Merge branch 'for-5.18/amd-sfh' into for-linus
[platform/kernel/linux-starfive.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
36
37 #ifndef VECTORSPACING
38 #define VECTORSPACING 0x100     /* for EI/VI mode */
39 #endif
40
41 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
42         KVM_GENERIC_VM_STATS()
43 };
44
45 const struct kvm_stats_header kvm_vm_stats_header = {
46         .name_size = KVM_STATS_NAME_SIZE,
47         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
48         .id_offset = sizeof(struct kvm_stats_header),
49         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
50         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
51                        sizeof(kvm_vm_stats_desc),
52 };
53
54 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
55         KVM_GENERIC_VCPU_STATS(),
56         STATS_DESC_COUNTER(VCPU, wait_exits),
57         STATS_DESC_COUNTER(VCPU, cache_exits),
58         STATS_DESC_COUNTER(VCPU, signal_exits),
59         STATS_DESC_COUNTER(VCPU, int_exits),
60         STATS_DESC_COUNTER(VCPU, cop_unusable_exits),
61         STATS_DESC_COUNTER(VCPU, tlbmod_exits),
62         STATS_DESC_COUNTER(VCPU, tlbmiss_ld_exits),
63         STATS_DESC_COUNTER(VCPU, tlbmiss_st_exits),
64         STATS_DESC_COUNTER(VCPU, addrerr_st_exits),
65         STATS_DESC_COUNTER(VCPU, addrerr_ld_exits),
66         STATS_DESC_COUNTER(VCPU, syscall_exits),
67         STATS_DESC_COUNTER(VCPU, resvd_inst_exits),
68         STATS_DESC_COUNTER(VCPU, break_inst_exits),
69         STATS_DESC_COUNTER(VCPU, trap_inst_exits),
70         STATS_DESC_COUNTER(VCPU, msa_fpe_exits),
71         STATS_DESC_COUNTER(VCPU, fpe_exits),
72         STATS_DESC_COUNTER(VCPU, msa_disabled_exits),
73         STATS_DESC_COUNTER(VCPU, flush_dcache_exits),
74         STATS_DESC_COUNTER(VCPU, vz_gpsi_exits),
75         STATS_DESC_COUNTER(VCPU, vz_gsfc_exits),
76         STATS_DESC_COUNTER(VCPU, vz_hc_exits),
77         STATS_DESC_COUNTER(VCPU, vz_grr_exits),
78         STATS_DESC_COUNTER(VCPU, vz_gva_exits),
79         STATS_DESC_COUNTER(VCPU, vz_ghfc_exits),
80         STATS_DESC_COUNTER(VCPU, vz_gpa_exits),
81         STATS_DESC_COUNTER(VCPU, vz_resvd_exits),
82 #ifdef CONFIG_CPU_LOONGSON64
83         STATS_DESC_COUNTER(VCPU, vz_cpucfg_exits),
84 #endif
85 };
86
87 const struct kvm_stats_header kvm_vcpu_stats_header = {
88         .name_size = KVM_STATS_NAME_SIZE,
89         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
90         .id_offset = sizeof(struct kvm_stats_header),
91         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
92         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
93                        sizeof(kvm_vcpu_stats_desc),
94 };
95
96 bool kvm_trace_guest_mode_change;
97
98 int kvm_guest_mode_change_trace_reg(void)
99 {
100         kvm_trace_guest_mode_change = true;
101         return 0;
102 }
103
104 void kvm_guest_mode_change_trace_unreg(void)
105 {
106         kvm_trace_guest_mode_change = false;
107 }
108
109 /*
110  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
111  * Config7, so we are "runnable" if interrupts are pending
112  */
113 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
114 {
115         return !!(vcpu->arch.pending_exceptions);
116 }
117
118 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
119 {
120         return false;
121 }
122
123 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
124 {
125         return 1;
126 }
127
128 int kvm_arch_hardware_enable(void)
129 {
130         return kvm_mips_callbacks->hardware_enable();
131 }
132
133 void kvm_arch_hardware_disable(void)
134 {
135         kvm_mips_callbacks->hardware_disable();
136 }
137
138 int kvm_arch_hardware_setup(void *opaque)
139 {
140         return 0;
141 }
142
143 int kvm_arch_check_processor_compat(void *opaque)
144 {
145         return 0;
146 }
147
148 extern void kvm_init_loongson_ipi(struct kvm *kvm);
149
150 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
151 {
152         switch (type) {
153         case KVM_VM_MIPS_AUTO:
154                 break;
155         case KVM_VM_MIPS_VZ:
156                 break;
157         default:
158                 /* Unsupported KVM type */
159                 return -EINVAL;
160         }
161
162         /* Allocate page table to map GPA -> RPA */
163         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
164         if (!kvm->arch.gpa_mm.pgd)
165                 return -ENOMEM;
166
167 #ifdef CONFIG_CPU_LOONGSON64
168         kvm_init_loongson_ipi(kvm);
169 #endif
170
171         return 0;
172 }
173
174 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
175 {
176         /* It should always be safe to remove after flushing the whole range */
177         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
178         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
179 }
180
181 void kvm_arch_destroy_vm(struct kvm *kvm)
182 {
183         kvm_destroy_vcpus(kvm);
184         kvm_mips_free_gpa_pt(kvm);
185 }
186
187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188                         unsigned long arg)
189 {
190         return -ENOIOCTLCMD;
191 }
192
193 void kvm_arch_flush_shadow_all(struct kvm *kvm)
194 {
195         /* Flush whole GPA */
196         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
197         kvm_flush_remote_tlbs(kvm);
198 }
199
200 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
201                                    struct kvm_memory_slot *slot)
202 {
203         /*
204          * The slot has been made invalid (ready for moving or deletion), so we
205          * need to ensure that it can no longer be accessed by any guest VCPUs.
206          */
207
208         spin_lock(&kvm->mmu_lock);
209         /* Flush slot from GPA */
210         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
211                               slot->base_gfn + slot->npages - 1);
212         kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
213         spin_unlock(&kvm->mmu_lock);
214 }
215
216 int kvm_arch_prepare_memory_region(struct kvm *kvm,
217                                    const struct kvm_memory_slot *old,
218                                    struct kvm_memory_slot *new,
219                                    enum kvm_mr_change change)
220 {
221         return 0;
222 }
223
224 void kvm_arch_commit_memory_region(struct kvm *kvm,
225                                    struct kvm_memory_slot *old,
226                                    const struct kvm_memory_slot *new,
227                                    enum kvm_mr_change change)
228 {
229         int needs_flush;
230
231         /*
232          * If dirty page logging is enabled, write protect all pages in the slot
233          * ready for dirty logging.
234          *
235          * There is no need to do this in any of the following cases:
236          * CREATE:      No dirty mappings will already exist.
237          * MOVE/DELETE: The old mappings will already have been cleaned up by
238          *              kvm_arch_flush_shadow_memslot()
239          */
240         if (change == KVM_MR_FLAGS_ONLY &&
241             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
242              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
243                 spin_lock(&kvm->mmu_lock);
244                 /* Write protect GPA page table entries */
245                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
246                                         new->base_gfn + new->npages - 1);
247                 if (needs_flush)
248                         kvm_arch_flush_remote_tlbs_memslot(kvm, new);
249                 spin_unlock(&kvm->mmu_lock);
250         }
251 }
252
253 static inline void dump_handler(const char *symbol, void *start, void *end)
254 {
255         u32 *p;
256
257         pr_debug("LEAF(%s)\n", symbol);
258
259         pr_debug("\t.set push\n");
260         pr_debug("\t.set noreorder\n");
261
262         for (p = start; p < (u32 *)end; ++p)
263                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
264
265         pr_debug("\t.set\tpop\n");
266
267         pr_debug("\tEND(%s)\n", symbol);
268 }
269
270 /* low level hrtimer wake routine */
271 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
272 {
273         struct kvm_vcpu *vcpu;
274
275         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
276
277         kvm_mips_callbacks->queue_timer_int(vcpu);
278
279         vcpu->arch.wait = 0;
280         rcuwait_wake_up(&vcpu->wait);
281
282         return kvm_mips_count_timeout(vcpu);
283 }
284
285 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
286 {
287         return 0;
288 }
289
290 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
291 {
292         int err, size;
293         void *gebase, *p, *handler, *refill_start, *refill_end;
294         int i;
295
296         kvm_debug("kvm @ %p: create cpu %d at %p\n",
297                   vcpu->kvm, vcpu->vcpu_id, vcpu);
298
299         err = kvm_mips_callbacks->vcpu_init(vcpu);
300         if (err)
301                 return err;
302
303         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
304                      HRTIMER_MODE_REL);
305         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
306
307         /*
308          * Allocate space for host mode exception handlers that handle
309          * guest mode exits
310          */
311         if (cpu_has_veic || cpu_has_vint)
312                 size = 0x200 + VECTORSPACING * 64;
313         else
314                 size = 0x4000;
315
316         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
317
318         if (!gebase) {
319                 err = -ENOMEM;
320                 goto out_uninit_vcpu;
321         }
322         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
323                   ALIGN(size, PAGE_SIZE), gebase);
324
325         /*
326          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
327          * limits us to the low 512MB of physical address space. If the memory
328          * we allocate is out of range, just give up now.
329          */
330         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
331                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
332                         gebase);
333                 err = -ENOMEM;
334                 goto out_free_gebase;
335         }
336
337         /* Save new ebase */
338         vcpu->arch.guest_ebase = gebase;
339
340         /* Build guest exception vectors dynamically in unmapped memory */
341         handler = gebase + 0x2000;
342
343         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
344         refill_start = gebase;
345         if (IS_ENABLED(CONFIG_64BIT))
346                 refill_start += 0x080;
347         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
348
349         /* General Exception Entry point */
350         kvm_mips_build_exception(gebase + 0x180, handler);
351
352         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
353         for (i = 0; i < 8; i++) {
354                 kvm_debug("L1 Vectored handler @ %p\n",
355                           gebase + 0x200 + (i * VECTORSPACING));
356                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
357                                          handler);
358         }
359
360         /* General exit handler */
361         p = handler;
362         p = kvm_mips_build_exit(p);
363
364         /* Guest entry routine */
365         vcpu->arch.vcpu_run = p;
366         p = kvm_mips_build_vcpu_run(p);
367
368         /* Dump the generated code */
369         pr_debug("#include <asm/asm.h>\n");
370         pr_debug("#include <asm/regdef.h>\n");
371         pr_debug("\n");
372         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
373         dump_handler("kvm_tlb_refill", refill_start, refill_end);
374         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
375         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
376
377         /* Invalidate the icache for these ranges */
378         flush_icache_range((unsigned long)gebase,
379                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
380
381         /* Init */
382         vcpu->arch.last_sched_cpu = -1;
383         vcpu->arch.last_exec_cpu = -1;
384
385         /* Initial guest state */
386         err = kvm_mips_callbacks->vcpu_setup(vcpu);
387         if (err)
388                 goto out_free_gebase;
389
390         return 0;
391
392 out_free_gebase:
393         kfree(gebase);
394 out_uninit_vcpu:
395         kvm_mips_callbacks->vcpu_uninit(vcpu);
396         return err;
397 }
398
399 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
400 {
401         hrtimer_cancel(&vcpu->arch.comparecount_timer);
402
403         kvm_mips_dump_stats(vcpu);
404
405         kvm_mmu_free_memory_caches(vcpu);
406         kfree(vcpu->arch.guest_ebase);
407
408         kvm_mips_callbacks->vcpu_uninit(vcpu);
409 }
410
411 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
412                                         struct kvm_guest_debug *dbg)
413 {
414         return -ENOIOCTLCMD;
415 }
416
417 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
418 {
419         int r = -EINTR;
420
421         vcpu_load(vcpu);
422
423         kvm_sigset_activate(vcpu);
424
425         if (vcpu->mmio_needed) {
426                 if (!vcpu->mmio_is_write)
427                         kvm_mips_complete_mmio_load(vcpu);
428                 vcpu->mmio_needed = 0;
429         }
430
431         if (vcpu->run->immediate_exit)
432                 goto out;
433
434         lose_fpu(1);
435
436         local_irq_disable();
437         guest_enter_irqoff();
438         trace_kvm_enter(vcpu);
439
440         /*
441          * Make sure the read of VCPU requests in vcpu_run() callback is not
442          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
443          * flush request while the requester sees the VCPU as outside of guest
444          * mode and not needing an IPI.
445          */
446         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
447
448         r = kvm_mips_callbacks->vcpu_run(vcpu);
449
450         trace_kvm_out(vcpu);
451         guest_exit_irqoff();
452         local_irq_enable();
453
454 out:
455         kvm_sigset_deactivate(vcpu);
456
457         vcpu_put(vcpu);
458         return r;
459 }
460
461 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
462                              struct kvm_mips_interrupt *irq)
463 {
464         int intr = (int)irq->irq;
465         struct kvm_vcpu *dvcpu = NULL;
466
467         if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
468             intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
469             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
470             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
471                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
472                           (int)intr);
473
474         if (irq->cpu == -1)
475                 dvcpu = vcpu;
476         else
477                 dvcpu = kvm_get_vcpu(vcpu->kvm, irq->cpu);
478
479         if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
480                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
481
482         } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
483                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
484         } else {
485                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
486                         irq->cpu, irq->irq);
487                 return -EINVAL;
488         }
489
490         dvcpu->arch.wait = 0;
491
492         rcuwait_wake_up(&dvcpu->wait);
493
494         return 0;
495 }
496
497 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
498                                     struct kvm_mp_state *mp_state)
499 {
500         return -ENOIOCTLCMD;
501 }
502
503 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
504                                     struct kvm_mp_state *mp_state)
505 {
506         return -ENOIOCTLCMD;
507 }
508
509 static u64 kvm_mips_get_one_regs[] = {
510         KVM_REG_MIPS_R0,
511         KVM_REG_MIPS_R1,
512         KVM_REG_MIPS_R2,
513         KVM_REG_MIPS_R3,
514         KVM_REG_MIPS_R4,
515         KVM_REG_MIPS_R5,
516         KVM_REG_MIPS_R6,
517         KVM_REG_MIPS_R7,
518         KVM_REG_MIPS_R8,
519         KVM_REG_MIPS_R9,
520         KVM_REG_MIPS_R10,
521         KVM_REG_MIPS_R11,
522         KVM_REG_MIPS_R12,
523         KVM_REG_MIPS_R13,
524         KVM_REG_MIPS_R14,
525         KVM_REG_MIPS_R15,
526         KVM_REG_MIPS_R16,
527         KVM_REG_MIPS_R17,
528         KVM_REG_MIPS_R18,
529         KVM_REG_MIPS_R19,
530         KVM_REG_MIPS_R20,
531         KVM_REG_MIPS_R21,
532         KVM_REG_MIPS_R22,
533         KVM_REG_MIPS_R23,
534         KVM_REG_MIPS_R24,
535         KVM_REG_MIPS_R25,
536         KVM_REG_MIPS_R26,
537         KVM_REG_MIPS_R27,
538         KVM_REG_MIPS_R28,
539         KVM_REG_MIPS_R29,
540         KVM_REG_MIPS_R30,
541         KVM_REG_MIPS_R31,
542
543 #ifndef CONFIG_CPU_MIPSR6
544         KVM_REG_MIPS_HI,
545         KVM_REG_MIPS_LO,
546 #endif
547         KVM_REG_MIPS_PC,
548 };
549
550 static u64 kvm_mips_get_one_regs_fpu[] = {
551         KVM_REG_MIPS_FCR_IR,
552         KVM_REG_MIPS_FCR_CSR,
553 };
554
555 static u64 kvm_mips_get_one_regs_msa[] = {
556         KVM_REG_MIPS_MSA_IR,
557         KVM_REG_MIPS_MSA_CSR,
558 };
559
560 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
561 {
562         unsigned long ret;
563
564         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
565         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
566                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
567                 /* odd doubles */
568                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
569                         ret += 16;
570         }
571         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
572                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
573         ret += kvm_mips_callbacks->num_regs(vcpu);
574
575         return ret;
576 }
577
578 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
579 {
580         u64 index;
581         unsigned int i;
582
583         if (copy_to_user(indices, kvm_mips_get_one_regs,
584                          sizeof(kvm_mips_get_one_regs)))
585                 return -EFAULT;
586         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
587
588         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
589                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
590                                  sizeof(kvm_mips_get_one_regs_fpu)))
591                         return -EFAULT;
592                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
593
594                 for (i = 0; i < 32; ++i) {
595                         index = KVM_REG_MIPS_FPR_32(i);
596                         if (copy_to_user(indices, &index, sizeof(index)))
597                                 return -EFAULT;
598                         ++indices;
599
600                         /* skip odd doubles if no F64 */
601                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
602                                 continue;
603
604                         index = KVM_REG_MIPS_FPR_64(i);
605                         if (copy_to_user(indices, &index, sizeof(index)))
606                                 return -EFAULT;
607                         ++indices;
608                 }
609         }
610
611         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
612                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
613                                  sizeof(kvm_mips_get_one_regs_msa)))
614                         return -EFAULT;
615                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
616
617                 for (i = 0; i < 32; ++i) {
618                         index = KVM_REG_MIPS_VEC_128(i);
619                         if (copy_to_user(indices, &index, sizeof(index)))
620                                 return -EFAULT;
621                         ++indices;
622                 }
623         }
624
625         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
626 }
627
628 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
629                             const struct kvm_one_reg *reg)
630 {
631         struct mips_coproc *cop0 = vcpu->arch.cop0;
632         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
633         int ret;
634         s64 v;
635         s64 vs[2];
636         unsigned int idx;
637
638         switch (reg->id) {
639         /* General purpose registers */
640         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
641                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
642                 break;
643 #ifndef CONFIG_CPU_MIPSR6
644         case KVM_REG_MIPS_HI:
645                 v = (long)vcpu->arch.hi;
646                 break;
647         case KVM_REG_MIPS_LO:
648                 v = (long)vcpu->arch.lo;
649                 break;
650 #endif
651         case KVM_REG_MIPS_PC:
652                 v = (long)vcpu->arch.pc;
653                 break;
654
655         /* Floating point registers */
656         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
657                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
658                         return -EINVAL;
659                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
660                 /* Odd singles in top of even double when FR=0 */
661                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
662                         v = get_fpr32(&fpu->fpr[idx], 0);
663                 else
664                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
665                 break;
666         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
667                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
668                         return -EINVAL;
669                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
670                 /* Can't access odd doubles in FR=0 mode */
671                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
672                         return -EINVAL;
673                 v = get_fpr64(&fpu->fpr[idx], 0);
674                 break;
675         case KVM_REG_MIPS_FCR_IR:
676                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
677                         return -EINVAL;
678                 v = boot_cpu_data.fpu_id;
679                 break;
680         case KVM_REG_MIPS_FCR_CSR:
681                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
682                         return -EINVAL;
683                 v = fpu->fcr31;
684                 break;
685
686         /* MIPS SIMD Architecture (MSA) registers */
687         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
688                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
689                         return -EINVAL;
690                 /* Can't access MSA registers in FR=0 mode */
691                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
692                         return -EINVAL;
693                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
694 #ifdef CONFIG_CPU_LITTLE_ENDIAN
695                 /* least significant byte first */
696                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
697                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
698 #else
699                 /* most significant byte first */
700                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
701                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
702 #endif
703                 break;
704         case KVM_REG_MIPS_MSA_IR:
705                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
706                         return -EINVAL;
707                 v = boot_cpu_data.msa_id;
708                 break;
709         case KVM_REG_MIPS_MSA_CSR:
710                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
711                         return -EINVAL;
712                 v = fpu->msacsr;
713                 break;
714
715         /* registers to be handled specially */
716         default:
717                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
718                 if (ret)
719                         return ret;
720                 break;
721         }
722         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
723                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
724
725                 return put_user(v, uaddr64);
726         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
727                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
728                 u32 v32 = (u32)v;
729
730                 return put_user(v32, uaddr32);
731         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
732                 void __user *uaddr = (void __user *)(long)reg->addr;
733
734                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
735         } else {
736                 return -EINVAL;
737         }
738 }
739
740 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
741                             const struct kvm_one_reg *reg)
742 {
743         struct mips_coproc *cop0 = vcpu->arch.cop0;
744         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
745         s64 v;
746         s64 vs[2];
747         unsigned int idx;
748
749         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
750                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
751
752                 if (get_user(v, uaddr64) != 0)
753                         return -EFAULT;
754         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
755                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
756                 s32 v32;
757
758                 if (get_user(v32, uaddr32) != 0)
759                         return -EFAULT;
760                 v = (s64)v32;
761         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
762                 void __user *uaddr = (void __user *)(long)reg->addr;
763
764                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
765         } else {
766                 return -EINVAL;
767         }
768
769         switch (reg->id) {
770         /* General purpose registers */
771         case KVM_REG_MIPS_R0:
772                 /* Silently ignore requests to set $0 */
773                 break;
774         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
775                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
776                 break;
777 #ifndef CONFIG_CPU_MIPSR6
778         case KVM_REG_MIPS_HI:
779                 vcpu->arch.hi = v;
780                 break;
781         case KVM_REG_MIPS_LO:
782                 vcpu->arch.lo = v;
783                 break;
784 #endif
785         case KVM_REG_MIPS_PC:
786                 vcpu->arch.pc = v;
787                 break;
788
789         /* Floating point registers */
790         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
791                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
792                         return -EINVAL;
793                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
794                 /* Odd singles in top of even double when FR=0 */
795                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
796                         set_fpr32(&fpu->fpr[idx], 0, v);
797                 else
798                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
799                 break;
800         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
801                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
802                         return -EINVAL;
803                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
804                 /* Can't access odd doubles in FR=0 mode */
805                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
806                         return -EINVAL;
807                 set_fpr64(&fpu->fpr[idx], 0, v);
808                 break;
809         case KVM_REG_MIPS_FCR_IR:
810                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
811                         return -EINVAL;
812                 /* Read-only */
813                 break;
814         case KVM_REG_MIPS_FCR_CSR:
815                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
816                         return -EINVAL;
817                 fpu->fcr31 = v;
818                 break;
819
820         /* MIPS SIMD Architecture (MSA) registers */
821         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
822                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
823                         return -EINVAL;
824                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
825 #ifdef CONFIG_CPU_LITTLE_ENDIAN
826                 /* least significant byte first */
827                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
828                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
829 #else
830                 /* most significant byte first */
831                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
832                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
833 #endif
834                 break;
835         case KVM_REG_MIPS_MSA_IR:
836                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
837                         return -EINVAL;
838                 /* Read-only */
839                 break;
840         case KVM_REG_MIPS_MSA_CSR:
841                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
842                         return -EINVAL;
843                 fpu->msacsr = v;
844                 break;
845
846         /* registers to be handled specially */
847         default:
848                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
849         }
850         return 0;
851 }
852
853 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
854                                      struct kvm_enable_cap *cap)
855 {
856         int r = 0;
857
858         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
859                 return -EINVAL;
860         if (cap->flags)
861                 return -EINVAL;
862         if (cap->args[0])
863                 return -EINVAL;
864
865         switch (cap->cap) {
866         case KVM_CAP_MIPS_FPU:
867                 vcpu->arch.fpu_enabled = true;
868                 break;
869         case KVM_CAP_MIPS_MSA:
870                 vcpu->arch.msa_enabled = true;
871                 break;
872         default:
873                 r = -EINVAL;
874                 break;
875         }
876
877         return r;
878 }
879
880 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
881                                unsigned long arg)
882 {
883         struct kvm_vcpu *vcpu = filp->private_data;
884         void __user *argp = (void __user *)arg;
885
886         if (ioctl == KVM_INTERRUPT) {
887                 struct kvm_mips_interrupt irq;
888
889                 if (copy_from_user(&irq, argp, sizeof(irq)))
890                         return -EFAULT;
891                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
892                           irq.irq);
893
894                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
895         }
896
897         return -ENOIOCTLCMD;
898 }
899
900 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
901                          unsigned long arg)
902 {
903         struct kvm_vcpu *vcpu = filp->private_data;
904         void __user *argp = (void __user *)arg;
905         long r;
906
907         vcpu_load(vcpu);
908
909         switch (ioctl) {
910         case KVM_SET_ONE_REG:
911         case KVM_GET_ONE_REG: {
912                 struct kvm_one_reg reg;
913
914                 r = -EFAULT;
915                 if (copy_from_user(&reg, argp, sizeof(reg)))
916                         break;
917                 if (ioctl == KVM_SET_ONE_REG)
918                         r = kvm_mips_set_reg(vcpu, &reg);
919                 else
920                         r = kvm_mips_get_reg(vcpu, &reg);
921                 break;
922         }
923         case KVM_GET_REG_LIST: {
924                 struct kvm_reg_list __user *user_list = argp;
925                 struct kvm_reg_list reg_list;
926                 unsigned n;
927
928                 r = -EFAULT;
929                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
930                         break;
931                 n = reg_list.n;
932                 reg_list.n = kvm_mips_num_regs(vcpu);
933                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
934                         break;
935                 r = -E2BIG;
936                 if (n < reg_list.n)
937                         break;
938                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
939                 break;
940         }
941         case KVM_ENABLE_CAP: {
942                 struct kvm_enable_cap cap;
943
944                 r = -EFAULT;
945                 if (copy_from_user(&cap, argp, sizeof(cap)))
946                         break;
947                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
948                 break;
949         }
950         default:
951                 r = -ENOIOCTLCMD;
952         }
953
954         vcpu_put(vcpu);
955         return r;
956 }
957
958 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
959 {
960
961 }
962
963 int kvm_arch_flush_remote_tlb(struct kvm *kvm)
964 {
965         kvm_mips_callbacks->prepare_flush_shadow(kvm);
966         return 1;
967 }
968
969 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
970                                         const struct kvm_memory_slot *memslot)
971 {
972         kvm_flush_remote_tlbs(kvm);
973 }
974
975 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
976 {
977         long r;
978
979         switch (ioctl) {
980         default:
981                 r = -ENOIOCTLCMD;
982         }
983
984         return r;
985 }
986
987 int kvm_arch_init(void *opaque)
988 {
989         if (kvm_mips_callbacks) {
990                 kvm_err("kvm: module already exists\n");
991                 return -EEXIST;
992         }
993
994         return kvm_mips_emulation_init(&kvm_mips_callbacks);
995 }
996
997 void kvm_arch_exit(void)
998 {
999         kvm_mips_callbacks = NULL;
1000 }
1001
1002 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1003                                   struct kvm_sregs *sregs)
1004 {
1005         return -ENOIOCTLCMD;
1006 }
1007
1008 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1009                                   struct kvm_sregs *sregs)
1010 {
1011         return -ENOIOCTLCMD;
1012 }
1013
1014 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1015 {
1016 }
1017
1018 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1019 {
1020         return -ENOIOCTLCMD;
1021 }
1022
1023 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1024 {
1025         return -ENOIOCTLCMD;
1026 }
1027
1028 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1029 {
1030         return VM_FAULT_SIGBUS;
1031 }
1032
1033 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1034 {
1035         int r;
1036
1037         switch (ext) {
1038         case KVM_CAP_ONE_REG:
1039         case KVM_CAP_ENABLE_CAP:
1040         case KVM_CAP_READONLY_MEM:
1041         case KVM_CAP_SYNC_MMU:
1042         case KVM_CAP_IMMEDIATE_EXIT:
1043                 r = 1;
1044                 break;
1045         case KVM_CAP_NR_VCPUS:
1046                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
1047                 break;
1048         case KVM_CAP_MAX_VCPUS:
1049                 r = KVM_MAX_VCPUS;
1050                 break;
1051         case KVM_CAP_MAX_VCPU_ID:
1052                 r = KVM_MAX_VCPU_IDS;
1053                 break;
1054         case KVM_CAP_MIPS_FPU:
1055                 /* We don't handle systems with inconsistent cpu_has_fpu */
1056                 r = !!raw_cpu_has_fpu;
1057                 break;
1058         case KVM_CAP_MIPS_MSA:
1059                 /*
1060                  * We don't support MSA vector partitioning yet:
1061                  * 1) It would require explicit support which can't be tested
1062                  *    yet due to lack of support in current hardware.
1063                  * 2) It extends the state that would need to be saved/restored
1064                  *    by e.g. QEMU for migration.
1065                  *
1066                  * When vector partitioning hardware becomes available, support
1067                  * could be added by requiring a flag when enabling
1068                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1069                  * to save/restore the appropriate extra state.
1070                  */
1071                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1072                 break;
1073         default:
1074                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1075                 break;
1076         }
1077         return r;
1078 }
1079
1080 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1081 {
1082         return kvm_mips_pending_timer(vcpu) ||
1083                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1084 }
1085
1086 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1087 {
1088         int i;
1089         struct mips_coproc *cop0;
1090
1091         if (!vcpu)
1092                 return -1;
1093
1094         kvm_debug("VCPU Register Dump:\n");
1095         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1096         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1097
1098         for (i = 0; i < 32; i += 4) {
1099                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1100                        vcpu->arch.gprs[i],
1101                        vcpu->arch.gprs[i + 1],
1102                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1103         }
1104         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1105         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1106
1107         cop0 = vcpu->arch.cop0;
1108         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1109                   kvm_read_c0_guest_status(cop0),
1110                   kvm_read_c0_guest_cause(cop0));
1111
1112         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1113
1114         return 0;
1115 }
1116
1117 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1118 {
1119         int i;
1120
1121         vcpu_load(vcpu);
1122
1123         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1124                 vcpu->arch.gprs[i] = regs->gpr[i];
1125         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1126         vcpu->arch.hi = regs->hi;
1127         vcpu->arch.lo = regs->lo;
1128         vcpu->arch.pc = regs->pc;
1129
1130         vcpu_put(vcpu);
1131         return 0;
1132 }
1133
1134 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1135 {
1136         int i;
1137
1138         vcpu_load(vcpu);
1139
1140         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1141                 regs->gpr[i] = vcpu->arch.gprs[i];
1142
1143         regs->hi = vcpu->arch.hi;
1144         regs->lo = vcpu->arch.lo;
1145         regs->pc = vcpu->arch.pc;
1146
1147         vcpu_put(vcpu);
1148         return 0;
1149 }
1150
1151 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1152                                   struct kvm_translation *tr)
1153 {
1154         return 0;
1155 }
1156
1157 static void kvm_mips_set_c0_status(void)
1158 {
1159         u32 status = read_c0_status();
1160
1161         if (cpu_has_dsp)
1162                 status |= (ST0_MX);
1163
1164         write_c0_status(status);
1165         ehb();
1166 }
1167
1168 /*
1169  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1170  */
1171 int kvm_mips_handle_exit(struct kvm_vcpu *vcpu)
1172 {
1173         struct kvm_run *run = vcpu->run;
1174         u32 cause = vcpu->arch.host_cp0_cause;
1175         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1176         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1177         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1178         enum emulation_result er = EMULATE_DONE;
1179         u32 inst;
1180         int ret = RESUME_GUEST;
1181
1182         vcpu->mode = OUTSIDE_GUEST_MODE;
1183
1184         /* Set a default exit reason */
1185         run->exit_reason = KVM_EXIT_UNKNOWN;
1186         run->ready_for_interrupt_injection = 1;
1187
1188         /*
1189          * Set the appropriate status bits based on host CPU features,
1190          * before we hit the scheduler
1191          */
1192         kvm_mips_set_c0_status();
1193
1194         local_irq_enable();
1195
1196         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1197                         cause, opc, run, vcpu);
1198         trace_kvm_exit(vcpu, exccode);
1199
1200         switch (exccode) {
1201         case EXCCODE_INT:
1202                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1203
1204                 ++vcpu->stat.int_exits;
1205
1206                 if (need_resched())
1207                         cond_resched();
1208
1209                 ret = RESUME_GUEST;
1210                 break;
1211
1212         case EXCCODE_CPU:
1213                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1214
1215                 ++vcpu->stat.cop_unusable_exits;
1216                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1217                 /* XXXKYMA: Might need to return to user space */
1218                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1219                         ret = RESUME_HOST;
1220                 break;
1221
1222         case EXCCODE_MOD:
1223                 ++vcpu->stat.tlbmod_exits;
1224                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1225                 break;
1226
1227         case EXCCODE_TLBS:
1228                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1229                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1230                           badvaddr);
1231
1232                 ++vcpu->stat.tlbmiss_st_exits;
1233                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1234                 break;
1235
1236         case EXCCODE_TLBL:
1237                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1238                           cause, opc, badvaddr);
1239
1240                 ++vcpu->stat.tlbmiss_ld_exits;
1241                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1242                 break;
1243
1244         case EXCCODE_ADES:
1245                 ++vcpu->stat.addrerr_st_exits;
1246                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1247                 break;
1248
1249         case EXCCODE_ADEL:
1250                 ++vcpu->stat.addrerr_ld_exits;
1251                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1252                 break;
1253
1254         case EXCCODE_SYS:
1255                 ++vcpu->stat.syscall_exits;
1256                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1257                 break;
1258
1259         case EXCCODE_RI:
1260                 ++vcpu->stat.resvd_inst_exits;
1261                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1262                 break;
1263
1264         case EXCCODE_BP:
1265                 ++vcpu->stat.break_inst_exits;
1266                 ret = kvm_mips_callbacks->handle_break(vcpu);
1267                 break;
1268
1269         case EXCCODE_TR:
1270                 ++vcpu->stat.trap_inst_exits;
1271                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1272                 break;
1273
1274         case EXCCODE_MSAFPE:
1275                 ++vcpu->stat.msa_fpe_exits;
1276                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1277                 break;
1278
1279         case EXCCODE_FPE:
1280                 ++vcpu->stat.fpe_exits;
1281                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1282                 break;
1283
1284         case EXCCODE_MSADIS:
1285                 ++vcpu->stat.msa_disabled_exits;
1286                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1287                 break;
1288
1289         case EXCCODE_GE:
1290                 /* defer exit accounting to handler */
1291                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1292                 break;
1293
1294         default:
1295                 if (cause & CAUSEF_BD)
1296                         opc += 1;
1297                 inst = 0;
1298                 kvm_get_badinstr(opc, vcpu, &inst);
1299                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1300                         exccode, opc, inst, badvaddr,
1301                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1302                 kvm_arch_vcpu_dump_regs(vcpu);
1303                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1304                 ret = RESUME_HOST;
1305                 break;
1306
1307         }
1308
1309         local_irq_disable();
1310
1311         if (ret == RESUME_GUEST)
1312                 kvm_vz_acquire_htimer(vcpu);
1313
1314         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1315                 kvm_mips_deliver_interrupts(vcpu, cause);
1316
1317         if (!(ret & RESUME_HOST)) {
1318                 /* Only check for signals if not already exiting to userspace */
1319                 if (signal_pending(current)) {
1320                         run->exit_reason = KVM_EXIT_INTR;
1321                         ret = (-EINTR << 2) | RESUME_HOST;
1322                         ++vcpu->stat.signal_exits;
1323                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1324                 }
1325         }
1326
1327         if (ret == RESUME_GUEST) {
1328                 trace_kvm_reenter(vcpu);
1329
1330                 /*
1331                  * Make sure the read of VCPU requests in vcpu_reenter()
1332                  * callback is not reordered ahead of the write to vcpu->mode,
1333                  * or we could miss a TLB flush request while the requester sees
1334                  * the VCPU as outside of guest mode and not needing an IPI.
1335                  */
1336                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1337
1338                 kvm_mips_callbacks->vcpu_reenter(vcpu);
1339
1340                 /*
1341                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1342                  * is live), restore FCR31 / MSACSR.
1343                  *
1344                  * This should be before returning to the guest exception
1345                  * vector, as it may well cause an [MSA] FP exception if there
1346                  * are pending exception bits unmasked. (see
1347                  * kvm_mips_csr_die_notifier() for how that is handled).
1348                  */
1349                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1350                     read_c0_status() & ST0_CU1)
1351                         __kvm_restore_fcsr(&vcpu->arch);
1352
1353                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1354                     read_c0_config5() & MIPS_CONF5_MSAEN)
1355                         __kvm_restore_msacsr(&vcpu->arch);
1356         }
1357         return ret;
1358 }
1359
1360 /* Enable FPU for guest and restore context */
1361 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1362 {
1363         struct mips_coproc *cop0 = vcpu->arch.cop0;
1364         unsigned int sr, cfg5;
1365
1366         preempt_disable();
1367
1368         sr = kvm_read_c0_guest_status(cop0);
1369
1370         /*
1371          * If MSA state is already live, it is undefined how it interacts with
1372          * FR=0 FPU state, and we don't want to hit reserved instruction
1373          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1374          * play it safe and save it first.
1375          */
1376         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1377             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1378                 kvm_lose_fpu(vcpu);
1379
1380         /*
1381          * Enable FPU for guest
1382          * We set FR and FRE according to guest context
1383          */
1384         change_c0_status(ST0_CU1 | ST0_FR, sr);
1385         if (cpu_has_fre) {
1386                 cfg5 = kvm_read_c0_guest_config5(cop0);
1387                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1388         }
1389         enable_fpu_hazard();
1390
1391         /* If guest FPU state not active, restore it now */
1392         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1393                 __kvm_restore_fpu(&vcpu->arch);
1394                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1395                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1396         } else {
1397                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1398         }
1399
1400         preempt_enable();
1401 }
1402
1403 #ifdef CONFIG_CPU_HAS_MSA
1404 /* Enable MSA for guest and restore context */
1405 void kvm_own_msa(struct kvm_vcpu *vcpu)
1406 {
1407         struct mips_coproc *cop0 = vcpu->arch.cop0;
1408         unsigned int sr, cfg5;
1409
1410         preempt_disable();
1411
1412         /*
1413          * Enable FPU if enabled in guest, since we're restoring FPU context
1414          * anyway. We set FR and FRE according to guest context.
1415          */
1416         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1417                 sr = kvm_read_c0_guest_status(cop0);
1418
1419                 /*
1420                  * If FR=0 FPU state is already live, it is undefined how it
1421                  * interacts with MSA state, so play it safe and save it first.
1422                  */
1423                 if (!(sr & ST0_FR) &&
1424                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1425                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1426                         kvm_lose_fpu(vcpu);
1427
1428                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1429                 if (sr & ST0_CU1 && cpu_has_fre) {
1430                         cfg5 = kvm_read_c0_guest_config5(cop0);
1431                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1432                 }
1433         }
1434
1435         /* Enable MSA for guest */
1436         set_c0_config5(MIPS_CONF5_MSAEN);
1437         enable_fpu_hazard();
1438
1439         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1440         case KVM_MIPS_AUX_FPU:
1441                 /*
1442                  * Guest FPU state already loaded, only restore upper MSA state
1443                  */
1444                 __kvm_restore_msa_upper(&vcpu->arch);
1445                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1446                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1447                 break;
1448         case 0:
1449                 /* Neither FPU or MSA already active, restore full MSA state */
1450                 __kvm_restore_msa(&vcpu->arch);
1451                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1452                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1453                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1454                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1455                               KVM_TRACE_AUX_FPU_MSA);
1456                 break;
1457         default:
1458                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1459                 break;
1460         }
1461
1462         preempt_enable();
1463 }
1464 #endif
1465
1466 /* Drop FPU & MSA without saving it */
1467 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1468 {
1469         preempt_disable();
1470         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1471                 disable_msa();
1472                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1473                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1474         }
1475         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1476                 clear_c0_status(ST0_CU1 | ST0_FR);
1477                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1478                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1479         }
1480         preempt_enable();
1481 }
1482
1483 /* Save and disable FPU & MSA */
1484 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1485 {
1486         /*
1487          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1488          * is disabled in guest context (software), but the register state in
1489          * the hardware may still be in use.
1490          * This is why we explicitly re-enable the hardware before saving.
1491          */
1492
1493         preempt_disable();
1494         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1495                 __kvm_save_msa(&vcpu->arch);
1496                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1497
1498                 /* Disable MSA & FPU */
1499                 disable_msa();
1500                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1501                         clear_c0_status(ST0_CU1 | ST0_FR);
1502                         disable_fpu_hazard();
1503                 }
1504                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1505         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1506                 __kvm_save_fpu(&vcpu->arch);
1507                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1508                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1509
1510                 /* Disable FPU */
1511                 clear_c0_status(ST0_CU1 | ST0_FR);
1512                 disable_fpu_hazard();
1513         }
1514         preempt_enable();
1515 }
1516
1517 /*
1518  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1519  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1520  * exception if cause bits are set in the value being written.
1521  */
1522 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1523                                    unsigned long cmd, void *ptr)
1524 {
1525         struct die_args *args = (struct die_args *)ptr;
1526         struct pt_regs *regs = args->regs;
1527         unsigned long pc;
1528
1529         /* Only interested in FPE and MSAFPE */
1530         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1531                 return NOTIFY_DONE;
1532
1533         /* Return immediately if guest context isn't active */
1534         if (!(current->flags & PF_VCPU))
1535                 return NOTIFY_DONE;
1536
1537         /* Should never get here from user mode */
1538         BUG_ON(user_mode(regs));
1539
1540         pc = instruction_pointer(regs);
1541         switch (cmd) {
1542         case DIE_FP:
1543                 /* match 2nd instruction in __kvm_restore_fcsr */
1544                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1545                         return NOTIFY_DONE;
1546                 break;
1547         case DIE_MSAFP:
1548                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1549                 if (!cpu_has_msa ||
1550                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1551                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1552                         return NOTIFY_DONE;
1553                 break;
1554         }
1555
1556         /* Move PC forward a little and continue executing */
1557         instruction_pointer(regs) += 4;
1558
1559         return NOTIFY_STOP;
1560 }
1561
1562 static struct notifier_block kvm_mips_csr_die_notifier = {
1563         .notifier_call = kvm_mips_csr_die_notify,
1564 };
1565
1566 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1567         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1568         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1569         [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1570         [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1571 };
1572
1573 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1574         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1575         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1576         [MIPS_EXC_INT_IO_2]  = C_IRQ1,
1577         [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1578 };
1579
1580 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1581
1582 u32 kvm_irq_to_priority(u32 irq)
1583 {
1584         int i;
1585
1586         for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1587                 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1588                         return i;
1589         }
1590
1591         return MIPS_EXC_MAX;
1592 }
1593
1594 static int __init kvm_mips_init(void)
1595 {
1596         int ret;
1597
1598         if (cpu_has_mmid) {
1599                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1600                 return -EOPNOTSUPP;
1601         }
1602
1603         ret = kvm_mips_entry_setup();
1604         if (ret)
1605                 return ret;
1606
1607         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1608
1609         if (ret)
1610                 return ret;
1611
1612         if (boot_cpu_type() == CPU_LOONGSON64)
1613                 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1614
1615         register_die_notifier(&kvm_mips_csr_die_notifier);
1616
1617         return 0;
1618 }
1619
1620 static void __exit kvm_mips_exit(void)
1621 {
1622         kvm_exit();
1623
1624         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1625 }
1626
1627 module_init(kvm_mips_init);
1628 module_exit(kvm_mips_exit);
1629
1630 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);