powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / arch / mips / kvm / mmu.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS MMU handling in the KVM module.
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/highmem.h>
13 #include <linux/kvm_host.h>
14 #include <linux/uaccess.h>
15 #include <asm/mmu_context.h>
16 #include <asm/pgalloc.h>
17
18 /*
19  * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels
20  * for which pages need to be cached.
21  */
22 #if defined(__PAGETABLE_PMD_FOLDED)
23 #define KVM_MMU_CACHE_MIN_PAGES 1
24 #else
25 #define KVM_MMU_CACHE_MIN_PAGES 2
26 #endif
27
28 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
29 {
30         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
31 }
32
33 /**
34  * kvm_pgd_init() - Initialise KVM GPA page directory.
35  * @page:       Pointer to page directory (PGD) for KVM GPA.
36  *
37  * Initialise a KVM GPA page directory with pointers to the invalid table, i.e.
38  * representing no mappings. This is similar to pgd_init(), however it
39  * initialises all the page directory pointers, not just the ones corresponding
40  * to the userland address space (since it is for the guest physical address
41  * space rather than a virtual address space).
42  */
43 static void kvm_pgd_init(void *page)
44 {
45         unsigned long *p, *end;
46         unsigned long entry;
47
48 #ifdef __PAGETABLE_PMD_FOLDED
49         entry = (unsigned long)invalid_pte_table;
50 #else
51         entry = (unsigned long)invalid_pmd_table;
52 #endif
53
54         p = (unsigned long *)page;
55         end = p + PTRS_PER_PGD;
56
57         do {
58                 p[0] = entry;
59                 p[1] = entry;
60                 p[2] = entry;
61                 p[3] = entry;
62                 p[4] = entry;
63                 p += 8;
64                 p[-3] = entry;
65                 p[-2] = entry;
66                 p[-1] = entry;
67         } while (p != end);
68 }
69
70 /**
71  * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory.
72  *
73  * Allocate a blank KVM GPA page directory (PGD) for representing guest physical
74  * to host physical page mappings.
75  *
76  * Returns:     Pointer to new KVM GPA page directory.
77  *              NULL on allocation failure.
78  */
79 pgd_t *kvm_pgd_alloc(void)
80 {
81         pgd_t *ret;
82
83         ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_TABLE_ORDER);
84         if (ret)
85                 kvm_pgd_init(ret);
86
87         return ret;
88 }
89
90 /**
91  * kvm_mips_walk_pgd() - Walk page table with optional allocation.
92  * @pgd:        Page directory pointer.
93  * @addr:       Address to index page table using.
94  * @cache:      MMU page cache to allocate new page tables from, or NULL.
95  *
96  * Walk the page tables pointed to by @pgd to find the PTE corresponding to the
97  * address @addr. If page tables don't exist for @addr, they will be created
98  * from the MMU cache if @cache is not NULL.
99  *
100  * Returns:     Pointer to pte_t corresponding to @addr.
101  *              NULL if a page table doesn't exist for @addr and !@cache.
102  *              NULL if a page table allocation failed.
103  */
104 static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache,
105                                 unsigned long addr)
106 {
107         p4d_t *p4d;
108         pud_t *pud;
109         pmd_t *pmd;
110
111         pgd += pgd_index(addr);
112         if (pgd_none(*pgd)) {
113                 /* Not used on MIPS yet */
114                 BUG();
115                 return NULL;
116         }
117         p4d = p4d_offset(pgd, addr);
118         pud = pud_offset(p4d, addr);
119         if (pud_none(*pud)) {
120                 pmd_t *new_pmd;
121
122                 if (!cache)
123                         return NULL;
124                 new_pmd = kvm_mmu_memory_cache_alloc(cache);
125                 pmd_init(new_pmd);
126                 pud_populate(NULL, pud, new_pmd);
127         }
128         pmd = pmd_offset(pud, addr);
129         if (pmd_none(*pmd)) {
130                 pte_t *new_pte;
131
132                 if (!cache)
133                         return NULL;
134                 new_pte = kvm_mmu_memory_cache_alloc(cache);
135                 clear_page(new_pte);
136                 pmd_populate_kernel(NULL, pmd, new_pte);
137         }
138         return pte_offset_kernel(pmd, addr);
139 }
140
141 /* Caller must hold kvm->mm_lock */
142 static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm,
143                                    struct kvm_mmu_memory_cache *cache,
144                                    unsigned long addr)
145 {
146         return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr);
147 }
148
149 /*
150  * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}.
151  * Flush a range of guest physical address space from the VM's GPA page tables.
152  */
153
154 static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa,
155                                    unsigned long end_gpa)
156 {
157         int i_min = pte_index(start_gpa);
158         int i_max = pte_index(end_gpa);
159         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1);
160         int i;
161
162         for (i = i_min; i <= i_max; ++i) {
163                 if (!pte_present(pte[i]))
164                         continue;
165
166                 set_pte(pte + i, __pte(0));
167         }
168         return safe_to_remove;
169 }
170
171 static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa,
172                                    unsigned long end_gpa)
173 {
174         pte_t *pte;
175         unsigned long end = ~0ul;
176         int i_min = pmd_index(start_gpa);
177         int i_max = pmd_index(end_gpa);
178         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1);
179         int i;
180
181         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
182                 if (!pmd_present(pmd[i]))
183                         continue;
184
185                 pte = pte_offset_kernel(pmd + i, 0);
186                 if (i == i_max)
187                         end = end_gpa;
188
189                 if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) {
190                         pmd_clear(pmd + i);
191                         pte_free_kernel(NULL, pte);
192                 } else {
193                         safe_to_remove = false;
194                 }
195         }
196         return safe_to_remove;
197 }
198
199 static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa,
200                                    unsigned long end_gpa)
201 {
202         pmd_t *pmd;
203         unsigned long end = ~0ul;
204         int i_min = pud_index(start_gpa);
205         int i_max = pud_index(end_gpa);
206         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1);
207         int i;
208
209         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
210                 if (!pud_present(pud[i]))
211                         continue;
212
213                 pmd = pmd_offset(pud + i, 0);
214                 if (i == i_max)
215                         end = end_gpa;
216
217                 if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) {
218                         pud_clear(pud + i);
219                         pmd_free(NULL, pmd);
220                 } else {
221                         safe_to_remove = false;
222                 }
223         }
224         return safe_to_remove;
225 }
226
227 static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa,
228                                    unsigned long end_gpa)
229 {
230         p4d_t *p4d;
231         pud_t *pud;
232         unsigned long end = ~0ul;
233         int i_min = pgd_index(start_gpa);
234         int i_max = pgd_index(end_gpa);
235         bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1);
236         int i;
237
238         for (i = i_min; i <= i_max; ++i, start_gpa = 0) {
239                 if (!pgd_present(pgd[i]))
240                         continue;
241
242                 p4d = p4d_offset(pgd, 0);
243                 pud = pud_offset(p4d + i, 0);
244                 if (i == i_max)
245                         end = end_gpa;
246
247                 if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) {
248                         pgd_clear(pgd + i);
249                         pud_free(NULL, pud);
250                 } else {
251                         safe_to_remove = false;
252                 }
253         }
254         return safe_to_remove;
255 }
256
257 /**
258  * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses.
259  * @kvm:        KVM pointer.
260  * @start_gfn:  Guest frame number of first page in GPA range to flush.
261  * @end_gfn:    Guest frame number of last page in GPA range to flush.
262  *
263  * Flushes a range of GPA mappings from the GPA page tables.
264  *
265  * The caller must hold the @kvm->mmu_lock spinlock.
266  *
267  * Returns:     Whether its safe to remove the top level page directory because
268  *              all lower levels have been removed.
269  */
270 bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
271 {
272         return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd,
273                                       start_gfn << PAGE_SHIFT,
274                                       end_gfn << PAGE_SHIFT);
275 }
276
277 #define BUILD_PTE_RANGE_OP(name, op)                                    \
278 static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start,       \
279                                  unsigned long end)                     \
280 {                                                                       \
281         int ret = 0;                                                    \
282         int i_min = pte_index(start);                           \
283         int i_max = pte_index(end);                                     \
284         int i;                                                          \
285         pte_t old, new;                                                 \
286                                                                         \
287         for (i = i_min; i <= i_max; ++i) {                              \
288                 if (!pte_present(pte[i]))                               \
289                         continue;                                       \
290                                                                         \
291                 old = pte[i];                                           \
292                 new = op(old);                                          \
293                 if (pte_val(new) == pte_val(old))                       \
294                         continue;                                       \
295                 set_pte(pte + i, new);                                  \
296                 ret = 1;                                                \
297         }                                                               \
298         return ret;                                                     \
299 }                                                                       \
300                                                                         \
301 /* returns true if anything was done */                                 \
302 static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start,       \
303                                  unsigned long end)                     \
304 {                                                                       \
305         int ret = 0;                                                    \
306         pte_t *pte;                                                     \
307         unsigned long cur_end = ~0ul;                                   \
308         int i_min = pmd_index(start);                           \
309         int i_max = pmd_index(end);                                     \
310         int i;                                                          \
311                                                                         \
312         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
313                 if (!pmd_present(pmd[i]))                               \
314                         continue;                                       \
315                                                                         \
316                 pte = pte_offset_kernel(pmd + i, 0);                            \
317                 if (i == i_max)                                         \
318                         cur_end = end;                                  \
319                                                                         \
320                 ret |= kvm_mips_##name##_pte(pte, start, cur_end);      \
321         }                                                               \
322         return ret;                                                     \
323 }                                                                       \
324                                                                         \
325 static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start,       \
326                                  unsigned long end)                     \
327 {                                                                       \
328         int ret = 0;                                                    \
329         pmd_t *pmd;                                                     \
330         unsigned long cur_end = ~0ul;                                   \
331         int i_min = pud_index(start);                           \
332         int i_max = pud_index(end);                                     \
333         int i;                                                          \
334                                                                         \
335         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
336                 if (!pud_present(pud[i]))                               \
337                         continue;                                       \
338                                                                         \
339                 pmd = pmd_offset(pud + i, 0);                           \
340                 if (i == i_max)                                         \
341                         cur_end = end;                                  \
342                                                                         \
343                 ret |= kvm_mips_##name##_pmd(pmd, start, cur_end);      \
344         }                                                               \
345         return ret;                                                     \
346 }                                                                       \
347                                                                         \
348 static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start,       \
349                                  unsigned long end)                     \
350 {                                                                       \
351         int ret = 0;                                                    \
352         p4d_t *p4d;                                                     \
353         pud_t *pud;                                                     \
354         unsigned long cur_end = ~0ul;                                   \
355         int i_min = pgd_index(start);                                   \
356         int i_max = pgd_index(end);                                     \
357         int i;                                                          \
358                                                                         \
359         for (i = i_min; i <= i_max; ++i, start = 0) {                   \
360                 if (!pgd_present(pgd[i]))                               \
361                         continue;                                       \
362                                                                         \
363                 p4d = p4d_offset(pgd, 0);                               \
364                 pud = pud_offset(p4d + i, 0);                           \
365                 if (i == i_max)                                         \
366                         cur_end = end;                                  \
367                                                                         \
368                 ret |= kvm_mips_##name##_pud(pud, start, cur_end);      \
369         }                                                               \
370         return ret;                                                     \
371 }
372
373 /*
374  * kvm_mips_mkclean_gpa_pt.
375  * Mark a range of guest physical address space clean (writes fault) in the VM's
376  * GPA page table to allow dirty page tracking.
377  */
378
379 BUILD_PTE_RANGE_OP(mkclean, pte_mkclean)
380
381 /**
382  * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean.
383  * @kvm:        KVM pointer.
384  * @start_gfn:  Guest frame number of first page in GPA range to flush.
385  * @end_gfn:    Guest frame number of last page in GPA range to flush.
386  *
387  * Make a range of GPA mappings clean so that guest writes will fault and
388  * trigger dirty page logging.
389  *
390  * The caller must hold the @kvm->mmu_lock spinlock.
391  *
392  * Returns:     Whether any GPA mappings were modified, which would require
393  *              derived mappings (GVA page tables & TLB enties) to be
394  *              invalidated.
395  */
396 int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn)
397 {
398         return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd,
399                                     start_gfn << PAGE_SHIFT,
400                                     end_gfn << PAGE_SHIFT);
401 }
402
403 /**
404  * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages
405  * @kvm:        The KVM pointer
406  * @slot:       The memory slot associated with mask
407  * @gfn_offset: The gfn offset in memory slot
408  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
409  *              slot to be write protected
410  *
411  * Walks bits set in mask write protects the associated pte's. Caller must
412  * acquire @kvm->mmu_lock.
413  */
414 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
415                 struct kvm_memory_slot *slot,
416                 gfn_t gfn_offset, unsigned long mask)
417 {
418         gfn_t base_gfn = slot->base_gfn + gfn_offset;
419         gfn_t start = base_gfn +  __ffs(mask);
420         gfn_t end = base_gfn + __fls(mask);
421
422         kvm_mips_mkclean_gpa_pt(kvm, start, end);
423 }
424
425 /*
426  * kvm_mips_mkold_gpa_pt.
427  * Mark a range of guest physical address space old (all accesses fault) in the
428  * VM's GPA page table to allow detection of commonly used pages.
429  */
430
431 BUILD_PTE_RANGE_OP(mkold, pte_mkold)
432
433 static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn,
434                                  gfn_t end_gfn)
435 {
436         return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd,
437                                   start_gfn << PAGE_SHIFT,
438                                   end_gfn << PAGE_SHIFT);
439 }
440
441 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
442 {
443         kvm_mips_flush_gpa_pt(kvm, range->start, range->end);
444         return true;
445 }
446
447 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
448 {
449         gpa_t gpa = range->start << PAGE_SHIFT;
450         pte_t hva_pte = range->arg.pte;
451         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
452         pte_t old_pte;
453
454         if (!gpa_pte)
455                 return false;
456
457         /* Mapping may need adjusting depending on memslot flags */
458         old_pte = *gpa_pte;
459         if (range->slot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte))
460                 hva_pte = pte_mkclean(hva_pte);
461         else if (range->slot->flags & KVM_MEM_READONLY)
462                 hva_pte = pte_wrprotect(hva_pte);
463
464         set_pte(gpa_pte, hva_pte);
465
466         /* Replacing an absent or old page doesn't need flushes */
467         if (!pte_present(old_pte) || !pte_young(old_pte))
468                 return false;
469
470         /* Pages swapped, aged, moved, or cleaned require flushes */
471         return !pte_present(hva_pte) ||
472                !pte_young(hva_pte) ||
473                pte_pfn(old_pte) != pte_pfn(hva_pte) ||
474                (pte_dirty(old_pte) && !pte_dirty(hva_pte));
475 }
476
477 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
478 {
479         return kvm_mips_mkold_gpa_pt(kvm, range->start, range->end);
480 }
481
482 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
483 {
484         gpa_t gpa = range->start << PAGE_SHIFT;
485         pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
486
487         if (!gpa_pte)
488                 return false;
489         return pte_young(*gpa_pte);
490 }
491
492 /**
493  * _kvm_mips_map_page_fast() - Fast path GPA fault handler.
494  * @vcpu:               VCPU pointer.
495  * @gpa:                Guest physical address of fault.
496  * @write_fault:        Whether the fault was due to a write.
497  * @out_entry:          New PTE for @gpa (written on success unless NULL).
498  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
499  *                      NULL).
500  *
501  * Perform fast path GPA fault handling, doing all that can be done without
502  * calling into KVM. This handles marking old pages young (for idle page
503  * tracking), and dirtying of clean pages (for dirty page logging).
504  *
505  * Returns:     0 on success, in which case we can update derived mappings and
506  *              resume guest execution.
507  *              -EFAULT on failure due to absent GPA mapping or write to
508  *              read-only page, in which case KVM must be consulted.
509  */
510 static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa,
511                                    bool write_fault,
512                                    pte_t *out_entry, pte_t *out_buddy)
513 {
514         struct kvm *kvm = vcpu->kvm;
515         gfn_t gfn = gpa >> PAGE_SHIFT;
516         pte_t *ptep;
517         kvm_pfn_t pfn = 0;      /* silence bogus GCC warning */
518         bool pfn_valid = false;
519         int ret = 0;
520
521         spin_lock(&kvm->mmu_lock);
522
523         /* Fast path - just check GPA page table for an existing entry */
524         ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa);
525         if (!ptep || !pte_present(*ptep)) {
526                 ret = -EFAULT;
527                 goto out;
528         }
529
530         /* Track access to pages marked old */
531         if (!pte_young(*ptep)) {
532                 set_pte(ptep, pte_mkyoung(*ptep));
533                 pfn = pte_pfn(*ptep);
534                 pfn_valid = true;
535                 /* call kvm_set_pfn_accessed() after unlock */
536         }
537         if (write_fault && !pte_dirty(*ptep)) {
538                 if (!pte_write(*ptep)) {
539                         ret = -EFAULT;
540                         goto out;
541                 }
542
543                 /* Track dirtying of writeable pages */
544                 set_pte(ptep, pte_mkdirty(*ptep));
545                 pfn = pte_pfn(*ptep);
546                 mark_page_dirty(kvm, gfn);
547                 kvm_set_pfn_dirty(pfn);
548         }
549
550         if (out_entry)
551                 *out_entry = *ptep;
552         if (out_buddy)
553                 *out_buddy = *ptep_buddy(ptep);
554
555 out:
556         spin_unlock(&kvm->mmu_lock);
557         if (pfn_valid)
558                 kvm_set_pfn_accessed(pfn);
559         return ret;
560 }
561
562 /**
563  * kvm_mips_map_page() - Map a guest physical page.
564  * @vcpu:               VCPU pointer.
565  * @gpa:                Guest physical address of fault.
566  * @write_fault:        Whether the fault was due to a write.
567  * @out_entry:          New PTE for @gpa (written on success unless NULL).
568  * @out_buddy:          New PTE for @gpa's buddy (written on success unless
569  *                      NULL).
570  *
571  * Handle GPA faults by creating a new GPA mapping (or updating an existing
572  * one).
573  *
574  * This takes care of marking pages young or dirty (idle/dirty page tracking),
575  * asking KVM for the corresponding PFN, and creating a mapping in the GPA page
576  * tables. Derived mappings (GVA page tables and TLBs) must be handled by the
577  * caller.
578  *
579  * Returns:     0 on success, in which case the caller may use the @out_entry
580  *              and @out_buddy PTEs to update derived mappings and resume guest
581  *              execution.
582  *              -EFAULT if there is no memory region at @gpa or a write was
583  *              attempted to a read-only memory region. This is usually handled
584  *              as an MMIO access.
585  */
586 static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa,
587                              bool write_fault,
588                              pte_t *out_entry, pte_t *out_buddy)
589 {
590         struct kvm *kvm = vcpu->kvm;
591         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
592         gfn_t gfn = gpa >> PAGE_SHIFT;
593         int srcu_idx, err;
594         kvm_pfn_t pfn;
595         pte_t *ptep, entry, old_pte;
596         bool writeable;
597         unsigned long prot_bits;
598         unsigned long mmu_seq;
599
600         /* Try the fast path to handle old / clean pages */
601         srcu_idx = srcu_read_lock(&kvm->srcu);
602         err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry,
603                                       out_buddy);
604         if (!err)
605                 goto out;
606
607         /* We need a minimum of cached pages ready for page table creation */
608         err = kvm_mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES);
609         if (err)
610                 goto out;
611
612 retry:
613         /*
614          * Used to check for invalidations in progress, of the pfn that is
615          * returned by pfn_to_pfn_prot below.
616          */
617         mmu_seq = kvm->mmu_invalidate_seq;
618         /*
619          * Ensure the read of mmu_invalidate_seq isn't reordered with PTE reads
620          * in gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't
621          * risk the page we get a reference to getting unmapped before we have a
622          * chance to grab the mmu_lock without mmu_invalidate_retry() noticing.
623          *
624          * This smp_rmb() pairs with the effective smp_wmb() of the combination
625          * of the pte_unmap_unlock() after the PTE is zapped, and the
626          * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before
627          * mmu_invalidate_seq is incremented.
628          */
629         smp_rmb();
630
631         /* Slow path - ask KVM core whether we can access this GPA */
632         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable);
633         if (is_error_noslot_pfn(pfn)) {
634                 err = -EFAULT;
635                 goto out;
636         }
637
638         spin_lock(&kvm->mmu_lock);
639         /* Check if an invalidation has taken place since we got pfn */
640         if (mmu_invalidate_retry(kvm, mmu_seq)) {
641                 /*
642                  * This can happen when mappings are changed asynchronously, but
643                  * also synchronously if a COW is triggered by
644                  * gfn_to_pfn_prot().
645                  */
646                 spin_unlock(&kvm->mmu_lock);
647                 kvm_release_pfn_clean(pfn);
648                 goto retry;
649         }
650
651         /* Ensure page tables are allocated */
652         ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa);
653
654         /* Set up the PTE */
655         prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default;
656         if (writeable) {
657                 prot_bits |= _PAGE_WRITE;
658                 if (write_fault) {
659                         prot_bits |= __WRITEABLE;
660                         mark_page_dirty(kvm, gfn);
661                         kvm_set_pfn_dirty(pfn);
662                 }
663         }
664         entry = pfn_pte(pfn, __pgprot(prot_bits));
665
666         /* Write the PTE */
667         old_pte = *ptep;
668         set_pte(ptep, entry);
669
670         err = 0;
671         if (out_entry)
672                 *out_entry = *ptep;
673         if (out_buddy)
674                 *out_buddy = *ptep_buddy(ptep);
675
676         spin_unlock(&kvm->mmu_lock);
677         kvm_release_pfn_clean(pfn);
678         kvm_set_pfn_accessed(pfn);
679 out:
680         srcu_read_unlock(&kvm->srcu, srcu_idx);
681         return err;
682 }
683
684 int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr,
685                                       struct kvm_vcpu *vcpu,
686                                       bool write_fault)
687 {
688         int ret;
689
690         ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL);
691         if (ret)
692                 return ret;
693
694         /* Invalidate this entry in the TLB */
695         return kvm_vz_host_tlb_inv(vcpu, badvaddr);
696 }
697
698 /**
699  * kvm_mips_migrate_count() - Migrate timer.
700  * @vcpu:       Virtual CPU.
701  *
702  * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it
703  * if it was running prior to being cancelled.
704  *
705  * Must be called when the VCPU is migrated to a different CPU to ensure that
706  * timer expiry during guest execution interrupts the guest and causes the
707  * interrupt to be delivered in a timely manner.
708  */
709 static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu)
710 {
711         if (hrtimer_cancel(&vcpu->arch.comparecount_timer))
712                 hrtimer_restart(&vcpu->arch.comparecount_timer);
713 }
714
715 /* Restore ASID once we are scheduled back after preemption */
716 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
717 {
718         unsigned long flags;
719
720         kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu);
721
722         local_irq_save(flags);
723
724         vcpu->cpu = cpu;
725         if (vcpu->arch.last_sched_cpu != cpu) {
726                 kvm_debug("[%d->%d]KVM VCPU[%d] switch\n",
727                           vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id);
728                 /*
729                  * Migrate the timer interrupt to the current CPU so that it
730                  * always interrupts the guest and synchronously triggers a
731                  * guest timer interrupt.
732                  */
733                 kvm_mips_migrate_count(vcpu);
734         }
735
736         /* restore guest state to registers */
737         kvm_mips_callbacks->vcpu_load(vcpu, cpu);
738
739         local_irq_restore(flags);
740 }
741
742 /* ASID can change if another task is scheduled during preemption */
743 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
744 {
745         unsigned long flags;
746         int cpu;
747
748         local_irq_save(flags);
749
750         cpu = smp_processor_id();
751         vcpu->arch.last_sched_cpu = cpu;
752         vcpu->cpu = -1;
753
754         /* save guest state in registers */
755         kvm_mips_callbacks->vcpu_put(vcpu, cpu);
756
757         local_irq_restore(flags);
758 }