause(vcpu);
1327                                 }
1328                         }
1329
1330                         /* Only certain bits are RW to the guest */
1331                         change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1332                                    CAUSEF_IP0 | CAUSEF_IP1);
1333
1334                         /* WP can only be cleared */
1335                         change &= ~CAUSEF_WP | old_cause;
1336
1337                         write_gc0_cause(old_cause ^ change);
1338                 } else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1339                         write_gc0_intctl(val);
1340                 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1341                         old_val = read_gc0_config5();
1342                         change = val ^ old_val;
1343                         /* Handle changes in FPU/MSA modes */
1344                         preempt_disable();
1345
1346                         /*
1347                          * Propagate FRE changes immediately if the FPU
1348                          * context is already loaded.
1349                          */
1350                         if (change & MIPS_CONF5_FRE &&
1351                             vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1352                                 change_c0_config5(MIPS_CONF5_FRE, val);
1353
1354                         preempt_enable();
1355
1356                         val = old_val ^
1357                                 (change & kvm_vz_config5_guest_wrmask(vcpu));
1358                         write_gc0_config5(val);
1359                 } else {
1360                         kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1361                             opc, inst.word);
1362                         er = EMULATE_FAIL;
1363                 }
1364
1365                 if (er != EMULATE_FAIL)
1366                         er = update_pc(vcpu, cause);
1367         } else {
1368                 kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1369                         opc, inst.word);
1370                 er = EMULATE_FAIL;
1371         }
1372
1373         return er;
1374 }
1375
1376 static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
1377                                                      struct kvm_vcpu *vcpu)
1378 {
1379         /*
1380          * Presumably this is due to MC (guest mode change), so lets trace some
1381          * relevant info.
1382          */
1383         trace_kvm_guest_mode_change(vcpu);
1384
1385         return EMULATE_DONE;
1386 }
1387
1388 static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1389                                                    struct kvm_vcpu *vcpu)
1390 {
1391         enum emulation_result er;
1392         union mips_instruction inst;
1393         unsigned long curr_pc;
1394         int err;
1395
1396         if (cause & CAUSEF_BD)
1397                 opc += 1;
1398         err = kvm_get_badinstr(opc, vcpu, &inst.word);
1399         if (err)
1400                 return EMULATE_FAIL;
1401
1402         /*
1403          * Update PC and hold onto current PC in case there is
1404          * an error and we want to rollback the PC
1405          */
1406         curr_pc = vcpu->arch.pc;
1407         er = update_pc(vcpu, cause);
1408         if (er == EMULATE_FAIL)
1409                 return er;
1410
1411         er = kvm_mips_emul_hypcall(vcpu, inst);
1412         if (er == EMULATE_FAIL)
1413                 vcpu->arch.pc = curr_pc;
1414
1415         return er;
1416 }
1417
1418 static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1419                                                         u32 cause,
1420                                                         u32 *opc,
1421                                                         struct kvm_vcpu *vcpu)
1422 {
1423         u32 inst;
1424
1425         /*
1426          *  Fetch the instruction.
1427          */
1428         if (cause & CAUSEF_BD)
1429                 opc += 1;
1430         kvm_get_badinstr(opc, vcpu, &inst);
1431
1432         kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n",
1433                 gexccode, opc, inst, read_gc0_status());
1434
1435         return EMULATE_FAIL;
1436 }
1437
1438 static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1439 {
1440         u32 *opc = (u32 *) vcpu->arch.pc;
1441         u32 cause = vcpu->arch.host_cp0_cause;
1442         enum emulation_result er = EMULATE_DONE;
1443         u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1444                         MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1445         int ret = RESUME_GUEST;
1446
1447         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1448         switch (gexccode) {
1449         case MIPS_GCTL0_GEXC_GPSI:
1450                 ++vcpu->stat.vz_gpsi_exits;
1451                 er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1452                 break;
1453         case MIPS_GCTL0_GEXC_GSFC:
1454                 ++vcpu->stat.vz_gsfc_exits;
1455                 er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1456                 break;
1457         case MIPS_GCTL0_GEXC_HC:
1458                 ++vcpu->stat.vz_hc_exits;
1459                 er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1460                 break;
1461         case MIPS_GCTL0_GEXC_GRR:
1462                 ++vcpu->stat.vz_grr_exits;
1463                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1464                                                        vcpu);
1465                 break;
1466         case MIPS_GCTL0_GEXC_GVA:
1467                 ++vcpu->stat.vz_gva_exits;
1468                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1469                                                        vcpu);
1470                 break;
1471         case MIPS_GCTL0_GEXC_GHFC:
1472                 ++vcpu->stat.vz_ghfc_exits;
1473                 er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
1474                 break;
1475         case MIPS_GCTL0_GEXC_GPA:
1476                 ++vcpu->stat.vz_gpa_exits;
1477                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1478                                                        vcpu);
1479                 break;
1480         default:
1481                 ++vcpu->stat.vz_resvd_exits;
1482                 er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1483                                                        vcpu);
1484                 break;
1485
1486         }
1487
1488         if (er == EMULATE_DONE) {
1489                 ret = RESUME_GUEST;
1490         } else if (er == EMULATE_HYPERCALL) {
1491                 ret = kvm_mips_handle_hypcall(vcpu);
1492         } else {
1493                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1494                 ret = RESUME_HOST;
1495         }
1496         return ret;
1497 }
1498
1499 /**
1500  * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
1501  * @vcpu:       Virtual CPU context.
1502  *
1503  * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1504  * by the root context.
1505  */
1506 static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1507 {
1508         struct kvm_run *run = vcpu->run;
1509         u32 cause = vcpu->arch.host_cp0_cause;
1510         enum emulation_result er = EMULATE_FAIL;
1511         int ret = RESUME_GUEST;
1512
1513         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1514                 /*
1515                  * If guest FPU not present, the FPU operation should have been
1516                  * treated as a reserved instruction!
1517                  * If FPU already in use, we shouldn't get this at all.
1518                  */
1519                 if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1520                             vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1521                         preempt_enable();
1522                         return EMULATE_FAIL;
1523                 }
1524
1525                 kvm_own_fpu(vcpu);
1526                 er = EMULATE_DONE;
1527         }
1528         /* other coprocessors not handled */
1529
1530         switch (er) {
1531         case EMULATE_DONE:
1532                 ret = RESUME_GUEST;
1533                 break;
1534
1535         case EMULATE_FAIL:
1536                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1537                 ret = RESUME_HOST;
1538                 break;
1539
1540         default:
1541                 BUG();
1542         }
1543         return ret;
1544 }
1545
1546 /**
1547  * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1548  * @vcpu:       Virtual CPU context.
1549  *
1550  * Handle when the guest attempts to use MSA when it is disabled in the root
1551  * context.
1552  */
1553 static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1554 {
1555         struct kvm_run *run = vcpu->run;
1556
1557         /*
1558          * If MSA not present or not exposed to guest or FR=0, the MSA operation
1559          * should have been treated as a reserved instruction!
1560          * Same if CU1=1, FR=0.
1561          * If MSA already in use, we shouldn't get this at all.
1562          */
1563         if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1564             (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1565             !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1566             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1567                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1568                 return RESUME_HOST;
1569         }
1570
1571         kvm_own_msa(vcpu);
1572
1573         return RESUME_GUEST;
1574 }
1575
1576 static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1577 {
1578         struct kvm_run *run = vcpu->run;
1579         u32 *opc = (u32 *) vcpu->arch.pc;
1580         u32 cause = vcpu->arch.host_cp0_cause;
1581         ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1582         union mips_instruction inst;
1583         enum emulation_result er = EMULATE_DONE;
1584         int err, ret = RESUME_GUEST;
1585
1586         if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1587                 /* A code fetch fault doesn't count as an MMIO */
1588                 if (kvm_is_ifetch_fault(&vcpu->arch)) {
1589                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1590                         return RESUME_HOST;
1591                 }
1592
1593                 /* Fetch the instruction */
1594                 if (cause & CAUSEF_BD)
1595                         opc += 1;
1596                 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1597                 if (err) {
1598                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1599                         return RESUME_HOST;
1600                 }
1601
1602                 /* Treat as MMIO */
1603                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1604                 if (er == EMULATE_FAIL) {
1605                         kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1606                                 opc, badvaddr);
1607                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1608                 }
1609         }
1610
1611         if (er == EMULATE_DONE) {
1612                 ret = RESUME_GUEST;
1613         } else if (er == EMULATE_DO_MMIO) {
1614                 run->exit_reason = KVM_EXIT_MMIO;
1615                 ret = RESUME_HOST;
1616         } else {
1617                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1618                 ret = RESUME_HOST;
1619         }
1620         return ret;
1621 }
1622
1623 static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1624 {
1625         struct kvm_run *run = vcpu->run;
1626         u32 *opc = (u32 *) vcpu->arch.pc;
1627         u32 cause = vcpu->arch.host_cp0_cause;
1628         ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1629         union mips_instruction inst;
1630         enum emulation_result er = EMULATE_DONE;
1631         int err;
1632         int ret = RESUME_GUEST;
1633
1634         /* Just try the access again if we couldn't do the translation */
1635         if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1636                 return RESUME_GUEST;
1637         vcpu->arch.host_cp0_badvaddr = badvaddr;
1638
1639         if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1640                 /* Fetch the instruction */
1641                 if (cause & CAUSEF_BD)
1642                         opc += 1;
1643                 err = kvm_get_badinstr(opc, vcpu, &inst.word);
1644                 if (err) {
1645                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1646                         return RESUME_HOST;
1647                 }
1648
1649                 /* Treat as MMIO */
1650                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1651                 if (er == EMULATE_FAIL) {
1652                         kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1653                                 opc, badvaddr);
1654                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1655                 }
1656         }
1657
1658         if (er == EMULATE_DONE) {
1659                 ret = RESUME_GUEST;
1660         } else if (er == EMULATE_DO_MMIO) {
1661                 run->exit_reason = KVM_EXIT_MMIO;
1662                 ret = RESUME_HOST;
1663         } else {
1664                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1665                 ret = RESUME_HOST;
1666         }
1667         return ret;
1668 }
1669
1670 static u64 kvm_vz_get_one_regs[] = {
1671         KVM_REG_MIPS_CP0_INDEX,
1672         KVM_REG_MIPS_CP0_ENTRYLO0,
1673         KVM_REG_MIPS_CP0_ENTRYLO1,
1674         KVM_REG_MIPS_CP0_CONTEXT,
1675         KVM_REG_MIPS_CP0_PAGEMASK,
1676         KVM_REG_MIPS_CP0_PAGEGRAIN,
1677         KVM_REG_MIPS_CP0_WIRED,
1678         KVM_REG_MIPS_CP0_HWRENA,
1679         KVM_REG_MIPS_CP0_BADVADDR,
1680         KVM_REG_MIPS_CP0_COUNT,
1681         KVM_REG_MIPS_CP0_ENTRYHI,
1682         KVM_REG_MIPS_CP0_COMPARE,
1683         KVM_REG_MIPS_CP0_STATUS,
1684         KVM_REG_MIPS_CP0_INTCTL,
1685         KVM_REG_MIPS_CP0_CAUSE,
1686         KVM_REG_MIPS_CP0_EPC,
1687         KVM_REG_MIPS_CP0_PRID,
1688         KVM_REG_MIPS_CP0_EBASE,
1689         KVM_REG_MIPS_CP0_CONFIG,
1690         KVM_REG_MIPS_CP0_CONFIG1,
1691         KVM_REG_MIPS_CP0_CONFIG2,
1692         KVM_REG_MIPS_CP0_CONFIG3,
1693         KVM_REG_MIPS_CP0_CONFIG4,
1694         KVM_REG_MIPS_CP0_CONFIG5,
1695 #ifdef CONFIG_64BIT
1696         KVM_REG_MIPS_CP0_XCONTEXT,
1697 #endif
1698         KVM_REG_MIPS_CP0_ERROREPC,
1699
1700         KVM_REG_MIPS_COUNT_CTL,
1701         KVM_REG_MIPS_COUNT_RESUME,
1702         KVM_REG_MIPS_COUNT_HZ,
1703 };
1704
1705 static u64 kvm_vz_get_one_regs_contextconfig[] = {
1706         KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1707 #ifdef CONFIG_64BIT
1708         KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1709 #endif
1710 };
1711
1712 static u64 kvm_vz_get_one_regs_segments[] = {
1713         KVM_REG_MIPS_CP0_SEGCTL0,
1714         KVM_REG_MIPS_CP0_SEGCTL1,
1715         KVM_REG_MIPS_CP0_SEGCTL2,
1716 };
1717
1718 static u64 kvm_vz_get_one_regs_htw[] = {
1719         KVM_REG_MIPS_CP0_PWBASE,
1720         KVM_REG_MIPS_CP0_PWFIELD,
1721         KVM_REG_MIPS_CP0_PWSIZE,
1722         KVM_REG_MIPS_CP0_PWCTL,
1723 };
1724
1725 static u64 kvm_vz_get_one_regs_kscratch[] = {
1726         KVM_REG_MIPS_CP0_KSCRATCH1,
1727         KVM_REG_MIPS_CP0_KSCRATCH2,
1728         KVM_REG_MIPS_CP0_KSCRATCH3,
1729         KVM_REG_MIPS_CP0_KSCRATCH4,
1730         KVM_REG_MIPS_CP0_KSCRATCH5,
1731         KVM_REG_MIPS_CP0_KSCRATCH6,
1732 };
1733
1734 static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1735 {
1736         unsigned long ret;
1737
1738         ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1739         if (cpu_guest_has_userlocal)
1740                 ++ret;
1741         if (cpu_guest_has_badinstr)
1742                 ++ret;
1743         if (cpu_guest_has_badinstrp)
1744                 ++ret;
1745         if (cpu_guest_has_contextconfig)
1746                 ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1747         if (cpu_guest_has_segments)
1748                 ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1749         if (cpu_guest_has_htw || cpu_guest_has_ldpte)
1750                 ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1751         if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
1752                 ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
1753         ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1754
1755         return ret;
1756 }
1757
1758 static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1759 {
1760         u64 index;
1761         unsigned int i;
1762
1763         if (copy_to_user(indices, kvm_vz_get_one_regs,
1764                          sizeof(kvm_vz_get_one_regs)))
1765                 return -EFAULT;
1766         indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1767
1768         if (cpu_guest_has_userlocal) {
1769                 index = KVM_REG_MIPS_CP0_USERLOCAL;
1770                 if (copy_to_user(indices, &index, sizeof(index)))
1771                         return -EFAULT;
1772                 ++indices;
1773         }
1774         if (cpu_guest_has_badinstr) {
1775                 index = KVM_REG_MIPS_CP0_BADINSTR;
1776                 if (copy_to_user(indices, &index, sizeof(index)))
1777                         return -EFAULT;
1778                 ++indices;
1779         }
1780         if (cpu_guest_has_badinstrp) {
1781                 index = KVM_REG_MIPS_CP0_BADINSTRP;
1782                 if (copy_to_user(indices, &index, sizeof(index)))
1783                         return -EFAULT;
1784                 ++indices;
1785         }
1786         if (cpu_guest_has_contextconfig) {
1787                 if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1788                                  sizeof(kvm_vz_get_one_regs_contextconfig)))
1789                         return -EFAULT;
1790                 indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1791         }
1792         if (cpu_guest_has_segments) {
1793                 if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1794                                  sizeof(kvm_vz_get_one_regs_segments)))
1795                         return -EFAULT;
1796                 indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1797         }
1798         if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
1799                 if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
1800                                  sizeof(kvm_vz_get_one_regs_htw)))
1801                         return -EFAULT;
1802                 indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1803         }
1804         if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
1805                 for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
1806                         index = KVM_REG_MIPS_CP0_MAAR(i);
1807                         if (copy_to_user(indices, &index, sizeof(index)))
1808                                 return -EFAULT;
1809                         ++indices;
1810                 }
1811
1812                 index = KVM_REG_MIPS_CP0_MAARI;
1813                 if (copy_to_user(indices, &index, sizeof(index)))
1814                         return -EFAULT;
1815                 ++indices;
1816         }
1817         for (i = 0; i < 6; ++i) {
1818                 if (!cpu_guest_has_kscr(i + 2))
1819                         continue;
1820
1821                 if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1822                                  sizeof(kvm_vz_get_one_regs_kscratch[i])))
1823                         return -EFAULT;
1824                 ++indices;
1825         }
1826
1827         return 0;
1828 }
1829
1830 static inline s64 entrylo_kvm_to_user(unsigned long v)
1831 {
1832         s64 mask, ret = v;
1833
1834         if (BITS_PER_LONG == 32) {
1835                 /*
1836                  * KVM API exposes 64-bit version of the register, so move the
1837                  * RI/XI bits up into place.
1838                  */
1839                 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1840                 ret &= ~mask;
1841                 ret |= ((s64)v & mask) << 32;
1842         }
1843         return ret;
1844 }
1845
1846 static inline unsigned long entrylo_user_to_kvm(s64 v)
1847 {
1848         unsigned long mask, ret = v;
1849
1850         if (BITS_PER_LONG == 32) {
1851                 /*
1852                  * KVM API exposes 64-bit versiono of the register, so move the
1853                  * RI/XI bits down into place.
1854                  */
1855                 mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1856                 ret &= ~mask;
1857                 ret |= (v >> 32) & mask;
1858         }
1859         return ret;
1860 }
1861
1862 static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1863                               const struct kvm_one_reg *reg,
1864                               s64 *v)
1865 {
1866         struct mips_coproc *cop0 = vcpu->arch.cop0;
1867         unsigned int idx;
1868
1869         switch (reg->id) {
1870         case KVM_REG_MIPS_CP0_INDEX:
1871                 *v = (long)read_gc0_index();
1872                 break;
1873         case KVM_REG_MIPS_CP0_ENTRYLO0:
1874                 *v = entrylo_kvm_to_user(read_gc0_entrylo0());
1875                 break;
1876         case KVM_REG_MIPS_CP0_ENTRYLO1:
1877                 *v = entrylo_kvm_to_user(read_gc0_entrylo1());
1878                 break;
1879         case KVM_REG_MIPS_CP0_CONTEXT:
1880                 *v = (long)read_gc0_context();
1881                 break;
1882         case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1883                 if (!cpu_guest_has_contextconfig)
1884                         return -EINVAL;
1885                 *v = read_gc0_contextconfig();
1886                 break;
1887         case KVM_REG_MIPS_CP0_USERLOCAL:
1888                 if (!cpu_guest_has_userlocal)
1889                         return -EINVAL;
1890                 *v = read_gc0_userlocal();
1891                 break;
1892 #ifdef CONFIG_64BIT
1893         case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1894                 if (!cpu_guest_has_contextconfig)
1895                         return -EINVAL;
1896                 *v = read_gc0_xcontextconfig();
1897                 break;
1898 #endif
1899         case KVM_REG_MIPS_CP0_PAGEMASK:
1900                 *v = (long)read_gc0_pagemask();
1901                 break;
1902         case KVM_REG_MIPS_CP0_PAGEGRAIN:
1903                 *v = (long)read_gc0_pagegrain();
1904                 break;
1905         case KVM_REG_MIPS_CP0_SEGCTL0:
1906                 if (!cpu_guest_has_segments)
1907                         return -EINVAL;
1908                 *v = read_gc0_segctl0();
1909                 break;
1910         case KVM_REG_MIPS_CP0_SEGCTL1:
1911                 if (!cpu_guest_has_segments)
1912                         return -EINVAL;
1913                 *v = read_gc0_segctl1();
1914                 break;
1915         case KVM_REG_MIPS_CP0_SEGCTL2:
1916                 if (!cpu_guest_has_segments)
1917                         return -EINVAL;
1918                 *v = read_gc0_segctl2();
1919                 break;
1920         case KVM_REG_MIPS_CP0_PWBASE:
1921                 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1922                         return -EINVAL;
1923                 *v = read_gc0_pwbase();
1924                 break;
1925         case KVM_REG_MIPS_CP0_PWFIELD:
1926                 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1927                         return -EINVAL;
1928                 *v = read_gc0_pwfield();
1929                 break;
1930         case KVM_REG_MIPS_CP0_PWSIZE:
1931                 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1932                         return -EINVAL;
1933                 *v = read_gc0_pwsize();
1934                 break;
1935         case KVM_REG_MIPS_CP0_WIRED:
1936                 *v = (long)read_gc0_wired();
1937                 break;
1938         case KVM_REG_MIPS_CP0_PWCTL:
1939                 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1940                         return -EINVAL;
1941                 *v = read_gc0_pwctl();
1942                 break;
1943         case KVM_REG_MIPS_CP0_HWRENA:
1944                 *v = (long)read_gc0_hwrena();
1945                 break;
1946         case KVM_REG_MIPS_CP0_BADVADDR:
1947                 *v = (long)read_gc0_badvaddr();
1948                 break;
1949         case KVM_REG_MIPS_CP0_BADINSTR:
1950                 if (!cpu_guest_has_badinstr)
1951                         return -EINVAL;
1952                 *v = read_gc0_badinstr();
1953                 break;
1954         case KVM_REG_MIPS_CP0_BADINSTRP:
1955                 if (!cpu_guest_has_badinstrp)
1956                         return -EINVAL;
1957                 *v = read_gc0_badinstrp();
1958                 break;
1959         case KVM_REG_MIPS_CP0_COUNT:
1960                 *v = kvm_mips_read_count(vcpu);
1961                 break;
1962         case KVM_REG_MIPS_CP0_ENTRYHI:
1963                 *v = (long)read_gc0_entryhi();
1964                 break;
1965         case KVM_REG_MIPS_CP0_COMPARE:
1966                 *v = (long)read_gc0_compare();
1967                 break;
1968         case KVM_REG_MIPS_CP0_STATUS:
1969                 *v = (long)read_gc0_status();
1970                 break;
1971         case KVM_REG_MIPS_CP0_INTCTL:
1972                 *v = read_gc0_intctl();
1973                 break;
1974         case KVM_REG_MIPS_CP0_CAUSE:
1975                 *v = (long)read_gc0_cause();
1976                 break;
1977         case KVM_REG_MIPS_CP0_EPC:
1978                 *v = (long)read_gc0_epc();
1979                 break;
1980         case KVM_REG_MIPS_CP0_PRID:
1981                 switch (boot_cpu_type()) {
1982                 case CPU_CAVIUM_OCTEON3:
1983                         /* Octeon III has a read-only guest.PRid */
1984                         *v = read_gc0_prid();
1985                         break;
1986                 default:
1987                         *v = (long)kvm_read_c0_guest_prid(cop0);
1988                         break;
1989                 }
1990                 break;
1991         case KVM_REG_MIPS_CP0_EBASE:
1992                 *v = kvm_vz_read_gc0_ebase();
1993                 break;
1994         case KVM_REG_MIPS_CP0_CONFIG:
1995                 *v = read_gc0_config();
1996                 break;
1997         case KVM_REG_MIPS_CP0_CONFIG1:
1998                 if (!cpu_guest_has_conf1)
1999                         return -EINVAL;
2000                 *v = read_gc0_config1();
2001                 break;
2002         case KVM_REG_MIPS_CP0_CONFIG2:
2003                 if (!cpu_guest_has_conf2)
2004                         return -EINVAL;
2005                 *v = read_gc0_config2();
2006                 break;
2007         case KVM_REG_MIPS_CP0_CONFIG3:
2008                 if (!cpu_guest_has_conf3)
2009                         return -EINVAL;
2010                 *v = read_gc0_config3();
2011                 break;
2012         case KVM_REG_MIPS_CP0_CONFIG4:
2013                 if (!cpu_guest_has_conf4)
2014                         return -EINVAL;
2015                 *v = read_gc0_config4();
2016                 break;
2017         case KVM_REG_MIPS_CP0_CONFIG5:
2018                 if (!cpu_guest_has_conf5)
2019                         return -EINVAL;
2020                 *v = read_gc0_config5();
2021                 break;
2022         case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2023                 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2024                         return -EINVAL;
2025                 idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2026                 if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2027                         return -EINVAL;
2028                 *v = vcpu->arch.maar[idx];
2029                 break;
2030         case KVM_REG_MIPS_CP0_MAARI:
2031                 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2032                         return -EINVAL;
2033                 *v = kvm_read_sw_gc0_maari(vcpu->arch.cop0);
2034                 break;
2035 #ifdef CONFIG_64BIT
2036         case KVM_REG_MIPS_CP0_XCONTEXT:
2037                 *v = read_gc0_xcontext();
2038                 break;
2039 #endif
2040         case KVM_REG_MIPS_CP0_ERROREPC:
2041                 *v = (long)read_gc0_errorepc();
2042                 break;
2043         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2044                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2045                 if (!cpu_guest_has_kscr(idx))
2046                         return -EINVAL;
2047                 switch (idx) {
2048                 case 2:
2049                         *v = (long)read_gc0_kscratch1();
2050                         break;
2051                 case 3:
2052                         *v = (long)read_gc0_kscratch2();
2053                         break;
2054                 case 4:
2055                         *v = (long)read_gc0_kscratch3();
2056                         break;
2057                 case 5:
2058                         *v = (long)read_gc0_kscratch4();
2059                         break;
2060                 case 6:
2061                         *v = (long)read_gc0_kscratch5();
2062                         break;
2063                 case 7:
2064                         *v = (long)read_gc0_kscratch6();
2065                         break;
2066                 }
2067                 break;
2068         case KVM_REG_MIPS_COUNT_CTL:
2069                 *v = vcpu->arch.count_ctl;
2070                 break;
2071         case KVM_REG_MIPS_COUNT_RESUME:
2072                 *v = ktime_to_ns(vcpu->arch.count_resume);
2073                 break;
2074         case KVM_REG_MIPS_COUNT_HZ:
2075                 *v = vcpu->arch.count_hz;
2076                 break;
2077         default:
2078                 return -EINVAL;
2079         }
2080         return 0;
2081 }
2082
2083 static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
2084                               const struct kvm_one_reg *reg,
2085                               s64 v)
2086 {
2087         struct mips_coproc *cop0 = vcpu->arch.cop0;
2088         unsigned int idx;
2089         int ret = 0;
2090         unsigned int cur, change;
2091
2092         switch (reg->id) {
2093         case KVM_REG_MIPS_CP0_INDEX:
2094                 write_gc0_index(v);
2095                 break;
2096         case KVM_REG_MIPS_CP0_ENTRYLO0:
2097                 write_gc0_entrylo0(entrylo_user_to_kvm(v));
2098                 break;
2099         case KVM_REG_MIPS_CP0_ENTRYLO1:
2100                 write_gc0_entrylo1(entrylo_user_to_kvm(v));
2101                 break;
2102         case KVM_REG_MIPS_CP0_CONTEXT:
2103                 write_gc0_context(v);
2104                 break;
2105         case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
2106                 if (!cpu_guest_has_contextconfig)
2107                         return -EINVAL;
2108                 write_gc0_contextconfig(v);
2109                 break;
2110         case KVM_REG_MIPS_CP0_USERLOCAL:
2111                 if (!cpu_guest_has_userlocal)
2112                         return -EINVAL;
2113                 write_gc0_userlocal(v);
2114                 break;
2115 #ifdef CONFIG_64BIT
2116         case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
2117                 if (!cpu_guest_has_contextconfig)
2118                         return -EINVAL;
2119                 write_gc0_xcontextconfig(v);
2120                 break;
2121 #endif
2122         case KVM_REG_MIPS_CP0_PAGEMASK:
2123                 write_gc0_pagemask(v);
2124                 break;
2125         case KVM_REG_MIPS_CP0_PAGEGRAIN:
2126                 write_gc0_pagegrain(v);
2127                 break;
2128         case KVM_REG_MIPS_CP0_SEGCTL0:
2129                 if (!cpu_guest_has_segments)
2130                         return -EINVAL;
2131                 write_gc0_segctl0(v);
2132                 break;
2133         case KVM_REG_MIPS_CP0_SEGCTL1:
2134                 if (!cpu_guest_has_segments)
2135                         return -EINVAL;
2136                 write_gc0_segctl1(v);
2137                 break;
2138         case KVM_REG_MIPS_CP0_SEGCTL2:
2139                 if (!cpu_guest_has_segments)
2140                         return -EINVAL;
2141                 write_gc0_segctl2(v);
2142                 break;
2143         case KVM_REG_MIPS_CP0_PWBASE:
2144                 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2145                         return -EINVAL;
2146                 write_gc0_pwbase(v);
2147                 break;
2148         case KVM_REG_MIPS_CP0_PWFIELD:
2149                 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2150                         return -EINVAL;
2151                 write_gc0_pwfield(v);
2152                 break;
2153         case KVM_REG_MIPS_CP0_PWSIZE:
2154                 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2155                         return -EINVAL;
2156                 write_gc0_pwsize(v);
2157                 break;
2158         case KVM_REG_MIPS_CP0_WIRED:
2159                 change_gc0_wired(MIPSR6_WIRED_WIRED, v);
2160                 break;
2161         case KVM_REG_MIPS_CP0_PWCTL:
2162                 if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2163                         return -EINVAL;
2164                 write_gc0_pwctl(v);
2165                 break;
2166         case KVM_REG_MIPS_CP0_HWRENA:
2167                 write_gc0_hwrena(v);
2168                 break;
2169         case KVM_REG_MIPS_CP0_BADVADDR:
2170                 write_gc0_badvaddr(v);
2171                 break;
2172         case KVM_REG_MIPS_CP0_BADINSTR:
2173                 if (!cpu_guest_has_badinstr)
2174                         return -EINVAL;
2175                 write_gc0_badinstr(v);
2176                 break;
2177         case KVM_REG_MIPS_CP0_BADINSTRP:
2178                 if (!cpu_guest_has_badinstrp)
2179                         return -EINVAL;
2180                 write_gc0_badinstrp(v);
2181                 break;
2182         case KVM_REG_MIPS_CP0_COUNT:
2183                 kvm_mips_write_count(vcpu, v);
2184                 break;
2185         case KVM_REG_MIPS_CP0_ENTRYHI:
2186                 write_gc0_entryhi(v);
2187                 break;
2188         case KVM_REG_MIPS_CP0_COMPARE:
2189                 kvm_mips_write_compare(vcpu, v, false);
2190                 break;
2191         case KVM_REG_MIPS_CP0_STATUS:
2192                 write_gc0_status(v);
2193                 break;
2194         case KVM_REG_MIPS_CP0_INTCTL:
2195                 write_gc0_intctl(v);
2196                 break;
2197         case KVM_REG_MIPS_CP0_CAUSE:
2198                 /*
2199                  * If the timer is stopped or started (DC bit) it must look
2200                  * atomic with changes to the timer interrupt pending bit (TI).
2201                  * A timer interrupt should not happen in between.
2202                  */
2203                 if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
2204                         if (v & CAUSEF_DC) {
2205                                 /* disable timer first */
2206                                 kvm_mips_count_disable_cause(vcpu);
2207                                 change_gc0_cause((u32)~CAUSEF_DC, v);
2208                         } else {
2209                                 /* enable timer last */
2210                                 change_gc0_cause((u32)~CAUSEF_DC, v);
2211                                 kvm_mips_count_enable_cause(vcpu);
2212                         }
2213                 } else {
2214                         write_gc0_cause(v);
2215                 }
2216                 break;
2217         case KVM_REG_MIPS_CP0_EPC:
2218                 write_gc0_epc(v);
2219                 break;
2220         case KVM_REG_MIPS_CP0_PRID:
2221                 switch (boot_cpu_type()) {
2222                 case CPU_CAVIUM_OCTEON3:
2223                         /* Octeon III has a guest.PRid, but its read-only */
2224                         break;
2225                 default:
2226                         kvm_write_c0_guest_prid(cop0, v);
2227                         break;
2228                 }
2229                 break;
2230         case KVM_REG_MIPS_CP0_EBASE:
2231                 kvm_vz_write_gc0_ebase(v);
2232                 break;
2233         case KVM_REG_MIPS_CP0_CONFIG:
2234                 cur = read_gc0_config();
2235                 change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
2236                 if (change) {
2237                         v = cur ^ change;
2238                         write_gc0_config(v);
2239                 }
2240                 break;
2241         case KVM_REG_MIPS_CP0_CONFIG1:
2242                 if (!cpu_guest_has_conf1)
2243                         break;
2244                 cur = read_gc0_config1();
2245                 change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
2246                 if (change) {
2247                         v = cur ^ change;
2248                         write_gc0_config1(v);
2249                 }
2250                 break;
2251         case KVM_REG_MIPS_CP0_CONFIG2:
2252                 if (!cpu_guest_has_conf2)
2253                         break;
2254                 cur = read_gc0_config2();
2255                 change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
2256                 if (change) {
2257                         v = cur ^ change;
2258                         write_gc0_config2(v);
2259                 }
2260                 break;
2261         case KVM_REG_MIPS_CP0_CONFIG3:
2262                 if (!cpu_guest_has_conf3)
2263                         break;
2264                 cur = read_gc0_config3();
2265                 change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
2266                 if (change) {
2267                         v = cur ^ change;
2268                         write_gc0_config3(v);
2269                 }
2270                 break;
2271         case KVM_REG_MIPS_CP0_CONFIG4:
2272                 if (!cpu_guest_has_conf4)
2273                         break;
2274                 cur = read_gc0_config4();
2275                 change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
2276                 if (change) {
2277                         v = cur ^ change;
2278                         write_gc0_config4(v);
2279                 }
2280                 break;
2281         case KVM_REG_MIPS_CP0_CONFIG5:
2282                 if (!cpu_guest_has_conf5)
2283                         break;
2284                 cur = read_gc0_config5();
2285                 change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
2286                 if (change) {
2287                         v = cur ^ change;
2288                         write_gc0_config5(v);
2289                 }
2290                 break;
2291         case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2292                 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2293                         return -EINVAL;
2294                 idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2295                 if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2296                         return -EINVAL;
2297                 vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
2298                 break;
2299         case KVM_REG_MIPS_CP0_MAARI:
2300                 if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2301                         return -EINVAL;
2302                 kvm_write_maari(vcpu, v);
2303                 break;
2304 #ifdef CONFIG_64BIT
2305         case KVM_REG_MIPS_CP0_XCONTEXT:
2306                 write_gc0_xcontext(v);
2307                 break;
2308 #endif
2309         case KVM_REG_MIPS_CP0_ERROREPC:
2310                 write_gc0_errorepc(v);
2311                 break;
2312         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2313                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2314                 if (!cpu_guest_has_kscr(idx))
2315                         return -EINVAL;
2316                 switch (idx) {
2317                 case 2:
2318                         write_gc0_kscratch1(v);
2319                         break;
2320                 case 3:
2321                         write_gc0_kscratch2(v);
2322                         break;
2323                 case 4:
2324                         write_gc0_kscratch3(v);
2325                         break;
2326                 case 5:
2327                         write_gc0_kscratch4(v);
2328                         break;
2329                 case 6:
2330                         write_gc0_kscratch5(v);
2331                         break;
2332                 case 7:
2333                         write_gc0_kscratch6(v);
2334                         break;
2335                 }
2336                 break;
2337         case KVM_REG_MIPS_COUNT_CTL:
2338                 ret = kvm_mips_set_count_ctl(vcpu, v);
2339                 break;
2340         case KVM_REG_MIPS_COUNT_RESUME:
2341                 ret = kvm_mips_set_count_resume(vcpu, v);
2342                 break;
2343         case KVM_REG_MIPS_COUNT_HZ:
2344                 ret = kvm_mips_set_count_hz(vcpu, v);
2345                 break;
2346         default:
2347                 return -EINVAL;
2348         }
2349         return ret;
2350 }
2351
2352 #define guestid_cache(cpu)      (cpu_data[cpu].guestid_cache)
2353 static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
2354 {
2355         unsigned long guestid = guestid_cache(cpu);
2356
2357         if (!(++guestid & GUESTID_MASK)) {
2358                 if (cpu_has_vtag_icache)
2359                         flush_icache_all();
2360
2361                 if (!guestid)           /* fix version if needed */
2362                         guestid = GUESTID_FIRST_VERSION;
2363
2364                 ++guestid;              /* guestid 0 reserved for root */
2365
2366                 /* start new guestid cycle */
2367                 kvm_vz_local_flush_roottlb_all_guests();
2368                 kvm_vz_local_flush_guesttlb_all();
2369         }
2370
2371         guestid_cache(cpu) = guestid;
2372 }
2373
2374 /* Returns 1 if the guest TLB may be clobbered */
2375 static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
2376 {
2377         int ret = 0;
2378         int i;
2379
2380         if (!kvm_request_pending(vcpu))
2381                 return 0;
2382
2383         if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2384                 if (cpu_has_guestid) {
2385                         /* Drop all GuestIDs for this VCPU */
2386                         for_each_possible_cpu(i)
2387                                 vcpu->arch.vzguestid[i] = 0;
2388                         /* This will clobber guest TLB contents too */
2389                         ret = 1;
2390                 }
2391                 /*
2392                  * For Root ASID Dealias (RAD) we don't do anything here, but we
2393                  * still need the request to ensure we recheck asid_flush_mask.
2394                  * We can still return 0 as only the root TLB will be affected
2395                  * by a root ASID flush.
2396                  */
2397         }
2398
2399         return ret;
2400 }
2401
2402 static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
2403 {
2404         unsigned int wired = read_gc0_wired();
2405         struct kvm_mips_tlb *tlbs;
2406         int i;
2407
2408         /* Expand the wired TLB array if necessary */
2409         wired &= MIPSR6_WIRED_WIRED;
2410         if (wired > vcpu->arch.wired_tlb_limit) {
2411                 tlbs = krealloc(vcpu->arch.wired_tlb, wired *
2412                                 sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
2413                 if (WARN_ON(!tlbs)) {
2414                         /* Save whatever we can */
2415                         wired = vcpu->arch.wired_tlb_limit;
2416                 } else {
2417                         vcpu->arch.wired_tlb = tlbs;
2418                         vcpu->arch.wired_tlb_limit = wired;
2419                 }
2420         }
2421
2422         if (wired)
2423                 /* Save wired entries from the guest TLB */
2424                 kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
2425         /* Invalidate any dropped entries since last time */
2426         for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
2427                 vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
2428                 vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
2429                 vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
2430                 vcpu->arch.wired_tlb[i].tlb_mask = 0;
2431         }
2432         vcpu->arch.wired_tlb_used = wired;
2433 }
2434
2435 static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2436 {
2437         /* Load wired entries into the guest TLB */
2438         if (vcpu->arch.wired_tlb)
2439                 kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2440                                      vcpu->arch.wired_tlb_used);
2441 }
2442
2443 static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2444 {
2445         struct kvm *kvm = vcpu->kvm;
2446         struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2447         bool migrated;
2448
2449         /*
2450          * Are we entering guest context on a different CPU to last time?
2451          * If so, the VCPU's guest TLB state on this CPU may be stale.
2452          */
2453         migrated = (vcpu->arch.last_exec_cpu != cpu);
2454         vcpu->arch.last_exec_cpu = cpu;
2455
2456         /*
2457          * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2458          * remains set until another vcpu is loaded in.  As a rule GuestRID
2459          * remains zeroed when in root context unless the kernel is busy
2460          * manipulating guest tlb entries.
2461          */
2462         if (cpu_has_guestid) {
2463                 /*
2464                  * Check if our GuestID is of an older version and thus invalid.
2465                  *
2466                  * We also discard the stored GuestID if we've executed on
2467                  * another CPU, as the guest mappings may have changed without
2468                  * hypervisor knowledge.
2469                  */
2470                 if (migrated ||
2471                     (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2472                                         GUESTID_VERSION_MASK) {
2473                         kvm_vz_get_new_guestid(cpu, vcpu);
2474                         vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2475                         trace_kvm_guestid_change(vcpu,
2476                                                  vcpu->arch.vzguestid[cpu]);
2477                 }
2478
2479                 /* Restore GuestID */
2480                 change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2481         } else {
2482                 /*
2483                  * The Guest TLB only stores a single guest's TLB state, so
2484                  * flush it if another VCPU has executed on this CPU.
2485                  *
2486                  * We also flush if we've executed on another CPU, as the guest
2487                  * mappings may have changed without hypervisor knowledge.
2488                  */
2489                 if (migrated || last_exec_vcpu[cpu] != vcpu)
2490                         kvm_vz_local_flush_guesttlb_all();
2491                 last_exec_vcpu[cpu] = vcpu;
2492
2493                 /*
2494                  * Root ASID dealiases guest GPA mappings in the root TLB.
2495                  * Allocate new root ASID if needed.
2496                  */
2497                 if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask))
2498                         get_new_mmu_context(gpa_mm);
2499                 else
2500                         check_mmu_context(gpa_mm);
2501         }
2502 }
2503
2504 static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2505 {
2506         struct mips_coproc *cop0 = vcpu->arch.cop0;
2507         bool migrated, all;
2508
2509         /*
2510          * Have we migrated to a different CPU?
2511          * If so, any old guest TLB state may be stale.
2512          */
2513         migrated = (vcpu->arch.last_sched_cpu != cpu);
2514
2515         /*
2516          * Was this the last VCPU to run on this CPU?
2517          * If not, any old guest state from this VCPU will have been clobbered.
2518          */
2519         all = migrated || (last_vcpu[cpu] != vcpu);
2520         last_vcpu[cpu] = vcpu;
2521
2522         /*
2523          * Restore CP0_Wired unconditionally as we clear it after use, and
2524          * restore wired guest TLB entries (while in guest context).
2525          */
2526         kvm_restore_gc0_wired(cop0);
2527         if (current->flags & PF_VCPU) {
2528                 tlbw_use_hazard();
2529                 kvm_vz_vcpu_load_tlb(vcpu, cpu);
2530                 kvm_vz_vcpu_load_wired(vcpu);
2531         }
2532
2533         /*
2534          * Restore timer state regardless, as e.g. Cause.TI can change over time
2535          * if left unmaintained.
2536          */
2537         kvm_vz_restore_timer(vcpu);
2538
2539         /* Set MC bit if we want to trace guest mode changes */
2540         if (kvm_trace_guest_mode_change)
2541                 set_c0_guestctl0(MIPS_GCTL0_MC);
2542         else
2543                 clear_c0_guestctl0(MIPS_GCTL0_MC);
2544
2545         /* Don't bother restoring registers multiple times unless necessary */
2546         if (!all)
2547                 return 0;
2548
2549         /*
2550          * Restore config registers first, as some implementations restrict
2551          * writes to other registers when the corresponding feature bits aren't
2552          * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2553          */
2554         kvm_restore_gc0_config(cop0);
2555         if (cpu_guest_has_conf1)
2556                 kvm_restore_gc0_config1(cop0);
2557         if (cpu_guest_has_conf2)
2558                 kvm_restore_gc0_config2(cop0);
2559         if (cpu_guest_has_conf3)
2560                 kvm_restore_gc0_config3(cop0);
2561         if (cpu_guest_has_conf4)
2562                 kvm_restore_gc0_config4(cop0);
2563         if (cpu_guest_has_conf5)
2564                 kvm_restore_gc0_config5(cop0);
2565         if (cpu_guest_has_conf6)
2566                 kvm_restore_gc0_config6(cop0);
2567         if (cpu_guest_has_conf7)
2568                 kvm_restore_gc0_config7(cop0);
2569
2570         kvm_restore_gc0_index(cop0);
2571         kvm_restore_gc0_entrylo0(cop0);
2572         kvm_restore_gc0_entrylo1(cop0);
2573         kvm_restore_gc0_context(cop0);
2574         if (cpu_guest_has_contextconfig)
2575                 kvm_restore_gc0_contextconfig(cop0);
2576 #ifdef CONFIG_64BIT
2577         kvm_restore_gc0_xcontext(cop0);
2578         if (cpu_guest_has_contextconfig)
2579                 kvm_restore_gc0_xcontextconfig(cop0);
2580 #endif
2581         kvm_restore_gc0_pagemask(cop0);
2582         kvm_restore_gc0_pagegrain(cop0);
2583         kvm_restore_gc0_hwrena(cop0);
2584         kvm_restore_gc0_badvaddr(cop0);
2585         kvm_restore_gc0_entryhi(cop0);
2586         kvm_restore_gc0_status(cop0);
2587         kvm_restore_gc0_intctl(cop0);
2588         kvm_restore_gc0_epc(cop0);
2589         kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2590         if (cpu_guest_has_userlocal)
2591                 kvm_restore_gc0_userlocal(cop0);
2592
2593         kvm_restore_gc0_errorepc(cop0);
2594
2595         /* restore KScratch registers if enabled in guest */
2596         if (cpu_guest_has_conf4) {
2597                 if (cpu_guest_has_kscr(2))
2598                         kvm_restore_gc0_kscratch1(cop0);
2599                 if (cpu_guest_has_kscr(3))
2600                         kvm_restore_gc0_kscratch2(cop0);
2601                 if (cpu_guest_has_kscr(4))
2602                         kvm_restore_gc0_kscratch3(cop0);
2603                 if (cpu_guest_has_kscr(5))
2604                         kvm_restore_gc0_kscratch4(cop0);
2605                 if (cpu_guest_has_kscr(6))
2606                         kvm_restore_gc0_kscratch5(cop0);
2607                 if (cpu_guest_has_kscr(7))
2608                         kvm_restore_gc0_kscratch6(cop0);
2609         }
2610
2611         if (cpu_guest_has_badinstr)
2612                 kvm_restore_gc0_badinstr(cop0);
2613         if (cpu_guest_has_badinstrp)
2614                 kvm_restore_gc0_badinstrp(cop0);
2615
2616         if (cpu_guest_has_segments) {
2617                 kvm_restore_gc0_segctl0(cop0);
2618                 kvm_restore_gc0_segctl1(cop0);
2619                 kvm_restore_gc0_segctl2(cop0);
2620         }
2621
2622         /* restore HTW registers */
2623         if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
2624                 kvm_restore_gc0_pwbase(cop0);
2625                 kvm_restore_gc0_pwfield(cop0);
2626                 kvm_restore_gc0_pwsize(cop0);
2627                 kvm_restore_gc0_pwctl(cop0);
2628         }
2629
2630         /* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2631         if (cpu_has_guestctl2)
2632                 write_c0_guestctl2(
2633                         cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2634
2635         /*
2636          * We should clear linked load bit to break interrupted atomics. This
2637          * prevents a SC on the next VCPU from succeeding by matching a LL on
2638          * the previous VCPU.
2639          */
2640         if (cpu_guest_has_rw_llb)
2641                 write_gc0_lladdr(0);
2642
2643         return 0;
2644 }
2645
2646 static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2647 {
2648         struct mips_coproc *cop0 = vcpu->arch.cop0;
2649
2650         if (current->flags & PF_VCPU)
2651                 kvm_vz_vcpu_save_wired(vcpu);
2652
2653         kvm_lose_fpu(vcpu);
2654
2655         kvm_save_gc0_index(cop0);
2656         kvm_save_gc0_entrylo0(cop0);
2657         kvm_save_gc0_entrylo1(cop0);
2658         kvm_save_gc0_context(cop0);
2659         if (cpu_guest_has_contextconfig)
2660                 kvm_save_gc0_contextconfig(cop0);
2661 #ifdef CONFIG_64BIT
2662         kvm_save_gc0_xcontext(cop0);
2663         if (cpu_guest_has_contextconfig)
2664                 kvm_save_gc0_xcontextconfig(cop0);
2665 #endif
2666         kvm_save_gc0_pagemask(cop0);
2667         kvm_save_gc0_pagegrain(cop0);
2668         kvm_save_gc0_wired(cop0);
2669         /* allow wired TLB entries to be overwritten */
2670         clear_gc0_wired(MIPSR6_WIRED_WIRED);
2671         kvm_save_gc0_hwrena(cop0);
2672         kvm_save_gc0_badvaddr(cop0);
2673         kvm_save_gc0_entryhi(cop0);
2674         kvm_save_gc0_status(cop0);
2675         kvm_save_gc0_intctl(cop0);
2676         kvm_save_gc0_epc(cop0);
2677         kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2678         if (cpu_guest_has_userlocal)
2679                 kvm_save_gc0_userlocal(cop0);
2680
2681         /* only save implemented config registers */
2682         kvm_save_gc0_config(cop0);
2683         if (cpu_guest_has_conf1)
2684                 kvm_save_gc0_config1(cop0);
2685         if (cpu_guest_has_conf2)
2686                 kvm_save_gc0_config2(cop0);
2687         if (cpu_guest_has_conf3)
2688                 kvm_save_gc0_config3(cop0);
2689         if (cpu_guest_has_conf4)
2690                 kvm_save_gc0_config4(cop0);
2691         if (cpu_guest_has_conf5)
2692                 kvm_save_gc0_config5(cop0);
2693         if (cpu_guest_has_conf6)
2694                 kvm_save_gc0_config6(cop0);
2695         if (cpu_guest_has_conf7)
2696                 kvm_save_gc0_config7(cop0);
2697
2698         kvm_save_gc0_errorepc(cop0);
2699
2700         /* save KScratch registers if enabled in guest */
2701         if (cpu_guest_has_conf4) {
2702                 if (cpu_guest_has_kscr(2))
2703                         kvm_save_gc0_kscratch1(cop0);
2704                 if (cpu_guest_has_kscr(3))
2705                         kvm_save_gc0_kscratch2(cop0);
2706                 if (cpu_guest_has_kscr(4))
2707                         kvm_save_gc0_kscratch3(cop0);
2708                 if (cpu_guest_has_kscr(5))
2709                         kvm_save_gc0_kscratch4(cop0);
2710                 if (cpu_guest_has_kscr(6))
2711                         kvm_save_gc0_kscratch5(cop0);
2712                 if (cpu_guest_has_kscr(7))
2713                         kvm_save_gc0_kscratch6(cop0);
2714         }
2715
2716         if (cpu_guest_has_badinstr)
2717                 kvm_save_gc0_badinstr(cop0);
2718         if (cpu_guest_has_badinstrp)
2719                 kvm_save_gc0_badinstrp(cop0);
2720
2721         if (cpu_guest_has_segments) {
2722                 kvm_save_gc0_segctl0(cop0);
2723                 kvm_save_gc0_segctl1(cop0);
2724                 kvm_save_gc0_segctl2(cop0);
2725         }
2726
2727         /* save HTW registers if enabled in guest */
2728         if (cpu_guest_has_ldpte || (cpu_guest_has_htw &&
2729             kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) {
2730                 kvm_save_gc0_pwbase(cop0);
2731                 kvm_save_gc0_pwfield(cop0);
2732                 kvm_save_gc0_pwsize(cop0);
2733                 kvm_save_gc0_pwctl(cop0);
2734         }
2735
2736         kvm_vz_save_timer(vcpu);
2737
2738         /* save Root.GuestCtl2 in unused Guest guestctl2 register */
2739         if (cpu_has_guestctl2)
2740                 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2741                         read_c0_guestctl2();
2742
2743         return 0;
2744 }
2745
2746 /**
2747  * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2748  * @size:       Number of guest VTLB entries (0 < @size <= root VTLB entries).
2749  *
2750  * Attempt to resize the guest VTLB by writing guest Config registers. This is
2751  * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2752  * entries in the root VTLB.
2753  *
2754  * Returns:     The resulting guest VTLB size.
2755  */
2756 static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2757 {
2758         unsigned int config4 = 0, ret = 0, limit;
2759
2760         /* Write MMUSize - 1 into guest Config registers */
2761         if (cpu_guest_has_conf1)
2762                 change_gc0_config1(MIPS_CONF1_TLBS,
2763                                    (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2764         if (cpu_guest_has_conf4) {
2765                 config4 = read_gc0_config4();
2766                 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2767                     MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2768                         config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2769                         config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2770                                 MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2771                 } else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2772                            MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2773                         config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2774                         config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2775                                 MIPS_CONF4_MMUSIZEEXT_SHIFT;
2776                 }
2777                 write_gc0_config4(config4);
2778         }
2779
2780         /*
2781          * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2782          * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2783          * not dropped)
2784          */
2785         if (cpu_has_mips_r6) {
2786                 limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2787                                                 MIPSR6_WIRED_LIMIT_SHIFT;
2788                 if (size - 1 <= limit)
2789                         limit = 0;
2790                 write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2791         }
2792
2793         /* Read back MMUSize - 1 */
2794         back_to_back_c0_hazard();
2795         if (cpu_guest_has_conf1)
2796                 ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2797                                                 MIPS_CONF1_TLBS_SHIFT;
2798         if (config4) {
2799                 if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2800                     MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2801                         ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2802                                 MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2803                                 MIPS_CONF1_TLBS_SIZE;
2804                 else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2805                          MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2806                         ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2807                                 MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2808                                 MIPS_CONF1_TLBS_SIZE;
2809         }
2810         return ret + 1;
2811 }
2812
2813 static int kvm_vz_hardware_enable(void)
2814 {
2815         unsigned int mmu_size, guest_mmu_size, ftlb_size;
2816         u64 guest_cvmctl, cvmvmconfig;
2817
2818         switch (current_cpu_type()) {
2819         case CPU_CAVIUM_OCTEON3:
2820                 /* Set up guest timer/perfcount IRQ lines */
2821                 guest_cvmctl = read_gc0_cvmctl();
2822                 guest_cvmctl &= ~CVMCTL_IPTI;
2823                 guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
2824                 guest_cvmctl &= ~CVMCTL_IPPCI;
2825                 guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
2826                 write_gc0_cvmctl(guest_cvmctl);
2827
2828                 cvmvmconfig = read_c0_cvmvmconfig();
2829                 /* No I/O hole translation. */
2830                 cvmvmconfig |= CVMVMCONF_DGHT;
2831                 /* Halve the root MMU size */
2832                 mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2833                             >> CVMVMCONF_MMUSIZEM1_S) + 1;
2834                 guest_mmu_size = mmu_size / 2;
2835                 mmu_size -= guest_mmu_size;
2836                 cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2837                 cvmvmconfig |= mmu_size - 1;
2838                 write_c0_cvmvmconfig(cvmvmconfig);
2839
2840                 /* Update our records */
2841                 current_cpu_data.tlbsize = mmu_size;
2842                 current_cpu_data.tlbsizevtlb = mmu_size;
2843                 current_cpu_data.guest.tlbsize = guest_mmu_size;
2844
2845                 /* Flush moved entries in new (guest) context */
2846                 kvm_vz_local_flush_guesttlb_all();
2847                 break;
2848         default:
2849                 /*
2850                  * ImgTec cores tend to use a shared root/guest TLB. To avoid
2851                  * overlap of root wired and guest entries, the guest TLB may
2852                  * need resizing.
2853                  */
2854                 mmu_size = current_cpu_data.tlbsizevtlb;
2855                 ftlb_size = current_cpu_data.tlbsize - mmu_size;
2856
2857                 /* Try switching to maximum guest VTLB size for flush */
2858                 guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2859                 current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2860                 kvm_vz_local_flush_guesttlb_all();
2861
2862                 /*
2863                  * Reduce to make space for root wired entries and at least 2
2864                  * root non-wired entries. This does assume that long-term wired
2865                  * entries won't be added later.
2866                  */
2867                 guest_mmu_size = mmu_size - num_wired_entries() - 2;
2868                 guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2869                 current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2870
2871                 /*
2872                  * Write the VTLB size, but if another CPU has already written,
2873                  * check it matches or we won't provide a consistent view to the
2874                  * guest. If this ever happens it suggests an asymmetric number
2875                  * of wired entries.
2876                  */
2877                 if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2878                     WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2879                          "Available guest VTLB size mismatch"))
2880                         return -EINVAL;
2881                 break;
2882         }
2883
2884         /*
2885          * Enable virtualization features granting guest direct control of
2886          * certain features:
2887          * CP0=1:       Guest coprocessor 0 context.
2888          * AT=Guest:    Guest MMU.
2889          * CG=1:        Hit (virtual address) CACHE operations (optional).
2890          * CF=1:        Guest Config registers.
2891          * CGI=1:       Indexed flush CACHE operations (optional).
2892          */
2893         write_c0_guestctl0(MIPS_GCTL0_CP0 |
2894                            (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2895                            MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2896         if (cpu_has_guestctl0ext) {
2897                 if (current_cpu_type() != CPU_LOONGSON64)
2898                         set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2899                 else
2900                         clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2901         }
2902
2903         if (cpu_has_guestid) {
2904                 write_c0_guestctl1(0);
2905                 kvm_vz_local_flush_roottlb_all_guests();
2906
2907                 GUESTID_MASK = current_cpu_data.guestid_mask;
2908                 GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2909                 GUESTID_VERSION_MASK = ~GUESTID_MASK;
2910
2911                 current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2912         }
2913
2914         /* clear any pending injected virtual guest interrupts */
2915         if (cpu_has_guestctl2)
2916                 clear_c0_guestctl2(0x3f << 10);
2917
2918 #ifdef CONFIG_CPU_LOONGSON64
2919         /* Control guest CCA attribute */
2920         if (cpu_has_csr())
2921                 csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec);
2922 #endif
2923
2924         return 0;
2925 }
2926
2927 static void kvm_vz_hardware_disable(void)
2928 {
2929         u64 cvmvmconfig;
2930         unsigned int mmu_size;
2931
2932         /* Flush any remaining guest TLB entries */
2933         kvm_vz_local_flush_guesttlb_all();
2934
2935         switch (current_cpu_type()) {
2936         case CPU_CAVIUM_OCTEON3:
2937                 /*
2938                  * Allocate whole TLB for root. Existing guest TLB entries will
2939                  * change ownership to the root TLB. We should be safe though as
2940                  * they've already been flushed above while in guest TLB.
2941                  */
2942                 cvmvmconfig = read_c0_cvmvmconfig();
2943                 mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2944                             >> CVMVMCONF_MMUSIZEM1_S) + 1;
2945                 cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2946                 cvmvmconfig |= mmu_size - 1;
2947                 write_c0_cvmvmconfig(cvmvmconfig);
2948
2949                 /* Update our records */
2950                 current_cpu_data.tlbsize = mmu_size;
2951                 current_cpu_data.tlbsizevtlb = mmu_size;
2952                 current_cpu_data.guest.tlbsize = 0;
2953
2954                 /* Flush moved entries in new (root) context */
2955                 local_flush_tlb_all();
2956                 break;
2957         }
2958
2959         if (cpu_has_guestid) {
2960                 write_c0_guestctl1(0);
2961                 kvm_vz_local_flush_roottlb_all_guests();
2962         }
2963 }
2964
2965 static int kvm_vz_check_extension(struct kvm *kvm, long ext)
2966 {
2967         int r;
2968
2969         switch (ext) {
2970         case KVM_CAP_MIPS_VZ:
2971                 /* we wouldn't be here unless cpu_has_vz */
2972                 r = 1;
2973                 break;
2974 #ifdef CONFIG_64BIT
2975         case KVM_CAP_MIPS_64BIT:
2976                 /* We support 64-bit registers/operations and addresses */
2977                 r = 2;
2978                 break;
2979 #endif
2980         case KVM_CAP_IOEVENTFD:
2981                 r = 1;
2982                 break;
2983         default:
2984                 r = 0;
2985                 break;
2986         }
2987
2988         return r;
2989 }
2990
2991 static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
2992 {
2993         int i;
2994
2995         for_each_possible_cpu(i)
2996                 vcpu->arch.vzguestid[i] = 0;
2997
2998         return 0;
2999 }
3000
3001 static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
3002 {
3003         int cpu;
3004
3005         /*
3006          * If the VCPU is freed and reused as another VCPU, we don't want the
3007          * matching pointer wrongly hanging around in last_vcpu[] or
3008          * last_exec_vcpu[].
3009          */
3010         for_each_possible_cpu(cpu) {
3011                 if (last_vcpu[cpu] == vcpu)
3012                         last_vcpu[cpu] = NULL;
3013                 if (last_exec_vcpu[cpu] == vcpu)
3014                         last_exec_vcpu[cpu] = NULL;
3015         }
3016 }
3017
3018 static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
3019 {
3020         struct mips_coproc *cop0 = vcpu->arch.cop0;
3021         unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
3022
3023         /*
3024          * Start off the timer at the same frequency as the host timer, but the
3025          * soft timer doesn't handle frequencies greater than 1GHz yet.
3026          */
3027         if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
3028                 count_hz = mips_hpt_frequency;
3029         kvm_mips_init_count(vcpu, count_hz);
3030
3031         /*
3032          * Initialize guest register state to valid architectural reset state.
3033          */
3034
3035         /* PageGrain */
3036         if (cpu_has_mips_r5 || cpu_has_mips_r6)
3037                 kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
3038         /* Wired */
3039         if (cpu_has_mips_r6)
3040                 kvm_write_sw_gc0_wired(cop0,
3041                                        read_gc0_wired() & MIPSR6_WIRED_LIMIT);
3042         /* Status */
3043         kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
3044         if (cpu_has_mips_r5 || cpu_has_mips_r6)
3045                 kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
3046         /* IntCtl */
3047         kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
3048                                 (INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
3049         /* PRId */
3050         kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
3051         /* EBase */
3052         kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
3053         /* Config */
3054         kvm_save_gc0_config(cop0);
3055         /* architecturally writable (e.g. from guest) */
3056         kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
3057                                  _page_cachable_default >> _CACHE_SHIFT);
3058         /* architecturally read only, but maybe writable from root */
3059         kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
3060         if (cpu_guest_has_conf1) {
3061                 kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
3062                 /* Config1 */
3063                 kvm_save_gc0_config1(cop0);
3064                 /* architecturally read only, but maybe writable from root */
3065                 kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2    |
3066                                                MIPS_CONF1_MD    |
3067                                                MIPS_CONF1_PC    |
3068                                                MIPS_CONF1_WR    |
3069                                                MIPS_CONF1_CA    |
3070                                                MIPS_CONF1_FP);
3071         }
3072         if (cpu_guest_has_conf2) {
3073                 kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
3074                 /* Config2 */
3075                 kvm_save_gc0_config2(cop0);
3076         }
3077         if (cpu_guest_has_conf3) {
3078                 kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
3079                 /* Config3 */
3080                 kvm_save_gc0_config3(cop0);
3081                 /* architecturally writable (e.g. from guest) */
3082                 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
3083                 /* architecturally read only, but maybe writable from root */
3084                 kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA   |
3085                                                MIPS_CONF3_BPG   |
3086                                                MIPS_CONF3_ULRI  |
3087                                                MIPS_CONF3_DSP   |
3088                                                MIPS_CONF3_CTXTC |
3089                                                MIPS_CONF3_ITL   |
3090                                                MIPS_CONF3_LPA   |
3091                                                MIPS_CONF3_VEIC  |
3092                                                MIPS_CONF3_VINT  |
3093                                                MIPS_CONF3_SP    |
3094                                                MIPS_CONF3_CDMM  |
3095                                                MIPS_CONF3_MT    |
3096                                                MIPS_CONF3_SM    |
3097                                                MIPS_CONF3_TL);
3098         }
3099         if (cpu_guest_has_conf4) {
3100                 kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
3101                 /* Config4 */
3102                 kvm_save_gc0_config4(cop0);
3103         }
3104         if (cpu_guest_has_conf5) {
3105                 kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
3106                 /* Config5 */
3107                 kvm_save_gc0_config5(cop0);
3108                 /* architecturally writable (e.g. from guest) */
3109                 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K     |
3110                                                MIPS_CONF5_CV    |
3111                                                MIPS_CONF5_MSAEN |
3112                                                MIPS_CONF5_UFE   |
3113                                                MIPS_CONF5_FRE   |
3114                                                MIPS_CONF5_SBRI  |
3115                                                MIPS_CONF5_UFR);
3116                 /* architecturally read only, but maybe writable from root */
3117                 kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
3118         }
3119
3120         if (cpu_guest_has_contextconfig) {
3121                 /* ContextConfig */
3122                 kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
3123 #ifdef CONFIG_64BIT
3124                 /* XContextConfig */
3125                 /* bits SEGBITS-13+3:4 set */
3126                 kvm_write_sw_gc0_xcontextconfig(cop0,
3127                                         ((1ull << (cpu_vmbits - 13)) - 1) << 4);
3128 #endif
3129         }
3130
3131         /* Implementation dependent, use the legacy layout */
3132         if (cpu_guest_has_segments) {
3133                 /* SegCtl0, SegCtl1, SegCtl2 */
3134                 kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
3135                 kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
3136                                 (_page_cachable_default >> _CACHE_SHIFT) <<
3137                                                 (16 + MIPS_SEGCFG_C_SHIFT));
3138                 kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
3139         }
3140
3141         /* reset HTW registers */
3142         if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) {
3143                 /* PWField */
3144                 kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
3145                 /* PWSize */
3146                 kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
3147         }
3148
3149         /* start with no pending virtual guest interrupts */
3150         if (cpu_has_guestctl2)
3151                 cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
3152
3153         /* Put PC at reset vector */
3154         vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
3155
3156         return 0;
3157 }
3158
3159 static void kvm_vz_flush_shadow_all(struct kvm *kvm)
3160 {
3161         if (cpu_has_guestid) {
3162                 /* Flush GuestID for each VCPU individually */
3163                 kvm_flush_remote_tlbs(kvm);
3164         } else {
3165                 /*
3166                  * For each CPU there is a single GPA ASID used by all VCPUs in
3167                  * the VM, so it doesn't make sense for the VCPUs to handle
3168                  * invalidation of these ASIDs individually.
3169                  *
3170                  * Instead mark all CPUs as needing ASID invalidation in
3171                  * asid_flush_mask, and just use kvm_flush_remote_tlbs(kvm) to
3172                  * kick any running VCPUs so they check asid_flush_mask.
3173                  */
3174                 cpumask_setall(&kvm->arch.asid_flush_mask);
3175                 kvm_flush_remote_tlbs(kvm);
3176         }
3177 }
3178
3179 static void kvm_vz_flush_shadow_memslot(struct kvm *kvm,
3180                                         const struct kvm_memory_slot *slot)
3181 {
3182         kvm_vz_flush_shadow_all(kvm);
3183 }
3184
3185 static void kvm_vz_vcpu_reenter(struct kvm_run *run, struct kvm_vcpu *vcpu)
3186 {
3187         int cpu = smp_processor_id();
3188         int preserve_guest_tlb;
3189
3190         preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
3191
3192         if (preserve_guest_tlb)
3193                 kvm_vz_vcpu_save_wired(vcpu);
3194
3195         kvm_vz_vcpu_load_tlb(vcpu, cpu);
3196
3197         if (preserve_guest_tlb)
3198                 kvm_vz_vcpu_load_wired(vcpu);
3199 }
3200
3201 static int kvm_vz_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
3202 {
3203         int cpu = smp_processor_id();
3204         int r;
3205
3206         kvm_vz_acquire_htimer(vcpu);
3207         /* Check if we have any exceptions/interrupts pending */
3208         kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
3209
3210         kvm_vz_check_requests(vcpu, cpu);
3211         kvm_vz_vcpu_load_tlb(vcpu, cpu);
3212         kvm_vz_vcpu_load_wired(vcpu);
3213
3214         r = vcpu->arch.vcpu_run(run, vcpu);
3215
3216         kvm_vz_vcpu_save_wired(vcpu);
3217
3218         return r;
3219 }
3220
3221 static struct kvm_mips_callbacks kvm_vz_callbacks = {
3222         .handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
3223         .handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
3224         .handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
3225         .handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
3226         .handle_addr_err_st = kvm_trap_vz_no_handler,
3227         .handle_addr_err_ld = kvm_trap_vz_no_handler,
3228         .handle_syscall = kvm_trap_vz_no_handler,
3229         .handle_res_inst = kvm_trap_vz_no_handler,
3230         .handle_break = kvm_trap_vz_no_handler,
3231         .handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
3232         .handle_guest_exit = kvm_trap_vz_handle_guest_exit,
3233
3234         .hardware_enable = kvm_vz_hardware_enable,
3235         .hardware_disable = kvm_vz_hardware_disable,
3236         .check_extension = kvm_vz_check_extension,
3237         .vcpu_init = kvm_vz_vcpu_init,
3238         .vcpu_uninit = kvm_vz_vcpu_uninit,
3239         .vcpu_setup = kvm_vz_vcpu_setup,
3240         .flush_shadow_all = kvm_vz_flush_shadow_all,
3241         .flush_shadow_memslot = kvm_vz_flush_shadow_memslot,
3242         .gva_to_gpa = kvm_vz_gva_to_gpa_cb,
3243         .queue_timer_int = kvm_vz_queue_timer_int_cb,
3244         .dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
3245         .queue_io_int = kvm_vz_queue_io_int_cb,
3246         .dequeue_io_int = kvm_vz_dequeue_io_int_cb,
3247         .irq_deliver = kvm_vz_irq_deliver_cb,
3248         .irq_clear = kvm_vz_irq_clear_cb,
3249         .num_regs = kvm_vz_num_regs,
3250         .copy_reg_indices = kvm_vz_copy_reg_indices,
3251         .get_one_reg = kvm_vz_get_one_reg,
3252         .set_one_reg = kvm_vz_set_one_reg,
3253         .vcpu_load = kvm_vz_vcpu_load,
3254         .vcpu_put = kvm_vz_vcpu_put,
3255         .vcpu_run = kvm_vz_vcpu_run,
3256         .vcpu_reenter = kvm_vz_vcpu_reenter,
3257 };
3258
3259 int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
3260 {
3261         if (!cpu_has_vz)
3262                 return -ENODEV;
3263
3264         /*
3265          * VZ requires at least 2 KScratch registers, so it should have been
3266          * possible to allocate pgd_reg.
3267          */
3268         if (WARN(pgd_reg == -1,
3269                  "pgd_reg not allocated even though cpu_has_vz\n"))
3270                 return -ENODEV;
3271
3272         pr_info("Starting KVM with MIPS VZ extensions\n");
3273
3274         *install_callbacks = &kvm_vz_callbacks;
3275         return 0;
3276 }