selftests/bpf: Make test_varlen work with 32-bit user-space arch
[platform/kernel/linux-starfive.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/memblock.h>
22 #include <linux/pgtable.h>
23
24 #include <asm/fpu.h>
25 #include <asm/page.h>
26 #include <asm/cacheflush.h>
27 #include <asm/mmu_context.h>
28 #include <asm/pgalloc.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 struct kvm_stats_debugfs_item debugfs_entries[] = {
43         VCPU_STAT("wait", wait_exits),
44         VCPU_STAT("cache", cache_exits),
45         VCPU_STAT("signal", signal_exits),
46         VCPU_STAT("interrupt", int_exits),
47         VCPU_STAT("cop_unusable", cop_unusable_exits),
48         VCPU_STAT("tlbmod", tlbmod_exits),
49         VCPU_STAT("tlbmiss_ld", tlbmiss_ld_exits),
50         VCPU_STAT("tlbmiss_st", tlbmiss_st_exits),
51         VCPU_STAT("addrerr_st", addrerr_st_exits),
52         VCPU_STAT("addrerr_ld", addrerr_ld_exits),
53         VCPU_STAT("syscall", syscall_exits),
54         VCPU_STAT("resvd_inst", resvd_inst_exits),
55         VCPU_STAT("break_inst", break_inst_exits),
56         VCPU_STAT("trap_inst", trap_inst_exits),
57         VCPU_STAT("msa_fpe", msa_fpe_exits),
58         VCPU_STAT("fpe", fpe_exits),
59         VCPU_STAT("msa_disabled", msa_disabled_exits),
60         VCPU_STAT("flush_dcache", flush_dcache_exits),
61 #ifdef CONFIG_KVM_MIPS_VZ
62         VCPU_STAT("vz_gpsi", vz_gpsi_exits),
63         VCPU_STAT("vz_gsfc", vz_gsfc_exits),
64         VCPU_STAT("vz_hc", vz_hc_exits),
65         VCPU_STAT("vz_grr", vz_grr_exits),
66         VCPU_STAT("vz_gva", vz_gva_exits),
67         VCPU_STAT("vz_ghfc", vz_ghfc_exits),
68         VCPU_STAT("vz_gpa", vz_gpa_exits),
69         VCPU_STAT("vz_resvd", vz_resvd_exits),
70 #ifdef CONFIG_CPU_LOONGSON64
71         VCPU_STAT("vz_cpucfg", vz_cpucfg_exits),
72 #endif
73 #endif
74         VCPU_STAT("halt_successful_poll", halt_successful_poll),
75         VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
76         VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
77         VCPU_STAT("halt_wakeup", halt_wakeup),
78         VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
79         VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
80         {NULL}
81 };
82
83 bool kvm_trace_guest_mode_change;
84
85 int kvm_guest_mode_change_trace_reg(void)
86 {
87         kvm_trace_guest_mode_change = true;
88         return 0;
89 }
90
91 void kvm_guest_mode_change_trace_unreg(void)
92 {
93         kvm_trace_guest_mode_change = false;
94 }
95
96 /*
97  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
98  * Config7, so we are "runnable" if interrupts are pending
99  */
100 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
101 {
102         return !!(vcpu->arch.pending_exceptions);
103 }
104
105 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
106 {
107         return false;
108 }
109
110 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
111 {
112         return 1;
113 }
114
115 int kvm_arch_hardware_enable(void)
116 {
117         return kvm_mips_callbacks->hardware_enable();
118 }
119
120 void kvm_arch_hardware_disable(void)
121 {
122         kvm_mips_callbacks->hardware_disable();
123 }
124
125 int kvm_arch_hardware_setup(void *opaque)
126 {
127         return 0;
128 }
129
130 int kvm_arch_check_processor_compat(void *opaque)
131 {
132         return 0;
133 }
134
135 extern void kvm_init_loongson_ipi(struct kvm *kvm);
136
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         switch (type) {
140 #ifdef CONFIG_KVM_MIPS_VZ
141         case KVM_VM_MIPS_VZ:
142 #else
143         case KVM_VM_MIPS_TE:
144 #endif
145                 break;
146         default:
147                 /* Unsupported KVM type */
148                 return -EINVAL;
149         };
150
151         /* Allocate page table to map GPA -> RPA */
152         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
153         if (!kvm->arch.gpa_mm.pgd)
154                 return -ENOMEM;
155
156 #ifdef CONFIG_CPU_LOONGSON64
157         kvm_init_loongson_ipi(kvm);
158 #endif
159
160         return 0;
161 }
162
163 void kvm_mips_free_vcpus(struct kvm *kvm)
164 {
165         unsigned int i;
166         struct kvm_vcpu *vcpu;
167
168         kvm_for_each_vcpu(i, vcpu, kvm) {
169                 kvm_vcpu_destroy(vcpu);
170         }
171
172         mutex_lock(&kvm->lock);
173
174         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
175                 kvm->vcpus[i] = NULL;
176
177         atomic_set(&kvm->online_vcpus, 0);
178
179         mutex_unlock(&kvm->lock);
180 }
181
182 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
183 {
184         /* It should always be safe to remove after flushing the whole range */
185         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
186         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
187 }
188
189 void kvm_arch_destroy_vm(struct kvm *kvm)
190 {
191         kvm_mips_free_vcpus(kvm);
192         kvm_mips_free_gpa_pt(kvm);
193 }
194
195 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
196                         unsigned long arg)
197 {
198         return -ENOIOCTLCMD;
199 }
200
201 void kvm_arch_flush_shadow_all(struct kvm *kvm)
202 {
203         /* Flush whole GPA */
204         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
205
206         /* Let implementation do the rest */
207         kvm_mips_callbacks->flush_shadow_all(kvm);
208 }
209
210 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
211                                    struct kvm_memory_slot *slot)
212 {
213         /*
214          * The slot has been made invalid (ready for moving or deletion), so we
215          * need to ensure that it can no longer be accessed by any guest VCPUs.
216          */
217
218         spin_lock(&kvm->mmu_lock);
219         /* Flush slot from GPA */
220         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
221                               slot->base_gfn + slot->npages - 1);
222         /* Let implementation do the rest */
223         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
224         spin_unlock(&kvm->mmu_lock);
225 }
226
227 int kvm_arch_prepare_memory_region(struct kvm *kvm,
228                                    struct kvm_memory_slot *memslot,
229                                    const struct kvm_userspace_memory_region *mem,
230                                    enum kvm_mr_change change)
231 {
232         return 0;
233 }
234
235 void kvm_arch_commit_memory_region(struct kvm *kvm,
236                                    const struct kvm_userspace_memory_region *mem,
237                                    struct kvm_memory_slot *old,
238                                    const struct kvm_memory_slot *new,
239                                    enum kvm_mr_change change)
240 {
241         int needs_flush;
242
243         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
244                   __func__, kvm, mem->slot, mem->guest_phys_addr,
245                   mem->memory_size, mem->userspace_addr);
246
247         /*
248          * If dirty page logging is enabled, write protect all pages in the slot
249          * ready for dirty logging.
250          *
251          * There is no need to do this in any of the following cases:
252          * CREATE:      No dirty mappings will already exist.
253          * MOVE/DELETE: The old mappings will already have been cleaned up by
254          *              kvm_arch_flush_shadow_memslot()
255          */
256         if (change == KVM_MR_FLAGS_ONLY &&
257             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
258              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
259                 spin_lock(&kvm->mmu_lock);
260                 /* Write protect GPA page table entries */
261                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
262                                         new->base_gfn + new->npages - 1);
263                 /* Let implementation do the rest */
264                 if (needs_flush)
265                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
266                 spin_unlock(&kvm->mmu_lock);
267         }
268 }
269
270 static inline void dump_handler(const char *symbol, void *start, void *end)
271 {
272         u32 *p;
273
274         pr_debug("LEAF(%s)\n", symbol);
275
276         pr_debug("\t.set push\n");
277         pr_debug("\t.set noreorder\n");
278
279         for (p = start; p < (u32 *)end; ++p)
280                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
281
282         pr_debug("\t.set\tpop\n");
283
284         pr_debug("\tEND(%s)\n", symbol);
285 }
286
287 /* low level hrtimer wake routine */
288 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
289 {
290         struct kvm_vcpu *vcpu;
291
292         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
293
294         kvm_mips_callbacks->queue_timer_int(vcpu);
295
296         vcpu->arch.wait = 0;
297         rcuwait_wake_up(&vcpu->wait);
298
299         return kvm_mips_count_timeout(vcpu);
300 }
301
302 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
303 {
304         return 0;
305 }
306
307 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
308 {
309         int err, size;
310         void *gebase, *p, *handler, *refill_start, *refill_end;
311         int i;
312
313         kvm_debug("kvm @ %p: create cpu %d at %p\n",
314                   vcpu->kvm, vcpu->vcpu_id, vcpu);
315
316         err = kvm_mips_callbacks->vcpu_init(vcpu);
317         if (err)
318                 return err;
319
320         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
321                      HRTIMER_MODE_REL);
322         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
323
324         /*
325          * Allocate space for host mode exception handlers that handle
326          * guest mode exits
327          */
328         if (cpu_has_veic || cpu_has_vint)
329                 size = 0x200 + VECTORSPACING * 64;
330         else
331                 size = 0x4000;
332
333         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
334
335         if (!gebase) {
336                 err = -ENOMEM;
337                 goto out_uninit_vcpu;
338         }
339         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
340                   ALIGN(size, PAGE_SIZE), gebase);
341
342         /*
343          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
344          * limits us to the low 512MB of physical address space. If the memory
345          * we allocate is out of range, just give up now.
346          */
347         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
348                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
349                         gebase);
350                 err = -ENOMEM;
351                 goto out_free_gebase;
352         }
353
354         /* Save new ebase */
355         vcpu->arch.guest_ebase = gebase;
356
357         /* Build guest exception vectors dynamically in unmapped memory */
358         handler = gebase + 0x2000;
359
360         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
361         refill_start = gebase;
362         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
363                 refill_start += 0x080;
364         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
365
366         /* General Exception Entry point */
367         kvm_mips_build_exception(gebase + 0x180, handler);
368
369         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
370         for (i = 0; i < 8; i++) {
371                 kvm_debug("L1 Vectored handler @ %p\n",
372                           gebase + 0x200 + (i * VECTORSPACING));
373                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
374                                          handler);
375         }
376
377         /* General exit handler */
378         p = handler;
379         p = kvm_mips_build_exit(p);
380
381         /* Guest entry routine */
382         vcpu->arch.vcpu_run = p;
383         p = kvm_mips_build_vcpu_run(p);
384
385         /* Dump the generated code */
386         pr_debug("#include <asm/asm.h>\n");
387         pr_debug("#include <asm/regdef.h>\n");
388         pr_debug("\n");
389         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
390         dump_handler("kvm_tlb_refill", refill_start, refill_end);
391         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
392         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
393
394         /* Invalidate the icache for these ranges */
395         flush_icache_range((unsigned long)gebase,
396                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
397
398         /*
399          * Allocate comm page for guest kernel, a TLB will be reserved for
400          * mapping GVA @ 0xFFFF8000 to this page
401          */
402         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
403
404         if (!vcpu->arch.kseg0_commpage) {
405                 err = -ENOMEM;
406                 goto out_free_gebase;
407         }
408
409         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
410         kvm_mips_commpage_init(vcpu);
411
412         /* Init */
413         vcpu->arch.last_sched_cpu = -1;
414         vcpu->arch.last_exec_cpu = -1;
415
416         /* Initial guest state */
417         err = kvm_mips_callbacks->vcpu_setup(vcpu);
418         if (err)
419                 goto out_free_commpage;
420
421         return 0;
422
423 out_free_commpage:
424         kfree(vcpu->arch.kseg0_commpage);
425 out_free_gebase:
426         kfree(gebase);
427 out_uninit_vcpu:
428         kvm_mips_callbacks->vcpu_uninit(vcpu);
429         return err;
430 }
431
432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
433 {
434         hrtimer_cancel(&vcpu->arch.comparecount_timer);
435
436         kvm_mips_dump_stats(vcpu);
437
438         kvm_mmu_free_memory_caches(vcpu);
439         kfree(vcpu->arch.guest_ebase);
440         kfree(vcpu->arch.kseg0_commpage);
441
442         kvm_mips_callbacks->vcpu_uninit(vcpu);
443 }
444
445 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
446                                         struct kvm_guest_debug *dbg)
447 {
448         return -ENOIOCTLCMD;
449 }
450
451 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
452 {
453         struct kvm_run *run = vcpu->run;
454         int r = -EINTR;
455
456         vcpu_load(vcpu);
457
458         kvm_sigset_activate(vcpu);
459
460         if (vcpu->mmio_needed) {
461                 if (!vcpu->mmio_is_write)
462                         kvm_mips_complete_mmio_load(vcpu, run);
463                 vcpu->mmio_needed = 0;
464         }
465
466         if (run->immediate_exit)
467                 goto out;
468
469         lose_fpu(1);
470
471         local_irq_disable();
472         guest_enter_irqoff();
473         trace_kvm_enter(vcpu);
474
475         /*
476          * Make sure the read of VCPU requests in vcpu_run() callback is not
477          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
478          * flush request while the requester sees the VCPU as outside of guest
479          * mode and not needing an IPI.
480          */
481         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
482
483         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
484
485         trace_kvm_out(vcpu);
486         guest_exit_irqoff();
487         local_irq_enable();
488
489 out:
490         kvm_sigset_deactivate(vcpu);
491
492         vcpu_put(vcpu);
493         return r;
494 }
495
496 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
497                              struct kvm_mips_interrupt *irq)
498 {
499         int intr = (int)irq->irq;
500         struct kvm_vcpu *dvcpu = NULL;
501
502         if (intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_1] ||
503             intr == kvm_priority_to_irq[MIPS_EXC_INT_IPI_2] ||
504             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_1]) ||
505             intr == (-kvm_priority_to_irq[MIPS_EXC_INT_IPI_2]))
506                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
507                           (int)intr);
508
509         if (irq->cpu == -1)
510                 dvcpu = vcpu;
511         else
512                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
513
514         if (intr == 2 || intr == 3 || intr == 4 || intr == 6) {
515                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
516
517         } else if (intr == -2 || intr == -3 || intr == -4 || intr == -6) {
518                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
519         } else {
520                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
521                         irq->cpu, irq->irq);
522                 return -EINVAL;
523         }
524
525         dvcpu->arch.wait = 0;
526
527         rcuwait_wake_up(&dvcpu->wait);
528
529         return 0;
530 }
531
532 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
533                                     struct kvm_mp_state *mp_state)
534 {
535         return -ENOIOCTLCMD;
536 }
537
538 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
539                                     struct kvm_mp_state *mp_state)
540 {
541         return -ENOIOCTLCMD;
542 }
543
544 static u64 kvm_mips_get_one_regs[] = {
545         KVM_REG_MIPS_R0,
546         KVM_REG_MIPS_R1,
547         KVM_REG_MIPS_R2,
548         KVM_REG_MIPS_R3,
549         KVM_REG_MIPS_R4,
550         KVM_REG_MIPS_R5,
551         KVM_REG_MIPS_R6,
552         KVM_REG_MIPS_R7,
553         KVM_REG_MIPS_R8,
554         KVM_REG_MIPS_R9,
555         KVM_REG_MIPS_R10,
556         KVM_REG_MIPS_R11,
557         KVM_REG_MIPS_R12,
558         KVM_REG_MIPS_R13,
559         KVM_REG_MIPS_R14,
560         KVM_REG_MIPS_R15,
561         KVM_REG_MIPS_R16,
562         KVM_REG_MIPS_R17,
563         KVM_REG_MIPS_R18,
564         KVM_REG_MIPS_R19,
565         KVM_REG_MIPS_R20,
566         KVM_REG_MIPS_R21,
567         KVM_REG_MIPS_R22,
568         KVM_REG_MIPS_R23,
569         KVM_REG_MIPS_R24,
570         KVM_REG_MIPS_R25,
571         KVM_REG_MIPS_R26,
572         KVM_REG_MIPS_R27,
573         KVM_REG_MIPS_R28,
574         KVM_REG_MIPS_R29,
575         KVM_REG_MIPS_R30,
576         KVM_REG_MIPS_R31,
577
578 #ifndef CONFIG_CPU_MIPSR6
579         KVM_REG_MIPS_HI,
580         KVM_REG_MIPS_LO,
581 #endif
582         KVM_REG_MIPS_PC,
583 };
584
585 static u64 kvm_mips_get_one_regs_fpu[] = {
586         KVM_REG_MIPS_FCR_IR,
587         KVM_REG_MIPS_FCR_CSR,
588 };
589
590 static u64 kvm_mips_get_one_regs_msa[] = {
591         KVM_REG_MIPS_MSA_IR,
592         KVM_REG_MIPS_MSA_CSR,
593 };
594
595 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
596 {
597         unsigned long ret;
598
599         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
600         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
601                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
602                 /* odd doubles */
603                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
604                         ret += 16;
605         }
606         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
607                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
608         ret += kvm_mips_callbacks->num_regs(vcpu);
609
610         return ret;
611 }
612
613 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
614 {
615         u64 index;
616         unsigned int i;
617
618         if (copy_to_user(indices, kvm_mips_get_one_regs,
619                          sizeof(kvm_mips_get_one_regs)))
620                 return -EFAULT;
621         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
622
623         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
624                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
625                                  sizeof(kvm_mips_get_one_regs_fpu)))
626                         return -EFAULT;
627                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
628
629                 for (i = 0; i < 32; ++i) {
630                         index = KVM_REG_MIPS_FPR_32(i);
631                         if (copy_to_user(indices, &index, sizeof(index)))
632                                 return -EFAULT;
633                         ++indices;
634
635                         /* skip odd doubles if no F64 */
636                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
637                                 continue;
638
639                         index = KVM_REG_MIPS_FPR_64(i);
640                         if (copy_to_user(indices, &index, sizeof(index)))
641                                 return -EFAULT;
642                         ++indices;
643                 }
644         }
645
646         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
647                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
648                                  sizeof(kvm_mips_get_one_regs_msa)))
649                         return -EFAULT;
650                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
651
652                 for (i = 0; i < 32; ++i) {
653                         index = KVM_REG_MIPS_VEC_128(i);
654                         if (copy_to_user(indices, &index, sizeof(index)))
655                                 return -EFAULT;
656                         ++indices;
657                 }
658         }
659
660         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
661 }
662
663 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
664                             const struct kvm_one_reg *reg)
665 {
666         struct mips_coproc *cop0 = vcpu->arch.cop0;
667         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
668         int ret;
669         s64 v;
670         s64 vs[2];
671         unsigned int idx;
672
673         switch (reg->id) {
674         /* General purpose registers */
675         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
676                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
677                 break;
678 #ifndef CONFIG_CPU_MIPSR6
679         case KVM_REG_MIPS_HI:
680                 v = (long)vcpu->arch.hi;
681                 break;
682         case KVM_REG_MIPS_LO:
683                 v = (long)vcpu->arch.lo;
684                 break;
685 #endif
686         case KVM_REG_MIPS_PC:
687                 v = (long)vcpu->arch.pc;
688                 break;
689
690         /* Floating point registers */
691         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
692                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
693                         return -EINVAL;
694                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
695                 /* Odd singles in top of even double when FR=0 */
696                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
697                         v = get_fpr32(&fpu->fpr[idx], 0);
698                 else
699                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
700                 break;
701         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
702                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
703                         return -EINVAL;
704                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
705                 /* Can't access odd doubles in FR=0 mode */
706                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
707                         return -EINVAL;
708                 v = get_fpr64(&fpu->fpr[idx], 0);
709                 break;
710         case KVM_REG_MIPS_FCR_IR:
711                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
712                         return -EINVAL;
713                 v = boot_cpu_data.fpu_id;
714                 break;
715         case KVM_REG_MIPS_FCR_CSR:
716                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
717                         return -EINVAL;
718                 v = fpu->fcr31;
719                 break;
720
721         /* MIPS SIMD Architecture (MSA) registers */
722         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
723                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
724                         return -EINVAL;
725                 /* Can't access MSA registers in FR=0 mode */
726                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
727                         return -EINVAL;
728                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
729 #ifdef CONFIG_CPU_LITTLE_ENDIAN
730                 /* least significant byte first */
731                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
732                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
733 #else
734                 /* most significant byte first */
735                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
736                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
737 #endif
738                 break;
739         case KVM_REG_MIPS_MSA_IR:
740                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
741                         return -EINVAL;
742                 v = boot_cpu_data.msa_id;
743                 break;
744         case KVM_REG_MIPS_MSA_CSR:
745                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
746                         return -EINVAL;
747                 v = fpu->msacsr;
748                 break;
749
750         /* registers to be handled specially */
751         default:
752                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
753                 if (ret)
754                         return ret;
755                 break;
756         }
757         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
758                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
759
760                 return put_user(v, uaddr64);
761         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
762                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
763                 u32 v32 = (u32)v;
764
765                 return put_user(v32, uaddr32);
766         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
767                 void __user *uaddr = (void __user *)(long)reg->addr;
768
769                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
770         } else {
771                 return -EINVAL;
772         }
773 }
774
775 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
776                             const struct kvm_one_reg *reg)
777 {
778         struct mips_coproc *cop0 = vcpu->arch.cop0;
779         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
780         s64 v;
781         s64 vs[2];
782         unsigned int idx;
783
784         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
785                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
786
787                 if (get_user(v, uaddr64) != 0)
788                         return -EFAULT;
789         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
790                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
791                 s32 v32;
792
793                 if (get_user(v32, uaddr32) != 0)
794                         return -EFAULT;
795                 v = (s64)v32;
796         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
797                 void __user *uaddr = (void __user *)(long)reg->addr;
798
799                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
800         } else {
801                 return -EINVAL;
802         }
803
804         switch (reg->id) {
805         /* General purpose registers */
806         case KVM_REG_MIPS_R0:
807                 /* Silently ignore requests to set $0 */
808                 break;
809         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
810                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
811                 break;
812 #ifndef CONFIG_CPU_MIPSR6
813         case KVM_REG_MIPS_HI:
814                 vcpu->arch.hi = v;
815                 break;
816         case KVM_REG_MIPS_LO:
817                 vcpu->arch.lo = v;
818                 break;
819 #endif
820         case KVM_REG_MIPS_PC:
821                 vcpu->arch.pc = v;
822                 break;
823
824         /* Floating point registers */
825         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
826                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
827                         return -EINVAL;
828                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
829                 /* Odd singles in top of even double when FR=0 */
830                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
831                         set_fpr32(&fpu->fpr[idx], 0, v);
832                 else
833                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
834                 break;
835         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
836                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
837                         return -EINVAL;
838                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
839                 /* Can't access odd doubles in FR=0 mode */
840                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
841                         return -EINVAL;
842                 set_fpr64(&fpu->fpr[idx], 0, v);
843                 break;
844         case KVM_REG_MIPS_FCR_IR:
845                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
846                         return -EINVAL;
847                 /* Read-only */
848                 break;
849         case KVM_REG_MIPS_FCR_CSR:
850                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
851                         return -EINVAL;
852                 fpu->fcr31 = v;
853                 break;
854
855         /* MIPS SIMD Architecture (MSA) registers */
856         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
857                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
858                         return -EINVAL;
859                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
860 #ifdef CONFIG_CPU_LITTLE_ENDIAN
861                 /* least significant byte first */
862                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
863                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
864 #else
865                 /* most significant byte first */
866                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
867                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
868 #endif
869                 break;
870         case KVM_REG_MIPS_MSA_IR:
871                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
872                         return -EINVAL;
873                 /* Read-only */
874                 break;
875         case KVM_REG_MIPS_MSA_CSR:
876                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
877                         return -EINVAL;
878                 fpu->msacsr = v;
879                 break;
880
881         /* registers to be handled specially */
882         default:
883                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
884         }
885         return 0;
886 }
887
888 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
889                                      struct kvm_enable_cap *cap)
890 {
891         int r = 0;
892
893         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
894                 return -EINVAL;
895         if (cap->flags)
896                 return -EINVAL;
897         if (cap->args[0])
898                 return -EINVAL;
899
900         switch (cap->cap) {
901         case KVM_CAP_MIPS_FPU:
902                 vcpu->arch.fpu_enabled = true;
903                 break;
904         case KVM_CAP_MIPS_MSA:
905                 vcpu->arch.msa_enabled = true;
906                 break;
907         default:
908                 r = -EINVAL;
909                 break;
910         }
911
912         return r;
913 }
914
915 long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
916                                unsigned long arg)
917 {
918         struct kvm_vcpu *vcpu = filp->private_data;
919         void __user *argp = (void __user *)arg;
920
921         if (ioctl == KVM_INTERRUPT) {
922                 struct kvm_mips_interrupt irq;
923
924                 if (copy_from_user(&irq, argp, sizeof(irq)))
925                         return -EFAULT;
926                 kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
927                           irq.irq);
928
929                 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
930         }
931
932         return -ENOIOCTLCMD;
933 }
934
935 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
936                          unsigned long arg)
937 {
938         struct kvm_vcpu *vcpu = filp->private_data;
939         void __user *argp = (void __user *)arg;
940         long r;
941
942         vcpu_load(vcpu);
943
944         switch (ioctl) {
945         case KVM_SET_ONE_REG:
946         case KVM_GET_ONE_REG: {
947                 struct kvm_one_reg reg;
948
949                 r = -EFAULT;
950                 if (copy_from_user(&reg, argp, sizeof(reg)))
951                         break;
952                 if (ioctl == KVM_SET_ONE_REG)
953                         r = kvm_mips_set_reg(vcpu, &reg);
954                 else
955                         r = kvm_mips_get_reg(vcpu, &reg);
956                 break;
957         }
958         case KVM_GET_REG_LIST: {
959                 struct kvm_reg_list __user *user_list = argp;
960                 struct kvm_reg_list reg_list;
961                 unsigned n;
962
963                 r = -EFAULT;
964                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
965                         break;
966                 n = reg_list.n;
967                 reg_list.n = kvm_mips_num_regs(vcpu);
968                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
969                         break;
970                 r = -E2BIG;
971                 if (n < reg_list.n)
972                         break;
973                 r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
974                 break;
975         }
976         case KVM_ENABLE_CAP: {
977                 struct kvm_enable_cap cap;
978
979                 r = -EFAULT;
980                 if (copy_from_user(&cap, argp, sizeof(cap)))
981                         break;
982                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
983                 break;
984         }
985         default:
986                 r = -ENOIOCTLCMD;
987         }
988
989         vcpu_put(vcpu);
990         return r;
991 }
992
993 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
994 {
995
996 }
997
998 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
999                                         struct kvm_memory_slot *memslot)
1000 {
1001         /* Let implementation handle TLB/GVA invalidation */
1002         kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1003 }
1004
1005 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1006 {
1007         long r;
1008
1009         switch (ioctl) {
1010         default:
1011                 r = -ENOIOCTLCMD;
1012         }
1013
1014         return r;
1015 }
1016
1017 int kvm_arch_init(void *opaque)
1018 {
1019         if (kvm_mips_callbacks) {
1020                 kvm_err("kvm: module already exists\n");
1021                 return -EEXIST;
1022         }
1023
1024         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1025 }
1026
1027 void kvm_arch_exit(void)
1028 {
1029         kvm_mips_callbacks = NULL;
1030 }
1031
1032 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1033                                   struct kvm_sregs *sregs)
1034 {
1035         return -ENOIOCTLCMD;
1036 }
1037
1038 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1039                                   struct kvm_sregs *sregs)
1040 {
1041         return -ENOIOCTLCMD;
1042 }
1043
1044 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1045 {
1046 }
1047
1048 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1049 {
1050         return -ENOIOCTLCMD;
1051 }
1052
1053 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1054 {
1055         return -ENOIOCTLCMD;
1056 }
1057
1058 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1059 {
1060         return VM_FAULT_SIGBUS;
1061 }
1062
1063 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1064 {
1065         int r;
1066
1067         switch (ext) {
1068         case KVM_CAP_ONE_REG:
1069         case KVM_CAP_ENABLE_CAP:
1070         case KVM_CAP_READONLY_MEM:
1071         case KVM_CAP_SYNC_MMU:
1072         case KVM_CAP_IMMEDIATE_EXIT:
1073                 r = 1;
1074                 break;
1075         case KVM_CAP_NR_VCPUS:
1076                 r = num_online_cpus();
1077                 break;
1078         case KVM_CAP_MAX_VCPUS:
1079                 r = KVM_MAX_VCPUS;
1080                 break;
1081         case KVM_CAP_MAX_VCPU_ID:
1082                 r = KVM_MAX_VCPU_ID;
1083                 break;
1084         case KVM_CAP_MIPS_FPU:
1085                 /* We don't handle systems with inconsistent cpu_has_fpu */
1086                 r = !!raw_cpu_has_fpu;
1087                 break;
1088         case KVM_CAP_MIPS_MSA:
1089                 /*
1090                  * We don't support MSA vector partitioning yet:
1091                  * 1) It would require explicit support which can't be tested
1092                  *    yet due to lack of support in current hardware.
1093                  * 2) It extends the state that would need to be saved/restored
1094                  *    by e.g. QEMU for migration.
1095                  *
1096                  * When vector partitioning hardware becomes available, support
1097                  * could be added by requiring a flag when enabling
1098                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1099                  * to save/restore the appropriate extra state.
1100                  */
1101                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1102                 break;
1103         default:
1104                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1105                 break;
1106         }
1107         return r;
1108 }
1109
1110 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1111 {
1112         return kvm_mips_pending_timer(vcpu) ||
1113                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1114 }
1115
1116 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1117 {
1118         int i;
1119         struct mips_coproc *cop0;
1120
1121         if (!vcpu)
1122                 return -1;
1123
1124         kvm_debug("VCPU Register Dump:\n");
1125         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1126         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1127
1128         for (i = 0; i < 32; i += 4) {
1129                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1130                        vcpu->arch.gprs[i],
1131                        vcpu->arch.gprs[i + 1],
1132                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1133         }
1134         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1135         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1136
1137         cop0 = vcpu->arch.cop0;
1138         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1139                   kvm_read_c0_guest_status(cop0),
1140                   kvm_read_c0_guest_cause(cop0));
1141
1142         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1143
1144         return 0;
1145 }
1146
1147 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1148 {
1149         int i;
1150
1151         vcpu_load(vcpu);
1152
1153         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1154                 vcpu->arch.gprs[i] = regs->gpr[i];
1155         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1156         vcpu->arch.hi = regs->hi;
1157         vcpu->arch.lo = regs->lo;
1158         vcpu->arch.pc = regs->pc;
1159
1160         vcpu_put(vcpu);
1161         return 0;
1162 }
1163
1164 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1165 {
1166         int i;
1167
1168         vcpu_load(vcpu);
1169
1170         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1171                 regs->gpr[i] = vcpu->arch.gprs[i];
1172
1173         regs->hi = vcpu->arch.hi;
1174         regs->lo = vcpu->arch.lo;
1175         regs->pc = vcpu->arch.pc;
1176
1177         vcpu_put(vcpu);
1178         return 0;
1179 }
1180
1181 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1182                                   struct kvm_translation *tr)
1183 {
1184         return 0;
1185 }
1186
1187 static void kvm_mips_set_c0_status(void)
1188 {
1189         u32 status = read_c0_status();
1190
1191         if (cpu_has_dsp)
1192                 status |= (ST0_MX);
1193
1194         write_c0_status(status);
1195         ehb();
1196 }
1197
1198 /*
1199  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1200  */
1201 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1202 {
1203         u32 cause = vcpu->arch.host_cp0_cause;
1204         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1205         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1206         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1207         enum emulation_result er = EMULATE_DONE;
1208         u32 inst;
1209         int ret = RESUME_GUEST;
1210
1211         vcpu->mode = OUTSIDE_GUEST_MODE;
1212
1213         /* re-enable HTW before enabling interrupts */
1214         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1215                 htw_start();
1216
1217         /* Set a default exit reason */
1218         run->exit_reason = KVM_EXIT_UNKNOWN;
1219         run->ready_for_interrupt_injection = 1;
1220
1221         /*
1222          * Set the appropriate status bits based on host CPU features,
1223          * before we hit the scheduler
1224          */
1225         kvm_mips_set_c0_status();
1226
1227         local_irq_enable();
1228
1229         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1230                         cause, opc, run, vcpu);
1231         trace_kvm_exit(vcpu, exccode);
1232
1233         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1234                 /*
1235                  * Do a privilege check, if in UM most of these exit conditions
1236                  * end up causing an exception to be delivered to the Guest
1237                  * Kernel
1238                  */
1239                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1240                 if (er == EMULATE_PRIV_FAIL) {
1241                         goto skip_emul;
1242                 } else if (er == EMULATE_FAIL) {
1243                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1244                         ret = RESUME_HOST;
1245                         goto skip_emul;
1246                 }
1247         }
1248
1249         switch (exccode) {
1250         case EXCCODE_INT:
1251                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1252
1253                 ++vcpu->stat.int_exits;
1254
1255                 if (need_resched())
1256                         cond_resched();
1257
1258                 ret = RESUME_GUEST;
1259                 break;
1260
1261         case EXCCODE_CPU:
1262                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1263
1264                 ++vcpu->stat.cop_unusable_exits;
1265                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1266                 /* XXXKYMA: Might need to return to user space */
1267                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1268                         ret = RESUME_HOST;
1269                 break;
1270
1271         case EXCCODE_MOD:
1272                 ++vcpu->stat.tlbmod_exits;
1273                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1274                 break;
1275
1276         case EXCCODE_TLBS:
1277                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1278                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1279                           badvaddr);
1280
1281                 ++vcpu->stat.tlbmiss_st_exits;
1282                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1283                 break;
1284
1285         case EXCCODE_TLBL:
1286                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1287                           cause, opc, badvaddr);
1288
1289                 ++vcpu->stat.tlbmiss_ld_exits;
1290                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1291                 break;
1292
1293         case EXCCODE_ADES:
1294                 ++vcpu->stat.addrerr_st_exits;
1295                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1296                 break;
1297
1298         case EXCCODE_ADEL:
1299                 ++vcpu->stat.addrerr_ld_exits;
1300                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1301                 break;
1302
1303         case EXCCODE_SYS:
1304                 ++vcpu->stat.syscall_exits;
1305                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1306                 break;
1307
1308         case EXCCODE_RI:
1309                 ++vcpu->stat.resvd_inst_exits;
1310                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1311                 break;
1312
1313         case EXCCODE_BP:
1314                 ++vcpu->stat.break_inst_exits;
1315                 ret = kvm_mips_callbacks->handle_break(vcpu);
1316                 break;
1317
1318         case EXCCODE_TR:
1319                 ++vcpu->stat.trap_inst_exits;
1320                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1321                 break;
1322
1323         case EXCCODE_MSAFPE:
1324                 ++vcpu->stat.msa_fpe_exits;
1325                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1326                 break;
1327
1328         case EXCCODE_FPE:
1329                 ++vcpu->stat.fpe_exits;
1330                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1331                 break;
1332
1333         case EXCCODE_MSADIS:
1334                 ++vcpu->stat.msa_disabled_exits;
1335                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1336                 break;
1337
1338         case EXCCODE_GE:
1339                 /* defer exit accounting to handler */
1340                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1341                 break;
1342
1343         default:
1344                 if (cause & CAUSEF_BD)
1345                         opc += 1;
1346                 inst = 0;
1347                 kvm_get_badinstr(opc, vcpu, &inst);
1348                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1349                         exccode, opc, inst, badvaddr,
1350                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1351                 kvm_arch_vcpu_dump_regs(vcpu);
1352                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1353                 ret = RESUME_HOST;
1354                 break;
1355
1356         }
1357
1358 skip_emul:
1359         local_irq_disable();
1360
1361         if (ret == RESUME_GUEST)
1362                 kvm_vz_acquire_htimer(vcpu);
1363
1364         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1365                 kvm_mips_deliver_interrupts(vcpu, cause);
1366
1367         if (!(ret & RESUME_HOST)) {
1368                 /* Only check for signals if not already exiting to userspace */
1369                 if (signal_pending(current)) {
1370                         run->exit_reason = KVM_EXIT_INTR;
1371                         ret = (-EINTR << 2) | RESUME_HOST;
1372                         ++vcpu->stat.signal_exits;
1373                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1374                 }
1375         }
1376
1377         if (ret == RESUME_GUEST) {
1378                 trace_kvm_reenter(vcpu);
1379
1380                 /*
1381                  * Make sure the read of VCPU requests in vcpu_reenter()
1382                  * callback is not reordered ahead of the write to vcpu->mode,
1383                  * or we could miss a TLB flush request while the requester sees
1384                  * the VCPU as outside of guest mode and not needing an IPI.
1385                  */
1386                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1387
1388                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1389
1390                 /*
1391                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1392                  * is live), restore FCR31 / MSACSR.
1393                  *
1394                  * This should be before returning to the guest exception
1395                  * vector, as it may well cause an [MSA] FP exception if there
1396                  * are pending exception bits unmasked. (see
1397                  * kvm_mips_csr_die_notifier() for how that is handled).
1398                  */
1399                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1400                     read_c0_status() & ST0_CU1)
1401                         __kvm_restore_fcsr(&vcpu->arch);
1402
1403                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1404                     read_c0_config5() & MIPS_CONF5_MSAEN)
1405                         __kvm_restore_msacsr(&vcpu->arch);
1406         }
1407
1408         /* Disable HTW before returning to guest or host */
1409         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1410                 htw_stop();
1411
1412         return ret;
1413 }
1414
1415 /* Enable FPU for guest and restore context */
1416 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1417 {
1418         struct mips_coproc *cop0 = vcpu->arch.cop0;
1419         unsigned int sr, cfg5;
1420
1421         preempt_disable();
1422
1423         sr = kvm_read_c0_guest_status(cop0);
1424
1425         /*
1426          * If MSA state is already live, it is undefined how it interacts with
1427          * FR=0 FPU state, and we don't want to hit reserved instruction
1428          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1429          * play it safe and save it first.
1430          *
1431          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1432          * get called when guest CU1 is set, however we can't trust the guest
1433          * not to clobber the status register directly via the commpage.
1434          */
1435         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1436             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1437                 kvm_lose_fpu(vcpu);
1438
1439         /*
1440          * Enable FPU for guest
1441          * We set FR and FRE according to guest context
1442          */
1443         change_c0_status(ST0_CU1 | ST0_FR, sr);
1444         if (cpu_has_fre) {
1445                 cfg5 = kvm_read_c0_guest_config5(cop0);
1446                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1447         }
1448         enable_fpu_hazard();
1449
1450         /* If guest FPU state not active, restore it now */
1451         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1452                 __kvm_restore_fpu(&vcpu->arch);
1453                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1454                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1455         } else {
1456                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1457         }
1458
1459         preempt_enable();
1460 }
1461
1462 #ifdef CONFIG_CPU_HAS_MSA
1463 /* Enable MSA for guest and restore context */
1464 void kvm_own_msa(struct kvm_vcpu *vcpu)
1465 {
1466         struct mips_coproc *cop0 = vcpu->arch.cop0;
1467         unsigned int sr, cfg5;
1468
1469         preempt_disable();
1470
1471         /*
1472          * Enable FPU if enabled in guest, since we're restoring FPU context
1473          * anyway. We set FR and FRE according to guest context.
1474          */
1475         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1476                 sr = kvm_read_c0_guest_status(cop0);
1477
1478                 /*
1479                  * If FR=0 FPU state is already live, it is undefined how it
1480                  * interacts with MSA state, so play it safe and save it first.
1481                  */
1482                 if (!(sr & ST0_FR) &&
1483                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1484                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1485                         kvm_lose_fpu(vcpu);
1486
1487                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1488                 if (sr & ST0_CU1 && cpu_has_fre) {
1489                         cfg5 = kvm_read_c0_guest_config5(cop0);
1490                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1491                 }
1492         }
1493
1494         /* Enable MSA for guest */
1495         set_c0_config5(MIPS_CONF5_MSAEN);
1496         enable_fpu_hazard();
1497
1498         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1499         case KVM_MIPS_AUX_FPU:
1500                 /*
1501                  * Guest FPU state already loaded, only restore upper MSA state
1502                  */
1503                 __kvm_restore_msa_upper(&vcpu->arch);
1504                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1505                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1506                 break;
1507         case 0:
1508                 /* Neither FPU or MSA already active, restore full MSA state */
1509                 __kvm_restore_msa(&vcpu->arch);
1510                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1511                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1512                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1513                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1514                               KVM_TRACE_AUX_FPU_MSA);
1515                 break;
1516         default:
1517                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1518                 break;
1519         }
1520
1521         preempt_enable();
1522 }
1523 #endif
1524
1525 /* Drop FPU & MSA without saving it */
1526 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1527 {
1528         preempt_disable();
1529         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1530                 disable_msa();
1531                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1532                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1533         }
1534         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1535                 clear_c0_status(ST0_CU1 | ST0_FR);
1536                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1537                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1538         }
1539         preempt_enable();
1540 }
1541
1542 /* Save and disable FPU & MSA */
1543 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1544 {
1545         /*
1546          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1547          * is disabled in guest context (software), but the register state in
1548          * the hardware may still be in use.
1549          * This is why we explicitly re-enable the hardware before saving.
1550          */
1551
1552         preempt_disable();
1553         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1554                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1555                         set_c0_config5(MIPS_CONF5_MSAEN);
1556                         enable_fpu_hazard();
1557                 }
1558
1559                 __kvm_save_msa(&vcpu->arch);
1560                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1561
1562                 /* Disable MSA & FPU */
1563                 disable_msa();
1564                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1565                         clear_c0_status(ST0_CU1 | ST0_FR);
1566                         disable_fpu_hazard();
1567                 }
1568                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1569         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1570                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1571                         set_c0_status(ST0_CU1);
1572                         enable_fpu_hazard();
1573                 }
1574
1575                 __kvm_save_fpu(&vcpu->arch);
1576                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1577                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1578
1579                 /* Disable FPU */
1580                 clear_c0_status(ST0_CU1 | ST0_FR);
1581                 disable_fpu_hazard();
1582         }
1583         preempt_enable();
1584 }
1585
1586 /*
1587  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1588  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1589  * exception if cause bits are set in the value being written.
1590  */
1591 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1592                                    unsigned long cmd, void *ptr)
1593 {
1594         struct die_args *args = (struct die_args *)ptr;
1595         struct pt_regs *regs = args->regs;
1596         unsigned long pc;
1597
1598         /* Only interested in FPE and MSAFPE */
1599         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1600                 return NOTIFY_DONE;
1601
1602         /* Return immediately if guest context isn't active */
1603         if (!(current->flags & PF_VCPU))
1604                 return NOTIFY_DONE;
1605
1606         /* Should never get here from user mode */
1607         BUG_ON(user_mode(regs));
1608
1609         pc = instruction_pointer(regs);
1610         switch (cmd) {
1611         case DIE_FP:
1612                 /* match 2nd instruction in __kvm_restore_fcsr */
1613                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1614                         return NOTIFY_DONE;
1615                 break;
1616         case DIE_MSAFP:
1617                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1618                 if (!cpu_has_msa ||
1619                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1620                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1621                         return NOTIFY_DONE;
1622                 break;
1623         }
1624
1625         /* Move PC forward a little and continue executing */
1626         instruction_pointer(regs) += 4;
1627
1628         return NOTIFY_STOP;
1629 }
1630
1631 static struct notifier_block kvm_mips_csr_die_notifier = {
1632         .notifier_call = kvm_mips_csr_die_notify,
1633 };
1634
1635 static u32 kvm_default_priority_to_irq[MIPS_EXC_MAX] = {
1636         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1637         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1638         [MIPS_EXC_INT_IPI_1] = C_IRQ1,
1639         [MIPS_EXC_INT_IPI_2] = C_IRQ2,
1640 };
1641
1642 static u32 kvm_loongson3_priority_to_irq[MIPS_EXC_MAX] = {
1643         [MIPS_EXC_INT_TIMER] = C_IRQ5,
1644         [MIPS_EXC_INT_IO_1]  = C_IRQ0,
1645         [MIPS_EXC_INT_IO_2]  = C_IRQ1,
1646         [MIPS_EXC_INT_IPI_1] = C_IRQ4,
1647 };
1648
1649 u32 *kvm_priority_to_irq = kvm_default_priority_to_irq;
1650
1651 u32 kvm_irq_to_priority(u32 irq)
1652 {
1653         int i;
1654
1655         for (i = MIPS_EXC_INT_TIMER; i < MIPS_EXC_MAX; i++) {
1656                 if (kvm_priority_to_irq[i] == (1 << (irq + 8)))
1657                         return i;
1658         }
1659
1660         return MIPS_EXC_MAX;
1661 }
1662
1663 static int __init kvm_mips_init(void)
1664 {
1665         int ret;
1666
1667         if (cpu_has_mmid) {
1668                 pr_warn("KVM does not yet support MMIDs. KVM Disabled\n");
1669                 return -EOPNOTSUPP;
1670         }
1671
1672         ret = kvm_mips_entry_setup();
1673         if (ret)
1674                 return ret;
1675
1676         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1677
1678         if (ret)
1679                 return ret;
1680
1681         if (boot_cpu_type() == CPU_LOONGSON64)
1682                 kvm_priority_to_irq = kvm_loongson3_priority_to_irq;
1683
1684         register_die_notifier(&kvm_mips_csr_die_notifier);
1685
1686         return 0;
1687 }
1688
1689 static void __exit kvm_mips_exit(void)
1690 {
1691         kvm_exit();
1692
1693         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1694 }
1695
1696 module_init(kvm_mips_init);
1697 module_exit(kvm_mips_exit);
1698
1699 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);