KVM: MIPS: Add CPUCFG emulation for Loongson-3
[platform/kernel/linux-starfive.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 struct kvm_stats_debugfs_item debugfs_entries[] = {
43         VCPU_STAT("wait", wait_exits),
44         VCPU_STAT("cache", cache_exits),
45         VCPU_STAT("signal", signal_exits),
46         VCPU_STAT("interrupt", int_exits),
47         VCPU_STAT("cop_unusable", cop_unusable_exits),
48         VCPU_STAT("tlbmod", tlbmod_exits),
49         VCPU_STAT("tlbmiss_ld", tlbmiss_ld_exits),
50         VCPU_STAT("tlbmiss_st", tlbmiss_st_exits),
51         VCPU_STAT("addrerr_st", addrerr_st_exits),
52         VCPU_STAT("addrerr_ld", addrerr_ld_exits),
53         VCPU_STAT("syscall", syscall_exits),
54         VCPU_STAT("resvd_inst", resvd_inst_exits),
55         VCPU_STAT("break_inst", break_inst_exits),
56         VCPU_STAT("trap_inst", trap_inst_exits),
57         VCPU_STAT("msa_fpe", msa_fpe_exits),
58         VCPU_STAT("fpe", fpe_exits),
59         VCPU_STAT("msa_disabled", msa_disabled_exits),
60         VCPU_STAT("flush_dcache", flush_dcache_exits),
61 #ifdef CONFIG_KVM_MIPS_VZ
62         VCPU_STAT("vz_gpsi", vz_gpsi_exits),
63         VCPU_STAT("vz_gsfc", vz_gsfc_exits),
64         VCPU_STAT("vz_hc", vz_hc_exits),
65         VCPU_STAT("vz_grr", vz_grr_exits),
66         VCPU_STAT("vz_gva", vz_gva_exits),
67         VCPU_STAT("vz_ghfc", vz_ghfc_exits),
68         VCPU_STAT("vz_gpa", vz_gpa_exits),
69         VCPU_STAT("vz_resvd", vz_resvd_exits),
70         VCPU_STAT("vz_cpucfg", vz_cpucfg_exits),
71 #endif
72         VCPU_STAT("halt_successful_poll", halt_successful_poll),
73         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
74         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
75         VCPU_STAT("halt_wakeup", halt_wakeup),
76         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
77         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
78         {NULL}
79 };
80
81 bool kvm_trace_guest_mode_change;
82
83 int kvm_guest_mode_change_trace_reg(void)
84 {
85         kvm_trace_guest_mode_change = true;
86         return 0;
87 }
88
89 void kvm_guest_mode_change_trace_unreg(void)
90 {
91         kvm_trace_guest_mode_change = false;
92 }
93
94 /*
95  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
96  * Config7, so we are "runnable" if interrupts are pending
97  */
98 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
99 {
100         return !!(vcpu->arch.pending_exceptions);
101 }
102
103 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
104 {
105         return false;
106 }
107
108 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
109 {
110         return 1;
111 }
112
113 int kvm_arch_hardware_enable(void)
114 {
115         return kvm_mips_callbacks->hardware_enable();
116 }
117
118 void kvm_arch_hardware_disable(void)
119 {
120         kvm_mips_callbacks->hardware_disable();
121 }
122
123 int kvm_arch_hardware_setup(void *opaque)
124 {
125         return 0;
126 }
127
128 int kvm_arch_check_processor_compat(void *opaque)
129 {
130         return 0;
131 }
132
133 extern void kvm_init_loongson_ipi(struct kvm *kvm);
134
135 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
136 {
137         switch (type) {
138 #ifdef CONFIG_KVM_MIPS_VZ
139         case KVM_VM_MIPS_VZ:
140 #else
141         case KVM_VM_MIPS_TE:
142 #endif
143                 break;
144         default:
145                 /* Unsupported KVM type */
146                 return -EINVAL;
147         };
148
149         /* Allocate page table to map GPA -> RPA */
150         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
151         if (!kvm->arch.gpa_mm.pgd)
152                 return -ENOMEM;
153
154 #ifdef CONFIG_CPU_LOONGSON64
155         kvm_init_loongson_ipi(kvm);
156 #endif
157
158         return 0;
159 }
160
161 void kvm_mips_free_vcpus(struct kvm *kvm)
162 {
163         unsigned int i;
164         struct kvm_vcpu *vcpu;
165
166         kvm_for_each_vcpu(i, vcpu, kvm) {
167                 kvm_vcpu_destroy(vcpu);
168         }
169
170         mutex_lock(&kvm->lock);
171
172         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
173                 kvm->vcpus[i] = NULL;
174
175         atomic_set(&kvm->online_vcpus, 0);
176
177         mutex_unlock(&kvm->lock);
178 }
179
180 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
181 {
182         /* It should always be safe to remove after flushing the whole range */
183         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
184         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
185 }
186
187 void kvm_arch_destroy_vm(struct kvm *kvm)
188 {
189         kvm_mips_free_vcpus(kvm);
190         kvm_mips_free_gpa_pt(kvm);
191 }
192
193 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
194                         unsigned long arg)
195 {
196         return -ENOIOCTLCMD;
197 }
198
199 void kvm_arch_flush_shadow_all(struct kvm *kvm)
200 {
201         /* Flush whole GPA */
202         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
203
204         /* Let implementation do the rest */
205         kvm_mips_callbacks->flush_shadow_all(kvm);
206 }
207
208 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
209                                    struct kvm_memory_slot *slot)
210 {
211         /*
212          * The slot has been made invalid (ready for moving or deletion), so we
213          * need to ensure that it can no longer be accessed by any guest VCPUs.
214          */
215
216         spin_lock(&kvm->mmu_lock);
217         /* Flush slot from GPA */
218         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
219                               slot->base_gfn + slot->npages - 1);
220         /* Let implementation do the rest */
221         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
222         spin_unlock(&kvm->mmu_lock);
223 }
224
225 int kvm_arch_prepare_memory_region(struct kvm *kvm,
226                                    struct kvm_memory_slot *memslot,
227                                    const struct kvm_userspace_memory_region *mem,
228                                    enum kvm_mr_change change)
229 {
230         return 0;
231 }
232
233 void kvm_arch_commit_memory_region(struct kvm *kvm,
234                                    const struct kvm_userspace_memory_region *mem,
235                                    struct kvm_memory_slot *old,
236                                    const struct kvm_memory_slot *new,
237                                    enum kvm_mr_change change)
238 {
239         int needs_flush;
240
241         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
242                   __func__, kvm, mem->slot, mem->guest_phys_addr,
243                   mem->memory_size, mem->userspace_addr);
244
245         /*
246          * If dirty page logging is enabled, write protect all pages in the slot
247          * ready for dirty logging.
248          *
249          * There is no need to do this in any of the following cases:
250          * CREATE:      No dirty mappings will already exist.
251          * MOVE/DELETE: The old mappings will already have been cleaned up by
252          *              kvm_arch_flush_shadow_memslot()
253          */
254         if (change == KVM_MR_FLAGS_ONLY &&
255             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
256              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
257                 spin_lock(&kvm->mmu_lock);
258                 /* Write protect GPA page table entries */
259                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
260                                         new->base_gfn + new->npages - 1);
261                 /* Let implementation do the rest */
262                 if (needs_flush)
263                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
264                 spin_unlock(&kvm->mmu_lock);
265         }
266 }
267
268 static inline void dump_handler(const char *symbol, void *start, void *end)
269 {
270         u32 *p;
271
272         pr_debug("LEAF(%s)\n", symbol);
273
274         pr_debug("\t.set push\n");
275         pr_debug("\t.set noreorder\n");
276
277         for (p = start; p < (u32 *)end; ++p)
278                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
279
280         pr_debug("\t.set\tpop\n");
281
282         pr_debug("\tEND(%s)\n", symbol);
283 }
284
285 /* low level hrtimer wake routine */
286 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
287 {
288         struct kvm_vcpu *vcpu;
289
290         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
291
292         kvm_mips_callbacks->queue_timer_int(vcpu);
293
294         vcpu->arch.wait = 0;
295         rcuwait_wake_up(&vcpu->wait);
296
297         return kvm_mips_count_timeout(vcpu);
298 }
299
300 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
301 {
302         return 0;
303 }
304
305 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
306 {
307         int err, size;
308         void *gebase, *p, *handler, *refill_start, *refill_end;
309         int i;
310
311         kvm_debug("kvm @ %p: create cpu %d at %p\n",
312                   vcpu->kvm, vcpu->vcpu_id, vcpu);
313
314         err = kvm_mips_callbacks->vcpu_init(vcpu);
315         if (err)
316                 return err;
317
318         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
319                      HRTIMER_MODE_REL);
320         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
321
322         /*
323          * Allocate space for host mode exception handlers that handle
324          * guest mode exits
325          */
326         if (cpu_has_veic || cpu_has_vint)
327                 size = 0x200 + VECTORSPACING * 64;
328         else
329                 size = 0x4000;
330
331         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
332
333         if (!gebase) {
334                 err = -ENOMEM;
335                 goto out_uninit_vcpu;
336         }
337         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
338                   ALIGN(size, PAGE_SIZE), gebase);
339
340         /*
341          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
342          * limits us to the low 512MB of physical address space. If the memory
343          * we allocate is out of range, just give up now.
344          */
345         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
346                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
347                         gebase);
348                 err = -ENOMEM;
349                 goto out_free_gebase;
350         }
351
352         /* Save new ebase */
353         vcpu->arch.guest_ebase = gebase;
354
355         /* Build guest exception vectors dynamically in unmapped memory */
356         handler = gebase + 0x2000;
357
358         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
359         refill_start = gebase;
360         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
361                 refill_start += 0x080;
362         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
363
364         /* General Exception Entry point */
365         kvm_mips_build_exception(gebase + 0x180, handler);
366
367         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
368         for (i = 0; i < 8; i++) {
369                 kvm_debug("L1 Vectored handler @ %p\n",
370                           gebase + 0x200 + (i * VECTORSPACING));
371                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
372                                          handler);
373         }
374
375         /* General exit handler */
376         p = handler;
377         p = kvm_mips_build_exit(p);
378
379         /* Guest entry routine */
380         vcpu->arch.vcpu_run = p;
381         p = kvm_mips_build_vcpu_run(p);
382
383         /* Dump the generated code */
384         pr_debug("#include <asm/asm.h>\n");
385         pr_debug("#include <asm/regdef.h>\n");
386         pr_debug("\n");
387         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
388         dump_handler("kvm_tlb_refill", refill_start, refill_end);
389         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
390         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
391
392         /* Invalidate the icache for these ranges */
393         flush_icache_range((unsigned long)gebase,
394                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
395
396         /*
397          * Allocate comm page for guest kernel, a TLB will be reserved for
398          * mapping GVA @ 0xFFFF8000 to this page
399          */
400         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
401
402         if (!vcpu->arch.kseg0_commpage) {
403                 err = -ENOMEM;
404                 goto out_free_gebase;
405         }
406
407         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
408         kvm_mips_commpage_init(vcpu);
409
410         /* Init */
411         vcpu->arch.last_sched_cpu = -1;
412         vcpu->arch.last_exec_cpu = -1;
413
414         /* Initial guest state */
415         err = kvm_mips_callbacks->vcpu_setup(vcpu);
416         if (err)
417                 goto out_free_commpage;
418
419         return 0;
420
421 out_free_commpage:
422         kfree(vcpu->arch.kseg0_commpage);
423 out_free_gebase:
424         kfree(gebase);
425 out_uninit_vcpu:
426         kvm_mips_callbacks->vcpu_uninit(vcpu);
427         return err;
428 }
429
430 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
431 {
432         hrtimer_cancel(&vcpu->arch.comparecount_timer);
433
434         kvm_mips_dump_stats(vcpu);
435
436         kvm_mmu_free_memory_caches(vcpu);
437         kfree(vcpu->arch.guest_ebase);
438         kfree(vcpu->arch.kseg0_commpage);
439
440         kvm_mips_callbacks->vcpu_uninit(vcpu);
441 }
442
443 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
444                                         struct kvm_guest_debug *dbg)
445 {
446         return -ENOIOCTLCMD;
447 }
448
449 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
450 {
451         struct kvm_run *run = vcpu->run;
452         int r = -EINTR;
453
454         vcpu_load(vcpu);
455
456         kvm_sigset_activate(vcpu);
457
458         if (vcpu->mmio_needed) {
459                 if (!vcpu->mmio_is_write)
460                         kvm_mips_complete_mmio_load(vcpu, run);
461                 vcpu->mmio_needed = 0;
462         }
463
464         if (run->immediate_exit)
465                 goto out;
466
467         lose_fpu(1);
468
469         local_irq_disable();
470         guest_enter_irqoff();
471         trace_kvm_enter(vcpu);
472
473         /*
474          * Make sure the read of VCPU requests in vcpu_run() callback is not
475          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
476          * flush request while the requester sees the VCPU as outside of guest
477          * mode and not needing an IPI.
478          */
479         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
480
481         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
482
483         trace_kvm_out(vcpu);
484         guest_exit_irqoff();
485         local_irq_enable();
486
487 out:
488         kvm_sigset_deactivate(vcpu);
489
490         vcpu_put(vcpu);
491         return r;
492 }
493
494 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
495                              struct kvm_mips_interrupt *irq)
496 {
497         int intr = (int)irq->irq;
498         struct kvm_vcpu *dvcpu = NULL;
499
500         if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
501             intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
502             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
503             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
504                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
505                           (int)intr);
506
507         if (irq->cpu == -1)
508                 dvcpu = vcpu;
509         else
510                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
511
512         if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
513                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
514
515         } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
516                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
517         } else {
518                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
519                         irq->cpu, irq->irq);
520                 return -EINVAL;
521         }
522
523         dvcpu->arch.wait = 0;
524
525         rcuwait_wake_up(&dvcpu->wait);
526
527         return 0;
528 }
529
530 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
531                                     struct kvm_mp_state *mp_state)
532 {
533         return -ENOIOCTLCMD;
534 }
535
536 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
537                                     struct kvm_mp_state *mp_state)
538 {
539         return -ENOIOCTLCMD;
540 }
541
542 static u64 kvm_mips_get_one_regs[] = {
543         KVM_REG_MIPS_R0,
544         KVM_REG_MIPS_R1,
545         KVM_REG_MIPS_R2,
546         KVM_REG_MIPS_R3,
547         KVM_REG_MIPS_R4,
548         KVM_REG_MIPS_R5,
549         KVM_REG_MIPS_R6,
550         KVM_REG_MIPS_R7,
551         KVM_REG_MIPS_R8,
552         KVM_REG_MIPS_R9,
553         KVM_REG_MIPS_R10,
554         KVM_REG_MIPS_R11,
555         KVM_REG_MIPS_R12,
556         KVM_REG_MIPS_R13,
557         KVM_REG_MIPS_R14,
558         KVM_REG_MIPS_R15,
559         KVM_REG_MIPS_R16,
560         KVM_REG_MIPS_R17,
561         KVM_REG_MIPS_R18,
562         KVM_REG_MIPS_R19,
563         KVM_REG_MIPS_R20,
564         KVM_REG_MIPS_R21,
565         KVM_REG_MIPS_R22,
566         KVM_REG_MIPS_R23,
567         KVM_REG_MIPS_R24,
568         KVM_REG_MIPS_R25,
569         KVM_REG_MIPS_R26,
570         KVM_REG_MIPS_R27,
571         KVM_REG_MIPS_R28,
572         KVM_REG_MIPS_R29,
573         KVM_REG_MIPS_R30,
574         KVM_REG_MIPS_R31,
575
576 #ifndef CONFIG_CPU_MIPSR6
577         KVM_REG_MIPS_HI,
578         KVM_REG_MIPS_LO,
579 #endif
580         KVM_REG_MIPS_PC,
581 };
582
583 static u64 kvm_mips_get_one_regs_fpu[] = {
584         KVM_REG_MIPS_FCR_IR,
585         KVM_REG_MIPS_FCR_CSR,
586 };
587
588 static u64 kvm_mips_get_one_regs_msa[] = {
589         KVM_REG_MIPS_MSA_IR,
590         KVM_REG_MIPS_MSA_CSR,
591 };
592
593 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
594 {
595         unsigned long ret;
596
597         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
598         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
599                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
600                 /* odd doubles */
601                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
602                         ret += 16;
603         }
604         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
605                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
606         ret += kvm_mips_callbacks->num_regs(vcpu);
607
608         return ret;
609 }
610
611 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
612 {
613         u64 index;
614         unsigned int i;
615
616         if (copy_to_user(indices, kvm_mips_get_one_regs,
617                          sizeof(kvm_mips_get_one_regs)))
618                 return -EFAULT;
619         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
620
621         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
622                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
623                                  sizeof(kvm_mips_get_one_regs_fpu)))
624                         return -EFAULT;
625                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
626
627                 for (i = 0; i < 32; ++i) {
628                         index = KVM_REG_MIPS_FPR_32(i);
629                         if (copy_to_user(indices, &index, sizeof(index)))
630                                 return -EFAULT;
631                         ++indices;
632
633                         /* skip odd doubles if no F64 */
634                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
635                                 continue;
636
637                         index = KVM_REG_MIPS_FPR_64(i);
638                         if (copy_to_user(indices, &index, sizeof(index)))
639                                 return -EFAULT;
640                         ++indices;
641                 }
642         }
643
644         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
645                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
646                                  sizeof(kvm_mips_get_one_regs_msa)))
647                         return -EFAULT;
648                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
649
650                 for (i = 0; i < 32; ++i) {
651                         index = KVM_REG_MIPS_VEC_128(i);
652                         if (copy_to_user(indices, &index, sizeof(index)))
653                                 return -EFAULT;
654                         ++indices;
655                 }
656         }
657
658         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
659 }
660
661 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
662                             const struct kvm_one_reg *reg)
663 {
664         struct mips_coproc *cop0 = vcpu->arch.cop0;
665         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
666         int ret;
667         s64 v;
668         s64 vs[2];
669         unsigned int idx;
670
671         switch (reg->id) {
672         /* General purpose registers */
673         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
674                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
675                 break;
676 #ifndef CONFIG_CPU_MIPSR6
677         case KVM_REG_MIPS_HI:
678                 v = (long)vcpu->arch.hi;
679                 break;
680         case KVM_REG_MIPS_LO:
681                 v = (long)vcpu->arch.lo;
682                 break;
683 #endif
684         case KVM_REG_MIPS_PC:
685                 v = (long)vcpu->arch.pc;
686                 break;
687
688         /* Floating point registers */
689         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
690                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
691                         return -EINVAL;
692                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
693                 /* Odd singles in top of even double when FR=0 */
694                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
695                         v = get_fpr32(&fpu->fpr[idx], 0);
696                 else
697                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
698                 break;
699         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
700                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
701                         return -EINVAL;
702                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
703                 /* Can't access odd doubles in FR=0 mode */
704                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
705                         return -EINVAL;
706                 v = get_fpr64(&fpu->fpr[idx], 0);
707                 break;
708         case KVM_REG_MIPS_FCR_IR:
709                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
710                         return -EINVAL;
711                 v = boot_cpu_data.fpu_id;
712                 break;
713         case KVM_REG_MIPS_FCR_CSR:
714                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
715                         return -EINVAL;
716                 v = fpu->fcr31;
717                 break;
718
719         /* MIPS SIMD Architecture (MSA) registers */
720         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
721                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
722                         return -EINVAL;
723                 /* Can't access MSA registers in FR=0 mode */
724                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
725                         return -EINVAL;
726                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
727 #ifdef CONFIG_CPU_LITTLE_ENDIAN
728                 /* least significant byte first */
729                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
730                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
731 #else
732                 /* most significant byte first */
733                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
734                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
735 #endif
736                 break;
737         case KVM_REG_MIPS_MSA_IR:
738                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
739                         return -EINVAL;
740                 v = boot_cpu_data.msa_id;
741                 break;
742         case KVM_REG_MIPS_MSA_CSR:
743                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
744                         return -EINVAL;
745                 v = fpu->msacsr;
746                 break;
747
748         /* registers to be handled specially */
749         default:
750                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
751                 if (ret)
752                         return ret;
753                 break;
754         }
755         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
756                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
757
758                 return put_user(v, uaddr64);
759         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
760                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
761                 u32 v32 = (u32)v;
762
763                 return put_user(v32, uaddr32);
764         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
765                 void __user *uaddr = (void __user *)(long)reg->addr;
766
767                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
768         } else {
769                 return -EINVAL;
770         }
771 }
772
773 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
774                             const struct kvm_one_reg *reg)
775 {
776         struct mips_coproc *cop0 = vcpu->arch.cop0;
777         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
778         s64 v;
779         s64 vs[2];
780         unsigned int idx;
781
782         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
783                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
784
785                 if (get_user(v, uaddr64) != 0)
786                         return -EFAULT;
787         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
788                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
789                 s32 v32;
790
791                 if (get_user(v32, uaddr32) != 0)
792                         return -EFAULT;
793                 v = (s64)v32;
794         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
795                 void __user *uaddr = (void __user *)(long)reg->addr;
796
797                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
798         } else {
799                 return -EINVAL;
800         }
801
802         switch (reg->id) {
803         /* General purpose registers */
804         case KVM_REG_MIPS_R0:
805                 /* Silently ignore requests to set $0 */
806                 break;
807         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
808                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
809                 break;
810 #ifndef CONFIG_CPU_MIPSR6
811         case KVM_REG_MIPS_HI:
812                 vcpu->arch.hi = v;
813                 break;
814         case KVM_REG_MIPS_LO:
815                 vcpu->arch.lo = v;
816                 break;
817 #endif
818         case KVM_REG_MIPS_PC:
819                 vcpu->arch.pc = v;
820                 break;
821
822         /* Floating point registers */
823         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
824                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
825                         return -EINVAL;
826                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
827                 /* Odd singles in top of even double when FR=0 */
828                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
829                         set_fpr32(&fpu->fpr[idx], 0, v);
830                 else
831                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
832                 break;
833         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
834                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
835                         return -EINVAL;
836                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
837                 /* Can't access odd doubles in FR=0 mode */
838                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
839                         return -EINVAL;
840                 set_fpr64(&fpu->fpr[idx], 0, v);
841                 break;
842         case KVM_REG_MIPS_FCR_IR:
843                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
844                         return -EINVAL;
845                 /* Read-only */
846                 break;
847         case KVM_REG_MIPS_FCR_CSR:
848                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
849                         return -EINVAL;
850                 fpu->fcr31 = v;
851                 break;
852
853         /* MIPS SIMD Architecture (MSA) registers */
854         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
855                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
856                         return -EINVAL;
857                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
858 #ifdef CONFIG_CPU_LITTLE_ENDIAN
859                 /* least significant byte first */
860                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
861                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
862 #else
863                 /* most significant byte first */
864                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
865                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
866 #endif
867                 break;
868         case KVM_REG_MIPS_MSA_IR:
869                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
870                         return -EINVAL;
871                 /* Read-only */
872                 break;
873         case KVM_REG_MIPS_MSA_CSR:
874                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
875                         return -EINVAL;
876                 fpu->msacsr = v;
877                 break;
878
879         /* registers to be handled specially */
880         default:
881                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
882         }
883         return 0;
884 }
885
886 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
887                                      struct kvm_enable_cap *cap)
888 {
889         int r = 0;
890
891         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
892                 return -EINVAL;
893         if (cap->flags)
894                 return -EINVAL;
895         if (cap->args[0])
896                 return -EINVAL;
897
898         switch (cap->cap) {
899         case KVM_CAP_MIPS_FPU:
900                 vcpu->arch.fpu_enabled = true;
901                 break;
902         case KVM_CAP_MIPS_MSA:
903                 vcpu->arch.msa_enabled = true;
904                 break;
905         default:
906                 r = -EINVAL;
907                 break;
908         }
909
910         return r;
911 }
912
913 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
914                                unsigned long arg)
915 {
916         struct kvm_vcpu *vcpu = filp->private_data;
917         void __user *argp = (void __user *)arg;
918
919         if (ioctl == KVM_INTERRUPT) {
920                 struct kvm_mips_interrupt irq;
921
922                 if (copy_from_user(&irq, argp, sizeof(irq)))
923                         return -EFAULT;
924                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
925                           irq.irq);
926
927                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
928         }
929
930         return -ENOIOCTLCMD;
931 }
932
933 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
934                          unsigned long arg)
935 {
936         struct kvm_vcpu *vcpu = filp->private_data;
937         void __user *argp = (void __user *)arg;
938         long r;
939
940         vcpu_load(vcpu);
941
942         switch (ioctl) {
943         case KVM_SET_ONE_REG:
944         case KVM_GET_ONE_REG: {
945                 struct kvm_one_reg reg;
946
947                 r = -EFAULT;
948                 if (copy_from_user(&reg, argp, sizeof(reg)))
949                         break;
950                 if (ioctl == KVM_SET_ONE_REG)
951                         r = kvm_mips_set_reg(vcpu, &reg);
952                 else
953                         r = kvm_mips_get_reg(vcpu, &reg);
954                 break;
955         }
956         case KVM_GET_REG_LIST: {
957                 struct kvm_reg_list __user *user_list = argp;
958                 struct kvm_reg_list reg_list;
959                 unsigned n;
960
961                 r = -EFAULT;
962                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
963                         break;
964                 n = reg_list.n;
965                 reg_list.n = kvm_mips_num_regs(vcpu);
966                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
967                         break;
968                 r = -E2BIG;
969                 if (n < reg_list.n)
970                         break;
971                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
972                 break;
973         }
974         case KVM_ENABLE_CAP: {
975                 struct kvm_enable_cap cap;
976
977                 r = -EFAULT;
978                 if (copy_from_user(&cap, argp, sizeof(cap)))
979                         break;
980                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
981                 break;
982         }
983         default:
984                 r = -ENOIOCTLCMD;
985         }
986
987         vcpu_put(vcpu);
988         return r;
989 }
990
991 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
992 {
993
994 }
995
996 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
997                                         struct kvm_memory_slot *memslot)
998 {
999         /* Let implementation handle TLB/GVA invalidation */
1000         kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1001 }
1002
1003 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1004 {
1005         long r;
1006
1007         switch (ioctl) {
1008         default:
1009                 r = -ENOIOCTLCMD;
1010         }
1011
1012         return r;
1013 }
1014
1015 int kvm_arch_init(void *opaque)
1016 {
1017         if (kvm_mips_callbacks) {
1018                 kvm_err("kvm: module already exists\n");
1019                 return -EEXIST;
1020         }
1021
1022         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1023 }
1024
1025 void kvm_arch_exit(void)
1026 {
1027         kvm_mips_callbacks = NULL;
1028 }
1029
1030 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1031                                   struct kvm_sregs *sregs)
1032 {
1033         return -ENOIOCTLCMD;
1034 }
1035
1036 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1037                                   struct kvm_sregs *sregs)
1038 {
1039         return -ENOIOCTLCMD;
1040 }
1041
1042 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1043 {
1044 }
1045
1046 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1047 {
1048         return -ENOIOCTLCMD;
1049 }
1050
1051 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1052 {
1053         return -ENOIOCTLCMD;
1054 }
1055
1056 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1057 {
1058         return VM_FAULT_SIGBUS;
1059 }
1060
1061 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1062 {
1063         int r;
1064
1065         switch (ext) {
1066         case KVM_CAP_ONE_REG:
1067         case KVM_CAP_ENABLE_CAP:
1068         case KVM_CAP_READONLY_MEM:
1069         case KVM_CAP_SYNC_MMU:
1070         case KVM_CAP_IMMEDIATE_EXIT:
1071                 r = 1;
1072                 break;
1073         case KVM_CAP_NR_VCPUS:
1074                 r = num_online_cpus();
1075                 break;
1076         case KVM_CAP_MAX_VCPUS:
1077                 r = KVM_MAX_VCPUS;
1078                 break;
1079         case KVM_CAP_MAX_VCPU_ID:
1080                 r = KVM_MAX_VCPU_ID;
1081                 break;
1082         case KVM_CAP_MIPS_FPU:
1083                 /* We don't handle systems with inconsistent cpu_has_fpu */
1084                 r = !!raw_cpu_has_fpu;
1085                 break;
1086         case KVM_CAP_MIPS_MSA:
1087                 /*
1088                  * We don't support MSA vector partitioning yet:
1089                  * 1) It would require explicit support which can't be tested
1090                  *    yet due to lack of support in current hardware.
1091                  * 2) It extends the state that would need to be saved/restored
1092                  *    by e.g. QEMU for migration.
1093                  *
1094                  * When vector partitioning hardware becomes available, support
1095                  * could be added by requiring a flag when enabling
1096                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1097                  * to save/restore the appropriate extra state.
1098                  */
1099                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1100                 break;
1101         default:
1102                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1103                 break;
1104         }
1105         return r;
1106 }
1107
1108 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1109 {
1110         return kvm_mips_pending_timer(vcpu) ||
1111                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1112 }
1113
1114 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1115 {
1116         int i;
1117         struct mips_coproc *cop0;
1118
1119         if (!vcpu)
1120                 return -1;
1121
1122         kvm_debug("VCPU Register Dump:\n");
1123         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1124         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1125
1126         for (i = 0; i < 32; i += 4) {
1127                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1128                        vcpu->arch.gprs[i],
1129                        vcpu->arch.gprs[i + 1],
1130                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1131         }
1132         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1133         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1134
1135         cop0 = vcpu->arch.cop0;
1136         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1137                   kvm_read_c0_guest_status(cop0),
1138                   kvm_read_c0_guest_cause(cop0));
1139
1140         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1141
1142         return 0;
1143 }
1144
1145 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1146 {
1147         int i;
1148
1149         vcpu_load(vcpu);
1150
1151         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1152                 vcpu->arch.gprs[i] = regs->gpr[i];
1153         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1154         vcpu->arch.hi = regs->hi;
1155         vcpu->arch.lo = regs->lo;
1156         vcpu->arch.pc = regs->pc;
1157
1158         vcpu_put(vcpu);
1159         return 0;
1160 }
1161
1162 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1163 {
1164         int i;
1165
1166         vcpu_load(vcpu);
1167
1168         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1169                 regs->gpr[i] = vcpu->arch.gprs[i];
1170
1171         regs->hi = vcpu->arch.hi;
1172         regs->lo = vcpu->arch.lo;
1173         regs->pc = vcpu->arch.pc;
1174
1175         vcpu_put(vcpu);
1176         return 0;
1177 }
1178
1179 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1180                                   struct kvm_translation *tr)
1181 {
1182         return 0;
1183 }
1184
1185 static void kvm_mips_set_c0_status(void)
1186 {
1187         u32 status = read_c0_status();
1188
1189         if (cpu_has_dsp)
1190                 status |= (ST0_MX);
1191
1192         write_c0_status(status);
1193         ehb();
1194 }
1195
1196 /*
1197  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1198  */
1199 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1200 {
1201         u32 cause = vcpu->arch.host_cp0_cause;
1202         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1203         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1204         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1205         enum emulation_result er = EMULATE_DONE;
1206         u32 inst;
1207         int ret = RESUME_GUEST;
1208
1209         vcpu->mode = OUTSIDE_GUEST_MODE;
1210
1211         /* re-enable HTW before enabling interrupts */
1212         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1213                 htw_start();
1214
1215         /* Set a default exit reason */
1216         run->exit_reason = KVM_EXIT_UNKNOWN;
1217         run->ready_for_interrupt_injection = 1;
1218
1219         /*
1220          * Set the appropriate status bits based on host CPU features,
1221          * before we hit the scheduler
1222          */
1223         kvm_mips_set_c0_status();
1224
1225         local_irq_enable();
1226
1227         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1228                         cause, opc, run, vcpu);
1229         trace_kvm_exit(vcpu, exccode);
1230
1231         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1232                 /*
1233                  * Do a privilege check, if in UM most of these exit conditions
1234                  * end up causing an exception to be delivered to the Guest
1235                  * Kernel
1236                  */
1237                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1238                 if (er == EMULATE_PRIV_FAIL) {
1239                         goto skip_emul;
1240                 } else if (er == EMULATE_FAIL) {
1241                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1242                         ret = RESUME_HOST;
1243                         goto skip_emul;
1244                 }
1245         }
1246
1247         switch (exccode) {
1248         case EXCCODE_INT:
1249                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1250
1251                 ++vcpu->stat.int_exits;
1252
1253                 if (need_resched())
1254                         cond_resched();
1255
1256                 ret = RESUME_GUEST;
1257                 break;
1258
1259         case EXCCODE_CPU:
1260                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1261
1262                 ++vcpu->stat.cop_unusable_exits;
1263                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1264                 /* XXXKYMA: Might need to return to user space */
1265                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1266                         ret = RESUME_HOST;
1267                 break;
1268
1269         case EXCCODE_MOD:
1270                 ++vcpu->stat.tlbmod_exits;
1271                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1272                 break;
1273
1274         case EXCCODE_TLBS:
1275                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1276                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1277                           badvaddr);
1278
1279                 ++vcpu->stat.tlbmiss_st_exits;
1280                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1281                 break;
1282
1283         case EXCCODE_TLBL:
1284                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1285                           cause, opc, badvaddr);
1286
1287                 ++vcpu->stat.tlbmiss_ld_exits;
1288                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1289                 break;
1290
1291         case EXCCODE_ADES:
1292                 ++vcpu->stat.addrerr_st_exits;
1293                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1294                 break;
1295
1296         case EXCCODE_ADEL:
1297                 ++vcpu->stat.addrerr_ld_exits;
1298                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1299                 break;
1300
1301         case EXCCODE_SYS:
1302                 ++vcpu->stat.syscall_exits;
1303                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1304                 break;
1305
1306         case EXCCODE_RI:
1307                 ++vcpu->stat.resvd_inst_exits;
1308                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1309                 break;
1310
1311         case EXCCODE_BP:
1312                 ++vcpu->stat.break_inst_exits;
1313                 ret = kvm_mips_callbacks->handle_break(vcpu);
1314                 break;
1315
1316         case EXCCODE_TR:
1317                 ++vcpu->stat.trap_inst_exits;
1318                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1319                 break;
1320
1321         case EXCCODE_MSAFPE:
1322                 ++vcpu->stat.msa_fpe_exits;
1323                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1324                 break;
1325
1326         case EXCCODE_FPE:
1327                 ++vcpu->stat.fpe_exits;
1328                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1329                 break;
1330
1331         case EXCCODE_MSADIS:
1332                 ++vcpu->stat.msa_disabled_exits;
1333                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1334                 break;
1335
1336         case EXCCODE_GE:
1337                 /* defer exit accounting to handler */
1338                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1339                 break;
1340
1341         default:
1342                 if (cause & CAUSEF_BD)
1343                         opc += 1;
1344                 inst = 0;
1345                 kvm_get_badinstr(opc, vcpu, &inst);
1346                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1347                         exccode, opc, inst, badvaddr,
1348                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1349                 kvm_arch_vcpu_dump_regs(vcpu);
1350                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1351                 ret = RESUME_HOST;
1352                 break;
1353
1354         }
1355
1356 skip_emul:
1357         local_irq_disable();
1358
1359         if (ret == RESUME_GUEST)
1360                 kvm_vz_acquire_htimer(vcpu);
1361
1362         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1363                 kvm_mips_deliver_interrupts(vcpu, cause);
1364
1365         if (!(ret & RESUME_HOST)) {
1366                 /* Only check for signals if not already exiting to userspace */
1367                 if (signal_pending(current)) {
1368                         run->exit_reason = KVM_EXIT_INTR;
1369                         ret = (-EINTR << 2) | RESUME_HOST;
1370                         ++vcpu->stat.signal_exits;
1371                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1372                 }
1373         }
1374
1375         if (ret == RESUME_GUEST) {
1376                 trace_kvm_reenter(vcpu);
1377
1378                 /*
1379                  * Make sure the read of VCPU requests in vcpu_reenter()
1380                  * callback is not reordered ahead of the write to vcpu->mode,
1381                  * or we could miss a TLB flush request while the requester sees
1382                  * the VCPU as outside of guest mode and not needing an IPI.
1383                  */
1384                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1385
1386                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1387
1388                 /*
1389                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1390                  * is live), restore FCR31 / MSACSR.
1391                  *
1392                  * This should be before returning to the guest exception
1393                  * vector, as it may well cause an [MSA] FP exception if there
1394                  * are pending exception bits unmasked. (see
1395                  * kvm_mips_csr_die_notifier() for how that is handled).
1396                  */
1397                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1398                     read_c0_status() & ST0_CU1)
1399                         __kvm_restore_fcsr(&vcpu->arch);
1400
1401                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1402                     read_c0_config5() & MIPS_CONF5_MSAEN)
1403                         __kvm_restore_msacsr(&vcpu->arch);
1404         }
1405
1406         /* Disable HTW before returning to guest or host */
1407         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1408                 htw_stop();
1409
1410         return ret;
1411 }
1412
1413 /* Enable FPU for guest and restore context */
1414 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1415 {
1416         struct mips_coproc *cop0 = vcpu->arch.cop0;
1417         unsigned int sr, cfg5;
1418
1419         preempt_disable();
1420
1421         sr = kvm_read_c0_guest_status(cop0);
1422
1423         /*
1424          * If MSA state is already live, it is undefined how it interacts with
1425          * FR=0 FPU state, and we don't want to hit reserved instruction
1426          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1427          * play it safe and save it first.
1428          *
1429          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1430          * get called when guest CU1 is set, however we can't trust the guest
1431          * not to clobber the status register directly via the commpage.
1432          */
1433         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1434             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1435                 kvm_lose_fpu(vcpu);
1436
1437         /*
1438          * Enable FPU for guest
1439          * We set FR and FRE according to guest context
1440          */
1441         change_c0_status(ST0_CU1 | ST0_FR, sr);
1442         if (cpu_has_fre) {
1443                 cfg5 = kvm_read_c0_guest_config5(cop0);
1444                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1445         }
1446         enable_fpu_hazard();
1447
1448         /* If guest FPU state not active, restore it now */
1449         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1450                 __kvm_restore_fpu(&vcpu->arch);
1451                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1452                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1453         } else {
1454                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1455         }
1456
1457         preempt_enable();
1458 }
1459
1460 #ifdef CONFIG_CPU_HAS_MSA
1461 /* Enable MSA for guest and restore context */
1462 void kvm_own_msa(struct kvm_vcpu *vcpu)
1463 {
1464         struct mips_coproc *cop0 = vcpu->arch.cop0;
1465         unsigned int sr, cfg5;
1466
1467         preempt_disable();
1468
1469         /*
1470          * Enable FPU if enabled in guest, since we're restoring FPU context
1471          * anyway. We set FR and FRE according to guest context.
1472          */
1473         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1474                 sr = kvm_read_c0_guest_status(cop0);
1475
1476                 /*
1477                  * If FR=0 FPU state is already live, it is undefined how it
1478                  * interacts with MSA state, so play it safe and save it first.
1479                  */
1480                 if (!(sr & ST0_FR) &&
1481                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1482                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1483                         kvm_lose_fpu(vcpu);
1484
1485                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1486                 if (sr & ST0_CU1 && cpu_has_fre) {
1487                         cfg5 = kvm_read_c0_guest_config5(cop0);
1488                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1489                 }
1490         }
1491
1492         /* Enable MSA for guest */
1493         set_c0_config5(MIPS_CONF5_MSAEN);
1494         enable_fpu_hazard();
1495
1496         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1497         case KVM_MIPS_AUX_FPU:
1498                 /*
1499                  * Guest FPU state already loaded, only restore upper MSA state
1500                  */
1501                 __kvm_restore_msa_upper(&vcpu->arch);
1502                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1503                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1504                 break;
1505         case 0:
1506                 /* Neither FPU or MSA already active, restore full MSA state */
1507                 __kvm_restore_msa(&vcpu->arch);
1508                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1509                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1510                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1511                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1512                               KVM_TRACE_AUX_FPU_MSA);
1513                 break;
1514         default:
1515                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1516                 break;
1517         }
1518
1519         preempt_enable();
1520 }
1521 #endif
1522
1523 /* Drop FPU & MSA without saving it */
1524 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1525 {
1526         preempt_disable();
1527         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1528                 disable_msa();
1529                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1530                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1531         }
1532         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1533                 clear_c0_status(ST0_CU1 | ST0_FR);
1534                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1535                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1536         }
1537         preempt_enable();
1538 }
1539
1540 /* Save and disable FPU & MSA */
1541 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1542 {
1543         /*
1544          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1545          * is disabled in guest context (software), but the register state in
1546          * the hardware may still be in use.
1547          * This is why we explicitly re-enable the hardware before saving.
1548          */
1549
1550         preempt_disable();
1551         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1552                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1553                         set_c0_config5(MIPS_CONF5_MSAEN);
1554                         enable_fpu_hazard();
1555                 }
1556
1557                 __kvm_save_msa(&vcpu->arch);
1558                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1559
1560                 /* Disable MSA & FPU */
1561                 disable_msa();
1562                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1563                         clear_c0_status(ST0_CU1 | ST0_FR);
1564                         disable_fpu_hazard();
1565                 }
1566                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1567         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1568                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1569                         set_c0_status(ST0_CU1);
1570                         enable_fpu_hazard();
1571                 }
1572
1573                 __kvm_save_fpu(&vcpu->arch);
1574                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1575                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1576
1577                 /* Disable FPU */
1578                 clear_c0_status(ST0_CU1 | ST0_FR);
1579                 disable_fpu_hazard();
1580         }
1581         preempt_enable();
1582 }
1583
1584 /*
1585  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1586  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1587  * exception if cause bits are set in the value being written.
1588  */
1589 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1590                                    unsigned long cmd, void *ptr)
1591 {
1592         struct die_args *args = (struct die_args *)ptr;
1593         struct pt_regs *regs = args->regs;
1594         unsigned long pc;
1595
1596         /* Only interested in FPE and MSAFPE */
1597         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1598                 return NOTIFY_DONE;
1599
1600         /* Return immediately if guest context isn't active */
1601         if (!(current->flags & PF_VCPU))
1602                 return NOTIFY_DONE;
1603
1604         /* Should never get here from user mode */
1605         BUG_ON(user_mode(regs));
1606
1607         pc = instruction_pointer(regs);
1608         switch (cmd) {
1609         case DIE_FP:
1610                 /* match 2nd instruction in __kvm_restore_fcsr */
1611                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1612                         return NOTIFY_DONE;
1613                 break;
1614         case DIE_MSAFP:
1615                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1616                 if (!cpu_has_msa ||
1617                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1618                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1619                         return NOTIFY_DONE;
1620                 break;
1621         }
1622
1623         /* Move PC forward a little and continue executing */
1624         instruction_pointer(regs) += 4;
1625
1626         return NOTIFY_STOP;
1627 }
1628
1629 static struct notifier_block kvm_mips_csr_die_notifier = {
1630         .notifier_call = kvm_mips_csr_die_notify,
1631 };
1632
1633 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1634         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1635         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1636         [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1637         [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1638 };
1639
1640 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1641         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1642         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1643         [MIPS_EXC_INT_IO_2]  = C_IRQ1,
1644         [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1645 };
1646
1647 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1648
1649 u32 kvm_irq_to_priority(u32 irq)
1650 {
1651         int i;
1652
1653         for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1654                 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1655                         return i;
1656         }
1657
1658         return MIPS_EXC_MAX;
1659 }
1660
1661 static int __init kvm_mips_init(void)
1662 {
1663         int ret;
1664
1665         if (cpu_has_mmid) {
1666                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1667                 return -EOPNOTSUPP;
1668         }
1669
1670         ret = kvm_mips_entry_setup();
1671         if (ret)
1672                 return ret;
1673
1674         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1675
1676         if (ret)
1677                 return ret;
1678
1679         if (boot_cpu_type() == CPU_LOONGSON64)
1680                 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1681
1682         register_die_notifier(&kvm_mips_csr_die_notifier);
1683
1684         return 0;
1685 }
1686
1687 static void __exit kvm_mips_exit(void)
1688 {
1689         kvm_exit();
1690
1691         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1692 }
1693
1694 module_init(kvm_mips_init);
1695 module_exit(kvm_mips_exit);
1696
1697 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);