Merge tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
[platform/kernel/linux-starfive.git] / arch / mips / kvm / mmu.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27
28 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
29 {
30         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
31 }
32
33 /**
34  * kvm_pgd_init() - Initialise KVM GPA page directory.
35  * @page:       Pointer to page directory (PGD) for KVM GPA.
36  *
37  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
38  * representing no mappings. This is similar to pgd_init(), however it
39  * initialises all the page directory pointers, not just the ones corresponding
40  * to the userland address space (since it is for the guest physical address
41  * space rather than a virtual address space).
42  */
43 static void kvm_pgd_init(void *page)
44 {
45         unsigned long *p, *end;
46         unsigned long entry;
47
48 #ifdef __PAGETABLE_PMD_FOLDED
49         entry = (unsigned long)invalid_pte_table;
50 #else
51         entry = (unsigned long)invalid_pmd_table;
52 #endif
53
54         p = (unsigned long *)page;
55         end = p + PTRS_PER_PGD;
56
57         do {
58                 p[0] = entry;
59                 p[1] = entry;
60                 p[2] = entry;
61                 p[3] = entry;
62                 p[4] = entry;
63                 p += 8;
64                 p[-3] = entry;
65                 p[-2] = entry;
66                 p[-1] = entry;
67         } while (p != end);
68 }
69
70 /**
71  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
72  *
73  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
74  * to host physical page mappings.
75  *
76  * Returns:     Pointer to new KVM GPA page directory.
77  *              NULL on allocation failure.
78  */
79 pgd_t *kvm_pgd_alloc(void)
80 {
81         pgd_t *ret;
82
83         ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_TABLE_ORDER);
84         if (ret)
85                 kvm_pgd_init(ret);
86
87         return ret;
88 }
89
90 /**
91  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
92  * @pgd:        Page directory pointer.
93  * @addr:       Address to index page table using.
94  * @cache:      MMU page cache to allocate new page tables from, or NULL.
95  *
96  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
97  * address @addr. If page tables don't exist for @addr, they will be created
98  * from the MMU cache if @cache is not NULL.
99  *
100  * Returns:     Pointer to pte_t corresponding to @addr.
101  *              NULL if a page table doesn't exist for @addr and !@cache.
102  *              NULL if a page table allocation failed.
103  */
104 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105                                 unsigned long addr)
106 {
107         p4d_t *p4d;
108         pud_t *pud;
109         pmd_t *pmd;
110
111         pgd += pgd_index(addr);
112         if (pgd_none(*pgd)) {
113                 /* Not used on MIPS yet */
114                 BUG();
115                 return NULL;
116         }
117         p4d = p4d_offset(pgd, addr);
118         pud = pud_offset(p4d, addr);
119         if (pud_none(*pud)) {
120                 pmd_t *new_pmd;
121
122                 if (!cache)
123                         return NULL;
124                 new_pmd = kvm_mmu_memory_cache_alloc(cache);
125                 pmd_init((unsigned long)new_pmd,
126                          (unsigned long)invalid_pte_table);
127                 pud_populate(NULL, pud, new_pmd);
128         }
129         pmd = pmd_offset(pud, addr);
130         if (pmd_none(*pmd)) {
131                 pte_t *new_pte;
132
133                 if (!cache)
134                         return NULL;
135                 new_pte = kvm_mmu_memory_cache_alloc(cache);
136                 clear_page(new_pte);
137                 pmd_populate_kernel(NULL, pmd, new_pte);
138         }
139         return pte_offset_kernel(pmd, addr);
140 }
141
142 /* Caller must hold kvm->mm_lock */
143 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
144                                    struct kvm_mmu_memory_cache *cache,
145                                    unsigned long addr)
146 {
147         return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
148 }
149
150 /*
151  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
152  * Flush a range of guest physical address space from the VM's GPA page tables.
153  */
154
155 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
156                                    unsigned long end_gpa)
157 {
158         int i_min = pte_index(start_gpa);
159         int i_max = pte_index(end_gpa);
160         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
161         int i;
162
163         for (i = i_min; i <= i_max; ++i) {
164                 if (!pte_present(pte[i]))
165                         continue;
166
167                 set_pte(pte + i, __pte(0));
168         }
169         return safe_to_remove;
170 }
171
172 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
173                                    unsigned long end_gpa)
174 {
175         pte_t *pte;
176         unsigned long end = ~0ul;
177         int i_min = pmd_index(start_gpa);
178         int i_max = pmd_index(end_gpa);
179         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
180         int i;
181
182         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
183                 if (!pmd_present(pmd[i]))
184                         continue;
185
186                 pte = pte_offset_kernel(pmd + i, 0);
187                 if (i == i_max)
188                         end = end_gpa;
189
190                 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
191                         pmd_clear(pmd + i);
192                         pte_free_kernel(NULL, pte);
193                 } else {
194                         safe_to_remove = false;
195                 }
196         }
197         return safe_to_remove;
198 }
199
200 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
201                                    unsigned long end_gpa)
202 {
203         pmd_t *pmd;
204         unsigned long end = ~0ul;
205         int i_min = pud_index(start_gpa);
206         int i_max = pud_index(end_gpa);
207         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
208         int i;
209
210         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
211                 if (!pud_present(pud[i]))
212                         continue;
213
214                 pmd = pmd_offset(pud + i, 0);
215                 if (i == i_max)
216                         end = end_gpa;
217
218                 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
219                         pud_clear(pud + i);
220                         pmd_free(NULL, pmd);
221                 } else {
222                         safe_to_remove = false;
223                 }
224         }
225         return safe_to_remove;
226 }
227
228 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
229                                    unsigned long end_gpa)
230 {
231         p4d_t *p4d;
232         pud_t *pud;
233         unsigned long end = ~0ul;
234         int i_min = pgd_index(start_gpa);
235         int i_max = pgd_index(end_gpa);
236         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
237         int i;
238
239         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
240                 if (!pgd_present(pgd[i]))
241                         continue;
242
243                 p4d = p4d_offset(pgd, 0);
244                 pud = pud_offset(p4d + i, 0);
245                 if (i == i_max)
246                         end = end_gpa;
247
248                 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
249                         pgd_clear(pgd + i);
250                         pud_free(NULL, pud);
251                 } else {
252                         safe_to_remove = false;
253                 }
254         }
255         return safe_to_remove;
256 }
257
258 /**
259  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
260  * @kvm:        KVM pointer.
261  * @start_gfn:  Guest frame number of first page in GPA range to flush.
262  * @end_gfn:    Guest frame number of last page in GPA range to flush.
263  *
264  * Flushes a range of GPA mappings from the GPA page tables.
265  *
266  * The caller must hold the @kvm->mmu_lock spinlock.
267  *
268  * Returns:     Whether its safe to remove the top level page directory because
269  *              all lower levels have been removed.
270  */
271 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
272 {
273         return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
274                                       start_gfn << PAGE_SHIFT,
275                                       end_gfn << PAGE_SHIFT);
276 }
277
278 #define BUILD_PTE_RANGE_OP(name, op)                                    \
279 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,       \
280                                  unsigned long end)                     \
281 {                                                                       \
282         int ret = 0;                                                    \
283         int i_min = pte_index(start);                           \
284         int i_max = pte_index(end);                                     \
285         int i;                                                          \
286         pte_t old, new;                                                 \
287                                                                         \
288         for (i = i_min; i <= i_max; ++i) {                              \
289                 if (!pte_present(pte[i]))                               \
290                         continue;                                       \
291                                                                         \
292                 old = pte[i];                                           \
293                 new = op(old);                                          \
294                 if (pte_val(new) == pte_val(old))                       \
295                         continue;                                       \
296                 set_pte(pte + i, new);                                  \
297                 ret = 1;                                                \
298         }                                                               \
299         return ret;                                                     \
300 }                                                                       \
301                                                                         \
302 /* returns true if anything was done */                                 \
303 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,       \
304                                  unsigned long end)                     \
305 {                                                                       \
306         int ret = 0;                                                    \
307         pte_t *pte;                                                     \
308         unsigned long cur_end = ~0ul;                                   \
309         int i_min = pmd_index(start);                           \
310         int i_max = pmd_index(end);                                     \
311         int i;                                                          \
312                                                                         \
313         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
314                 if (!pmd_present(pmd[i]))                               \
315                         continue;                                       \
316                                                                         \
317                 pte = pte_offset_kernel(pmd + i, 0);                            \
318                 if (i == i_max)                                         \
319                         cur_end = end;                                  \
320                                                                         \
321                 ret |= kvm_mips_##name##_pte(pte, start, cur_end);      \
322         }                                                               \
323         return ret;                                                     \
324 }                                                                       \
325                                                                         \
326 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,       \
327                                  unsigned long end)                     \
328 {                                                                       \
329         int ret = 0;                                                    \
330         pmd_t *pmd;                                                     \
331         unsigned long cur_end = ~0ul;                                   \
332         int i_min = pud_index(start);                           \
333         int i_max = pud_index(end);                                     \
334         int i;                                                          \
335                                                                         \
336         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
337                 if (!pud_present(pud[i]))                               \
338                         continue;                                       \
339                                                                         \
340                 pmd = pmd_offset(pud + i, 0);                           \
341                 if (i == i_max)                                         \
342                         cur_end = end;                                  \
343                                                                         \
344                 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);      \
345         }                                                               \
346         return ret;                                                     \
347 }                                                                       \
348                                                                         \
349 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,       \
350                                  unsigned long end)                     \
351 {                                                                       \
352         int ret = 0;                                                    \
353         p4d_t *p4d;                                                     \
354         pud_t *pud;                                                     \
355         unsigned long cur_end = ~0ul;                                   \
356         int i_min = pgd_index(start);                                   \
357         int i_max = pgd_index(end);                                     \
358         int i;                                                          \
359                                                                         \
360         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
361                 if (!pgd_present(pgd[i]))                               \
362                         continue;                                       \
363                                                                         \
364                 p4d = p4d_offset(pgd, 0);                               \
365                 pud = pud_offset(p4d + i, 0);                           \
366                 if (i == i_max)                                         \
367                         cur_end = end;                                  \
368                                                                         \
369                 ret |= kvm_mips_##name##_pud(pud, start, cur_end);      \
370         }                                                               \
371         return ret;                                                     \
372 }
373
374 /*
375  * kvm_mips_mkclean_gpa_pt.
376  * Mark a range of guest physical address space clean (writes fault) in the VM's
377  * GPA page table to allow dirty page tracking.
378  */
379
380 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
381
382 /**
383  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
384  * @kvm:        KVM pointer.
385  * @start_gfn:  Guest frame number of first page in GPA range to flush.
386  * @end_gfn:    Guest frame number of last page in GPA range to flush.
387  *
388  * Make a range of GPA mappings clean so that guest writes will fault and
389  * trigger dirty page logging.
390  *
391  * The caller must hold the @kvm->mmu_lock spinlock.
392  *
393  * Returns:     Whether any GPA mappings were modified, which would require
394  *              derived mappings (GVA page tables & TLB enties) to be
395  *              invalidated.
396  */
397 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
398 {
399         return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
400                                     start_gfn << PAGE_SHIFT,
401                                     end_gfn << PAGE_SHIFT);
402 }
403
404 /**
405  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
406  * @kvm:        The KVM pointer
407  * @slot:       The memory slot associated with mask
408  * @gfn_offset: The gfn offset in memory slot
409  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
410  *              slot to be write protected
411  *
412  * Walks bits set in mask write protects the associated pte's. Caller must
413  * acquire @kvm->mmu_lock.
414  */
415 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
416                 struct kvm_memory_slot *slot,
417                 gfn_t gfn_offset, unsigned long mask)
418 {
419         gfn_t base_gfn = slot->base_gfn + gfn_offset;
420         gfn_t start = base_gfn +  __ffs(mask);
421         gfn_t end = base_gfn + __fls(mask);
422
423         kvm_mips_mkclean_gpa_pt(kvm, start, end);
424 }
425
426 /*
427  * kvm_mips_mkold_gpa_pt.
428  * Mark a range of guest physical address space old (all accesses fault) in the
429  * VM's GPA page table to allow detection of commonly used pages.
430  */
431
432 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
433
434 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
435                                  gfn_t end_gfn)
436 {
437         return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
438                                   start_gfn << PAGE_SHIFT,
439                                   end_gfn << PAGE_SHIFT);
440 }
441
442 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
443 {
444         kvm_mips_flush_gpa_pt(kvm, range->start, range->end);
445         return true;
446 }
447
448 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
449 {
450         gpa_t gpa = range->start << PAGE_SHIFT;
451         pte_t hva_pte = range->pte;
452         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
453         pte_t old_pte;
454
455         if (!gpa_pte)
456                 return false;
457
458         /* Mapping may need adjusting depending on memslot flags */
459         old_pte = *gpa_pte;
460         if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
461                 hva_pte = pte_mkclean(hva_pte);
462         else if (range->slot->flags & KVM_MEM_READONLY)
463                 hva_pte = pte_wrprotect(hva_pte);
464
465         set_pte(gpa_pte, hva_pte);
466
467         /* Replacing an absent or old page doesn't need flushes */
468         if (!pte_present(old_pte) || !pte_young(old_pte))
469                 return false;
470
471         /* Pages swapped, aged, moved, or cleaned require flushes */
472         return !pte_present(hva_pte) ||
473                !pte_young(hva_pte) ||
474                pte_pfn(old_pte) != pte_pfn(hva_pte) ||
475                (pte_dirty(old_pte) && !pte_dirty(hva_pte));
476 }
477
478 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
479 {
480         return kvm_mips_mkold_gpa_pt(kvm, range->start, range->end);
481 }
482
483 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
484 {
485         gpa_t gpa = range->start << PAGE_SHIFT;
486         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
487
488         if (!gpa_pte)
489                 return false;
490         return pte_young(*gpa_pte);
491 }
492
493 /**
494  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
495  * @vcpu:               VCPU pointer.
496  * @gpa:                Guest physical address of fault.
497  * @write_fault:        Whether the fault was due to a write.
498  * @out_entry:          New PTE for @gpa (written on success unless NULL).
499  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
500  *                      NULL).
501  *
502  * Perform fast path GPA fault handling, doing all that can be done without
503  * calling into KVM. This handles marking old pages young (for idle page
504  * tracking), and dirtying of clean pages (for dirty page logging).
505  *
506  * Returns:     0 on success, in which case we can update derived mappings and
507  *              resume guest execution.
508  *              -EFAULT on failure due to absent GPA mapping or write to
509  *              read-only page, in which case KVM must be consulted.
510  */
511 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
512                                    bool write_fault,
513                                    pte_t *out_entry, pte_t *out_buddy)
514 {
515         struct kvm *kvm = vcpu->kvm;
516         gfn_t gfn = gpa >> PAGE_SHIFT;
517         pte_t *ptep;
518         kvm_pfn_t pfn = 0;      /* silence bogus GCC warning */
519         bool pfn_valid = false;
520         int ret = 0;
521
522         spin_lock(&kvm->mmu_lock);
523
524         /* Fast path - just check GPA page table for an existing entry */
525         ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
526         if (!ptep || !pte_present(*ptep)) {
527                 ret = -EFAULT;
528                 goto out;
529         }
530
531         /* Track access to pages marked old */
532         if (!pte_young(*ptep)) {
533                 set_pte(ptep, pte_mkyoung(*ptep));
534                 pfn = pte_pfn(*ptep);
535                 pfn_valid = true;
536                 /* call kvm_set_pfn_accessed() after unlock */
537         }
538         if (write_fault && !pte_dirty(*ptep)) {
539                 if (!pte_write(*ptep)) {
540                         ret = -EFAULT;
541                         goto out;
542                 }
543
544                 /* Track dirtying of writeable pages */
545                 set_pte(ptep, pte_mkdirty(*ptep));
546                 pfn = pte_pfn(*ptep);
547                 mark_page_dirty(kvm, gfn);
548                 kvm_set_pfn_dirty(pfn);
549         }
550
551         if (out_entry)
552                 *out_entry = *ptep;
553         if (out_buddy)
554                 *out_buddy = *ptep_buddy(ptep);
555
556 out:
557         spin_unlock(&kvm->mmu_lock);
558         if (pfn_valid)
559                 kvm_set_pfn_accessed(pfn);
560         return ret;
561 }
562
563 /**
564  * kvm_mips_map_page() - Map a guest physical page.
565  * @vcpu:               VCPU pointer.
566  * @gpa:                Guest physical address of fault.
567  * @write_fault:        Whether the fault was due to a write.
568  * @out_entry:          New PTE for @gpa (written on success unless NULL).
569  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
570  *                      NULL).
571  *
572  * Handle GPA faults by creating a new GPA mapping (or updating an existing
573  * one).
574  *
575  * This takes care of marking pages young or dirty (idle/dirty page tracking),
576  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
577  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
578  * caller.
579  *
580  * Returns:     0 on success, in which case the caller may use the @out_entry
581  *              and @out_buddy PTEs to update derived mappings and resume guest
582  *              execution.
583  *              -EFAULT if there is no memory region at @gpa or a write was
584  *              attempted to a read-only memory region. This is usually handled
585  *              as an MMIO access.
586  */
587 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
588                              bool write_fault,
589                              pte_t *out_entry, pte_t *out_buddy)
590 {
591         struct kvm *kvm = vcpu->kvm;
592         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
593         gfn_t gfn = gpa >> PAGE_SHIFT;
594         int srcu_idx, err;
595         kvm_pfn_t pfn;
596         pte_t *ptep, entry, old_pte;
597         bool writeable;
598         unsigned long prot_bits;
599         unsigned long mmu_seq;
600
601         /* Try the fast path to handle old / clean pages */
602         srcu_idx = srcu_read_lock(&kvm->srcu);
603         err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
604                                       out_buddy);
605         if (!err)
606                 goto out;
607
608         /* We need a minimum of cached pages ready for page table creation */
609         err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
610         if (err)
611                 goto out;
612
613 retry:
614         /*
615          * Used to check for invalidations in progress, of the pfn that is
616          * returned by pfn_to_pfn_prot below.
617          */
618         mmu_seq = kvm->mmu_invalidate_seq;
619         /*
620          * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads
621          * in gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
622          * risk the page we get a reference to getting unmapped before we have a
623          * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
624          *
625          * This smp_rmb() pairs with the effective smp_wmb() of the combination
626          * of the pte_unmap_unlock() after the PTE is zapped, and the
627          * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
628          * mmu_invalidate_seq is incremented.
629          */
630         smp_rmb();
631
632         /* Slow path - ask KVM core whether we can access this GPA */
633         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
634         if (is_error_noslot_pfn(pfn)) {
635                 err = -EFAULT;
636                 goto out;
637         }
638
639         spin_lock(&kvm->mmu_lock);
640         /* Check if an invalidation has taken place since we got pfn */
641         if (mmu_invalidate_retry(kvm, mmu_seq)) {
642                 /*
643                  * This can happen when mappings are changed asynchronously, but
644                  * also synchronously if a COW is triggered by
645                  * gfn_to_pfn_prot().
646                  */
647                 spin_unlock(&kvm->mmu_lock);
648                 kvm_release_pfn_clean(pfn);
649                 goto retry;
650         }
651
652         /* Ensure page tables are allocated */
653         ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
654
655         /* Set up the PTE */
656         prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
657         if (writeable) {
658                 prot_bits |= _PAGE_WRITE;
659                 if (write_fault) {
660                         prot_bits |= __WRITEABLE;
661                         mark_page_dirty(kvm, gfn);
662                         kvm_set_pfn_dirty(pfn);
663                 }
664         }
665         entry = pfn_pte(pfn, __pgprot(prot_bits));
666
667         /* Write the PTE */
668         old_pte = *ptep;
669         set_pte(ptep, entry);
670
671         err = 0;
672         if (out_entry)
673                 *out_entry = *ptep;
674         if (out_buddy)
675                 *out_buddy = *ptep_buddy(ptep);
676
677         spin_unlock(&kvm->mmu_lock);
678         kvm_release_pfn_clean(pfn);
679         kvm_set_pfn_accessed(pfn);
680 out:
681         srcu_read_unlock(&kvm->srcu, srcu_idx);
682         return err;
683 }
684
685 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
686                                       struct kvm_vcpu *vcpu,
687                                       bool write_fault)
688 {
689         int ret;
690
691         ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
692         if (ret)
693                 return ret;
694
695         /* Invalidate this entry in the TLB */
696         return kvm_vz_host_tlb_inv(vcpu, badvaddr);
697 }
698
699 /**
700  * kvm_mips_migrate_count() - Migrate timer.
701  * @vcpu:       Virtual CPU.
702  *
703  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
704  * if it was running prior to being cancelled.
705  *
706  * Must be called when the VCPU is migrated to a different CPU to ensure that
707  * timer expiry during guest execution interrupts the guest and causes the
708  * interrupt to be delivered in a timely manner.
709  */
710 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
711 {
712         if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
713                 hrtimer_restart(&vcpu->arch.comparecount_timer);
714 }
715
716 /* Restore ASID once we are scheduled back after preemption */
717 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
718 {
719         unsigned long flags;
720
721         kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
722
723         local_irq_save(flags);
724
725         vcpu->cpu = cpu;
726         if (vcpu->arch.last_sched_cpu != cpu) {
727                 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
728                           vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
729                 /*
730                  * Migrate the timer interrupt to the current CPU so that it
731                  * always interrupts the guest and synchronously triggers a
732                  * guest timer interrupt.
733                  */
734                 kvm_mips_migrate_count(vcpu);
735         }
736
737         /* restore guest state to registers */
738         kvm_mips_callbacks->vcpu_load(vcpu, cpu);
739
740         local_irq_restore(flags);
741 }
742
743 /* ASID can change if another task is scheduled during preemption */
744 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
745 {
746         unsigned long flags;
747         int cpu;
748
749         local_irq_save(flags);
750
751         cpu = smp_processor_id();
752         vcpu->arch.last_sched_cpu = cpu;
753         vcpu->cpu = -1;
754
755         /* save guest state in registers */
756         kvm_mips_callbacks->vcpu_put(vcpu, cpu);
757
758         local_irq_restore(flags);
759 }