2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
48 #include <asm/cpu-type.h>
51 #include <asm/fpu_emulator.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <linux/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/tlbex.h>
73 #include <asm/mach-loongson64/cpucfg-emul.h>
75 #include "access-helper.h"
77 extern void check_wait(void);
78 extern asmlinkage void rollback_handle_int(void);
79 extern asmlinkage void handle_int(void);
80 extern asmlinkage void handle_adel(void);
81 extern asmlinkage void handle_ades(void);
82 extern asmlinkage void handle_ibe(void);
83 extern asmlinkage void handle_dbe(void);
84 extern asmlinkage void handle_sys(void);
85 extern asmlinkage void handle_bp(void);
86 extern asmlinkage void handle_ri(void);
87 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88 extern asmlinkage void handle_ri_rdhwr(void);
89 extern asmlinkage void handle_cpu(void);
90 extern asmlinkage void handle_ov(void);
91 extern asmlinkage void handle_tr(void);
92 extern asmlinkage void handle_msa_fpe(void);
93 extern asmlinkage void handle_fpe(void);
94 extern asmlinkage void handle_ftlb(void);
95 extern asmlinkage void handle_gsexc(void);
96 extern asmlinkage void handle_msa(void);
97 extern asmlinkage void handle_mdmx(void);
98 extern asmlinkage void handle_watch(void);
99 extern asmlinkage void handle_mt(void);
100 extern asmlinkage void handle_dsp(void);
101 extern asmlinkage void handle_mcheck(void);
102 extern asmlinkage void handle_reserved(void);
103 extern void tlb_do_page_fault_0(void);
105 void (*board_be_init)(void);
106 static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107 void (*board_nmi_handler_setup)(void);
108 void (*board_ejtag_handler_setup)(void);
109 void (*board_bind_eic_interrupt)(int irq, int regset);
110 void (*board_ebase_setup)(void);
111 void(*board_cache_error_setup)(void);
113 void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
115 board_be_handler = handler;
117 EXPORT_SYMBOL_GPL(mips_set_be_handler);
119 static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
122 unsigned long *sp = (unsigned long *)(reg29 & ~3);
125 printk("%sCall Trace:", loglvl);
126 #ifdef CONFIG_KALLSYMS
127 printk("%s\n", loglvl);
129 while (!kstack_end(sp)) {
130 if (__get_addr(&addr, sp++, user)) {
131 printk("%s (Bad stack address)", loglvl);
134 if (__kernel_text_address(addr))
135 print_ip_sym(loglvl, addr);
137 printk("%s\n", loglvl);
140 #ifdef CONFIG_KALLSYMS
142 static int __init set_raw_show_trace(char *str)
147 __setup("raw_show_trace", set_raw_show_trace);
150 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
151 const char *loglvl, bool user)
153 unsigned long sp = regs->regs[29];
154 unsigned long ra = regs->regs[31];
155 unsigned long pc = regs->cp0_epc;
160 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
161 show_raw_backtrace(sp, loglvl, user);
164 printk("%sCall Trace:\n", loglvl);
166 print_ip_sym(loglvl, pc);
167 pc = unwind_stack(task, &sp, pc, &ra);
173 * This routine abuses get_user()/put_user() to reference pointers
174 * with at least a bit of error checking ...
176 static void show_stacktrace(struct task_struct *task,
177 const struct pt_regs *regs, const char *loglvl, bool user)
179 const int field = 2 * sizeof(unsigned long);
180 unsigned long stackdata;
182 unsigned long *sp = (unsigned long *)regs->regs[29];
184 printk("%sStack :", loglvl);
186 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
187 if (i && ((i % (64 / field)) == 0)) {
189 printk("%s ", loglvl);
196 if (__get_addr(&stackdata, sp++, user)) {
197 pr_cont(" (Bad stack address)");
201 pr_cont(" %0*lx", field, stackdata);
205 show_backtrace(task, regs, loglvl, user);
208 void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
212 regs.cp0_status = KSU_KERNEL;
214 regs.regs[29] = (unsigned long)sp;
218 if (task && task != current) {
219 regs.regs[29] = task->thread.reg29;
221 regs.cp0_epc = task->thread.reg31;
223 prepare_frametrace(®s);
226 show_stacktrace(task, ®s, loglvl, false);
229 static void show_code(void *pc, bool user)
232 unsigned short *pc16 = NULL;
236 if ((unsigned long)pc & 1)
237 pc16 = (u16 *)((unsigned long)pc & ~1);
239 for(i = -3 ; i < 6 ; i++) {
243 if (__get_inst16(&insn16, pc16 + i, user))
246 pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
250 if (__get_inst32(&insn32, (u32 *)pc + i, user))
253 pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
260 pr_cont(" (Bad address in epc)\n\n");
263 static void __show_regs(const struct pt_regs *regs)
265 const int field = 2 * sizeof(unsigned long);
266 unsigned int cause = regs->cp0_cause;
267 unsigned int exccode;
270 show_regs_print_info(KERN_DEFAULT);
273 * Saved main processor registers
275 for (i = 0; i < 32; ) {
279 pr_cont(" %0*lx", field, 0UL);
280 else if (i == 26 || i == 27)
281 pr_cont(" %*s", field, "");
283 pr_cont(" %0*lx", field, regs->regs[i]);
290 #ifdef CONFIG_CPU_HAS_SMARTMIPS
291 printk("Acx : %0*lx\n", field, regs->acx);
293 if (MIPS_ISA_REV < 6) {
294 printk("Hi : %0*lx\n", field, regs->hi);
295 printk("Lo : %0*lx\n", field, regs->lo);
299 * Saved cp0 registers
301 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
302 (void *) regs->cp0_epc);
303 printk("ra : %0*lx %pS\n", field, regs->regs[31],
304 (void *) regs->regs[31]);
306 printk("Status: %08x ", (uint32_t) regs->cp0_status);
309 if (regs->cp0_status & ST0_KUO)
311 if (regs->cp0_status & ST0_IEO)
313 if (regs->cp0_status & ST0_KUP)
315 if (regs->cp0_status & ST0_IEP)
317 if (regs->cp0_status & ST0_KUC)
319 if (regs->cp0_status & ST0_IEC)
321 } else if (cpu_has_4kex) {
322 if (regs->cp0_status & ST0_KX)
324 if (regs->cp0_status & ST0_SX)
326 if (regs->cp0_status & ST0_UX)
328 switch (regs->cp0_status & ST0_KSU) {
333 pr_cont("SUPERVISOR ");
339 pr_cont("BAD_MODE ");
342 if (regs->cp0_status & ST0_ERL)
344 if (regs->cp0_status & ST0_EXL)
346 if (regs->cp0_status & ST0_IE)
351 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
352 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
354 if (1 <= exccode && exccode <= 5)
355 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
357 printk("PrId : %08x (%s)\n", read_c0_prid(),
362 * FIXME: really the generic show_regs should take a const pointer argument.
364 void show_regs(struct pt_regs *regs)
370 void show_registers(struct pt_regs *regs)
372 const int field = 2 * sizeof(unsigned long);
376 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
377 current->comm, current->pid, current_thread_info(), current,
378 field, current_thread_info()->tp_value);
379 if (cpu_has_userlocal) {
382 tls = read_c0_userlocal();
383 if (tls != current_thread_info()->tp_value)
384 printk("*HwTLS: %0*lx\n", field, tls);
387 show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
388 show_code((void *)regs->cp0_epc, user_mode(regs));
392 static DEFINE_RAW_SPINLOCK(die_lock);
394 void __noreturn die(const char *str, struct pt_regs *regs)
396 static int die_counter;
401 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
402 SIGSEGV) == NOTIFY_STOP)
406 raw_spin_lock_irq(&die_lock);
409 printk("%s[#%d]:\n", str, ++die_counter);
410 show_registers(regs);
411 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
412 raw_spin_unlock_irq(&die_lock);
417 panic("Fatal exception in interrupt");
420 panic("Fatal exception");
422 if (regs && kexec_should_crash(current))
428 extern struct exception_table_entry __start___dbe_table[];
429 extern struct exception_table_entry __stop___dbe_table[];
432 " .section __dbe_table, \"a\"\n"
435 /* Given an address, look for it in the exception tables. */
436 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
438 const struct exception_table_entry *e;
440 e = search_extable(__start___dbe_table,
441 __stop___dbe_table - __start___dbe_table, addr);
443 e = search_module_dbetables(addr);
447 asmlinkage void do_be(struct pt_regs *regs)
449 const int field = 2 * sizeof(unsigned long);
450 const struct exception_table_entry *fixup = NULL;
451 int data = regs->cp0_cause & 4;
452 int action = MIPS_BE_FATAL;
453 enum ctx_state prev_state;
455 prev_state = exception_enter();
456 /* XXX For now. Fixme, this searches the wrong table ... */
457 if (data && !user_mode(regs))
458 fixup = search_dbe_tables(exception_epc(regs));
461 action = MIPS_BE_FIXUP;
463 if (board_be_handler)
464 action = board_be_handler(regs, fixup != NULL);
466 mips_cm_error_report();
469 case MIPS_BE_DISCARD:
473 regs->cp0_epc = fixup->nextinsn;
482 * Assume it would be too dangerous to continue ...
484 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
485 data ? "Data" : "Instruction",
486 field, regs->cp0_epc, field, regs->regs[31]);
487 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
488 SIGBUS) == NOTIFY_STOP)
491 die_if_kernel("Oops", regs);
495 exception_exit(prev_state);
499 * ll/sc, rdhwr, sync emulation
502 #define OPCODE 0xfc000000
503 #define BASE 0x03e00000
504 #define RT 0x001f0000
505 #define OFFSET 0x0000ffff
506 #define LL 0xc0000000
507 #define SC 0xe0000000
508 #define SPEC0 0x00000000
509 #define SPEC3 0x7c000000
510 #define RD 0x0000f800
511 #define FUNC 0x0000003f
512 #define SYNC 0x0000000f
513 #define RDHWR 0x0000003b
515 /* microMIPS definitions */
516 #define MM_POOL32A_FUNC 0xfc00ffff
517 #define MM_RDHWR 0x00006b3c
518 #define MM_RS 0x001f0000
519 #define MM_RT 0x03e00000
522 * The ll_bit is cleared by r*_switch.S
526 struct task_struct *ll_task;
528 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
530 unsigned long value, __user *vaddr;
534 * analyse the ll instruction that just caused a ri exception
535 * and put the referenced address to addr.
538 /* sign extend offset */
539 offset = opcode & OFFSET;
543 vaddr = (unsigned long __user *)
544 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
546 if ((unsigned long)vaddr & 3)
548 if (get_user(value, vaddr))
553 if (ll_task == NULL || ll_task == current) {
562 regs->regs[(opcode & RT) >> 16] = value;
567 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
569 unsigned long __user *vaddr;
574 * analyse the sc instruction that just caused a ri exception
575 * and put the referenced address to addr.
578 /* sign extend offset */
579 offset = opcode & OFFSET;
583 vaddr = (unsigned long __user *)
584 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
585 reg = (opcode & RT) >> 16;
587 if ((unsigned long)vaddr & 3)
592 if (ll_bit == 0 || ll_task != current) {
600 if (put_user(regs->regs[reg], vaddr))
609 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
610 * opcodes are supposed to result in coprocessor unusable exceptions if
611 * executed on ll/sc-less processors. That's the theory. In practice a
612 * few processors such as NEC's VR4100 throw reserved instruction exceptions
613 * instead, so we're doing the emulation thing in both exception handlers.
615 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
617 if ((opcode & OPCODE) == LL) {
618 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
620 return simulate_ll(regs, opcode);
622 if ((opcode & OPCODE) == SC) {
623 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
625 return simulate_sc(regs, opcode);
628 return -1; /* Must be something else ... */
632 * Simulate trapping 'rdhwr' instructions to provide user accessible
633 * registers not implemented in hardware.
635 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
637 struct thread_info *ti = task_thread_info(current);
639 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
642 case MIPS_HWR_CPUNUM: /* CPU number */
643 regs->regs[rt] = smp_processor_id();
645 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
646 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
647 current_cpu_data.icache.linesz);
649 case MIPS_HWR_CC: /* Read count register */
650 regs->regs[rt] = read_c0_count();
652 case MIPS_HWR_CCRES: /* Count register resolution */
653 switch (current_cpu_type()) {
662 case MIPS_HWR_ULR: /* Read UserLocal register */
663 regs->regs[rt] = ti->tp_value;
670 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
672 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
673 int rd = (opcode & RD) >> 11;
674 int rt = (opcode & RT) >> 16;
676 simulate_rdhwr(regs, rd, rt);
684 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
686 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
687 int rd = (opcode & MM_RS) >> 16;
688 int rt = (opcode & MM_RT) >> 21;
689 simulate_rdhwr(regs, rd, rt);
697 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
699 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
700 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
705 return -1; /* Must be something else ... */
709 * Loongson-3 CSR instructions emulation
712 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
714 #define LWC2 0xc8000000
716 #define CSR_OPCODE2 0x00000118
717 #define CSR_OPCODE2_MASK 0x000007ff
718 #define CSR_FUNC_MASK RT
719 #define CSR_FUNC_CPUCFG 0x8
721 static int simulate_loongson3_cpucfg(struct pt_regs *regs,
724 int op = opcode & OPCODE;
725 int op2 = opcode & CSR_OPCODE2_MASK;
726 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
728 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
729 int rd = (opcode & RD) >> 11;
730 int rs = (opcode & RS) >> 21;
731 __u64 sel = regs->regs[rs];
733 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
735 /* Do not emulate on unsupported core models. */
737 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
741 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
742 ¤t_cpu_data, sel);
750 #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
752 asmlinkage void do_ov(struct pt_regs *regs)
754 enum ctx_state prev_state;
756 prev_state = exception_enter();
757 die_if_kernel("Integer overflow", regs);
759 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
760 exception_exit(prev_state);
763 #ifdef CONFIG_MIPS_FP_SUPPORT
766 * Send SIGFPE according to FCSR Cause bits, which must have already
767 * been masked against Enable bits. This is impotant as Inexact can
768 * happen together with Overflow or Underflow, and `ptrace' can set
771 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
772 struct task_struct *tsk)
774 int si_code = FPE_FLTUNK;
776 if (fcr31 & FPU_CSR_INV_X)
777 si_code = FPE_FLTINV;
778 else if (fcr31 & FPU_CSR_DIV_X)
779 si_code = FPE_FLTDIV;
780 else if (fcr31 & FPU_CSR_OVF_X)
781 si_code = FPE_FLTOVF;
782 else if (fcr31 & FPU_CSR_UDF_X)
783 si_code = FPE_FLTUND;
784 else if (fcr31 & FPU_CSR_INE_X)
785 si_code = FPE_FLTRES;
787 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
790 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
799 force_fcr31_sig(fcr31, fault_addr, current);
803 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
807 mmap_read_lock(current->mm);
808 if (vma_lookup(current->mm, (unsigned long)fault_addr))
809 si_code = SEGV_ACCERR;
811 si_code = SEGV_MAPERR;
812 mmap_read_unlock(current->mm);
813 force_sig_fault(SIGSEGV, si_code, fault_addr);
822 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
823 unsigned long old_epc, unsigned long old_ra)
825 union mips_instruction inst = { .word = opcode };
826 void __user *fault_addr;
830 /* If it's obviously not an FP instruction, skip it */
831 switch (inst.i_format.opcode) {
845 * do_ri skipped over the instruction via compute_return_epc, undo
846 * that for the FPU emulator.
848 regs->cp0_epc = old_epc;
849 regs->regs[31] = old_ra;
851 /* Run the emulator */
852 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
856 * We can't allow the emulated instruction to leave any
857 * enabled Cause bits set in $fcr31.
859 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
860 current->thread.fpu.fcr31 &= ~fcr31;
862 /* Restore the hardware register state */
865 /* Send a signal if required. */
866 process_fpemu_return(sig, fault_addr, fcr31);
872 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
874 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
876 enum ctx_state prev_state;
877 void __user *fault_addr;
880 prev_state = exception_enter();
881 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
882 SIGFPE) == NOTIFY_STOP)
885 /* Clear FCSR.Cause before enabling interrupts */
886 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
889 die_if_kernel("FP exception in kernel code", regs);
891 if (fcr31 & FPU_CSR_UNI_X) {
893 * Unimplemented operation exception. If we've got the full
894 * software emulator on-board, let's use it...
896 * Force FPU to dump state into task/thread context. We're
897 * moving a lot of data here for what is probably a single
898 * instruction, but the alternative is to pre-decode the FP
899 * register operands before invoking the emulator, which seems
900 * a bit extreme for what should be an infrequent event.
903 /* Run the emulator */
904 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
908 * We can't allow the emulated instruction to leave any
909 * enabled Cause bits set in $fcr31.
911 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
912 current->thread.fpu.fcr31 &= ~fcr31;
914 /* Restore the hardware register state */
915 own_fpu(1); /* Using the FPU again. */
918 fault_addr = (void __user *) regs->cp0_epc;
921 /* Send a signal if required. */
922 process_fpemu_return(sig, fault_addr, fcr31);
925 exception_exit(prev_state);
929 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
930 * emulated more than some threshold number of instructions, force migration to
931 * a "CPU" that has FP support.
933 static void mt_ase_fp_affinity(void)
935 #ifdef CONFIG_MIPS_MT_FPAFF
936 if (mt_fpemul_threshold > 0 &&
937 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
939 * If there's no FPU present, or if the application has already
940 * restricted the allowed set to exclude any CPUs with FPUs,
941 * we'll skip the procedure.
943 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
946 current->thread.user_cpus_allowed
947 = current->cpus_mask;
948 cpumask_and(&tmask, ¤t->cpus_mask,
950 set_cpus_allowed_ptr(current, &tmask);
951 set_thread_flag(TIF_FPUBOUND);
954 #endif /* CONFIG_MIPS_MT_FPAFF */
957 #else /* !CONFIG_MIPS_FP_SUPPORT */
959 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
960 unsigned long old_epc, unsigned long old_ra)
965 #endif /* !CONFIG_MIPS_FP_SUPPORT */
967 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
972 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
973 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
974 SIGTRAP) == NOTIFY_STOP)
976 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
978 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
979 SIGTRAP) == NOTIFY_STOP)
983 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
984 * insns, even for trap and break codes that indicate arithmetic
985 * failures. Weird ...
986 * But should we continue the brokenness??? --macro
991 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
992 die_if_kernel(b, regs);
993 force_sig_fault(SIGFPE,
994 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
995 (void __user *) regs->cp0_epc);
998 die_if_kernel("Kernel bug detected", regs);
1003 * This breakpoint code is used by the FPU emulator to retake
1004 * control of the CPU after executing the instruction from the
1005 * delay slot of an emulated branch.
1007 * Terminate if exception was recognized as a delay slot return
1008 * otherwise handle as normal.
1010 if (do_dsemulret(regs))
1013 die_if_kernel("Math emu break/trap", regs);
1017 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1018 die_if_kernel(b, regs);
1020 force_sig_fault(SIGTRAP, si_code, NULL);
1027 asmlinkage void do_bp(struct pt_regs *regs)
1029 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1030 unsigned int opcode, bcode;
1031 enum ctx_state prev_state;
1032 bool user = user_mode(regs);
1034 prev_state = exception_enter();
1035 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1036 if (get_isa16_mode(regs->cp0_epc)) {
1039 if (__get_inst16(&instr[0], (u16 *)epc, user))
1042 if (!cpu_has_mmips) {
1044 bcode = (instr[0] >> 5) & 0x3f;
1045 } else if (mm_insn_16bit(instr[0])) {
1046 /* 16-bit microMIPS BREAK */
1047 bcode = instr[0] & 0xf;
1049 /* 32-bit microMIPS BREAK */
1050 if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1052 opcode = (instr[0] << 16) | instr[1];
1053 bcode = (opcode >> 6) & ((1 << 20) - 1);
1056 if (__get_inst32(&opcode, (u32 *)epc, user))
1058 bcode = (opcode >> 6) & ((1 << 20) - 1);
1062 * There is the ancient bug in the MIPS assemblers that the break
1063 * code starts left to bit 16 instead to bit 6 in the opcode.
1064 * Gas is bug-compatible, but not always, grrr...
1065 * We handle both cases with a simple heuristics. --macro
1067 if (bcode >= (1 << 10))
1068 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1071 * notify the kprobe handlers, if instruction is likely to
1076 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1077 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1081 case BRK_UPROBE_XOL:
1082 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1083 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1088 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1089 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1093 case BRK_KPROBE_SSTEPBP:
1094 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1095 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1103 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1106 exception_exit(prev_state);
1114 asmlinkage void do_tr(struct pt_regs *regs)
1116 u32 opcode, tcode = 0;
1117 enum ctx_state prev_state;
1119 bool user = user_mode(regs);
1120 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1122 prev_state = exception_enter();
1123 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1124 if (get_isa16_mode(regs->cp0_epc)) {
1125 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1126 __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1128 opcode = (instr[0] << 16) | instr[1];
1129 /* Immediate versions don't provide a code. */
1130 if (!(opcode & OPCODE))
1131 tcode = (opcode >> 12) & ((1 << 4) - 1);
1133 if (__get_inst32(&opcode, (u32 *)epc, user))
1135 /* Immediate versions don't provide a code. */
1136 if (!(opcode & OPCODE))
1137 tcode = (opcode >> 6) & ((1 << 10) - 1);
1140 do_trap_or_bp(regs, tcode, 0, "Trap");
1143 exception_exit(prev_state);
1151 asmlinkage void do_ri(struct pt_regs *regs)
1153 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1154 unsigned long old_epc = regs->cp0_epc;
1155 unsigned long old31 = regs->regs[31];
1156 enum ctx_state prev_state;
1157 unsigned int opcode = 0;
1161 * Avoid any kernel code. Just emulate the R2 instruction
1162 * as quickly as possible.
1164 if (mipsr2_emulation && cpu_has_mips_r6 &&
1165 likely(user_mode(regs)) &&
1166 likely(get_user(opcode, epc) >= 0)) {
1167 unsigned long fcr31 = 0;
1169 status = mipsr2_decoder(regs, opcode, &fcr31);
1177 process_fpemu_return(status,
1178 ¤t->thread.cp0_baduaddr,
1186 prev_state = exception_enter();
1187 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1189 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1190 SIGILL) == NOTIFY_STOP)
1193 die_if_kernel("Reserved instruction in kernel code", regs);
1195 if (unlikely(compute_return_epc(regs) < 0))
1198 if (!get_isa16_mode(regs->cp0_epc)) {
1199 if (unlikely(get_user(opcode, epc) < 0))
1202 if (!cpu_has_llsc && status < 0)
1203 status = simulate_llsc(regs, opcode);
1206 status = simulate_rdhwr_normal(regs, opcode);
1209 status = simulate_sync(regs, opcode);
1212 status = simulate_fp(regs, opcode, old_epc, old31);
1214 #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1216 status = simulate_loongson3_cpucfg(regs, opcode);
1218 } else if (cpu_has_mmips) {
1219 unsigned short mmop[2] = { 0 };
1221 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1223 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1226 opcode = (opcode << 16) | mmop[1];
1229 status = simulate_rdhwr_mm(regs, opcode);
1235 if (unlikely(status > 0)) {
1236 regs->cp0_epc = old_epc; /* Undo skip-over. */
1237 regs->regs[31] = old31;
1242 exception_exit(prev_state);
1246 * No lock; only written during early bootup by CPU 0.
1248 static RAW_NOTIFIER_HEAD(cu2_chain);
1250 int __ref register_cu2_notifier(struct notifier_block *nb)
1252 return raw_notifier_chain_register(&cu2_chain, nb);
1255 int cu2_notifier_call_chain(unsigned long val, void *v)
1257 return raw_notifier_call_chain(&cu2_chain, val, v);
1260 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1263 struct pt_regs *regs = data;
1265 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1266 "instruction", regs);
1272 #ifdef CONFIG_MIPS_FP_SUPPORT
1274 static int enable_restore_fp_context(int msa)
1276 int err, was_fpu_owner, prior_msa;
1279 /* Initialize context if it hasn't been used already */
1280 first_fp = init_fp_ctx(current);
1284 err = own_fpu_inatomic(1);
1288 * with MSA enabled, userspace can see MSACSR
1289 * and MSA regs, but the values in them are from
1290 * other task before current task, restore them
1291 * from saved fp/msa context
1293 write_msa_csr(current->thread.fpu.msacsr);
1295 * own_fpu_inatomic(1) just restore low 64bit,
1296 * fix the high 64bit
1299 set_thread_flag(TIF_USEDMSA);
1300 set_thread_flag(TIF_MSA_CTX_LIVE);
1307 * This task has formerly used the FP context.
1309 * If this thread has no live MSA vector context then we can simply
1310 * restore the scalar FP context. If it has live MSA vector context
1311 * (that is, it has or may have used MSA since last performing a
1312 * function call) then we'll need to restore the vector context. This
1313 * applies even if we're currently only executing a scalar FP
1314 * instruction. This is because if we were to later execute an MSA
1315 * instruction then we'd either have to:
1317 * - Restore the vector context & clobber any registers modified by
1318 * scalar FP instructions between now & then.
1322 * - Not restore the vector context & lose the most significant bits
1323 * of all vector registers.
1325 * Neither of those options is acceptable. We cannot restore the least
1326 * significant bits of the registers now & only restore the most
1327 * significant bits later because the most significant bits of any
1328 * vector registers whose aliased FP register is modified now will have
1329 * been zeroed. We'd have no way to know that when restoring the vector
1330 * context & thus may load an outdated value for the most significant
1331 * bits of a vector register.
1333 if (!msa && !thread_msa_context_live())
1337 * This task is using or has previously used MSA. Thus we require
1338 * that Status.FR == 1.
1341 was_fpu_owner = is_fpu_owner();
1342 err = own_fpu_inatomic(0);
1347 write_msa_csr(current->thread.fpu.msacsr);
1348 set_thread_flag(TIF_USEDMSA);
1351 * If this is the first time that the task is using MSA and it has
1352 * previously used scalar FP in this time slice then we already nave
1353 * FP context which we shouldn't clobber. We do however need to clear
1354 * the upper 64b of each vector register so that this task has no
1355 * opportunity to see data left behind by another.
1357 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1358 if (!prior_msa && was_fpu_owner) {
1366 * Restore the least significant 64b of each vector register
1367 * from the existing scalar FP context.
1369 _restore_fp(current);
1372 * The task has not formerly used MSA, so clear the upper 64b
1373 * of each vector register such that it cannot see data left
1374 * behind by another task.
1378 /* We need to restore the vector context. */
1379 restore_msa(current);
1381 /* Restore the scalar FP control & status register */
1383 write_32bit_cp1_register(CP1_STATUS,
1384 current->thread.fpu.fcr31);
1393 #else /* !CONFIG_MIPS_FP_SUPPORT */
1395 static int enable_restore_fp_context(int msa)
1400 #endif /* CONFIG_MIPS_FP_SUPPORT */
1402 asmlinkage void do_cpu(struct pt_regs *regs)
1404 enum ctx_state prev_state;
1405 unsigned int __user *epc;
1406 unsigned long old_epc, old31;
1407 unsigned int opcode;
1411 prev_state = exception_enter();
1412 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1415 die_if_kernel("do_cpu invoked from kernel context!", regs);
1419 epc = (unsigned int __user *)exception_epc(regs);
1420 old_epc = regs->cp0_epc;
1421 old31 = regs->regs[31];
1425 if (unlikely(compute_return_epc(regs) < 0))
1428 if (!get_isa16_mode(regs->cp0_epc)) {
1429 if (unlikely(get_user(opcode, epc) < 0))
1432 if (!cpu_has_llsc && status < 0)
1433 status = simulate_llsc(regs, opcode);
1439 if (unlikely(status > 0)) {
1440 regs->cp0_epc = old_epc; /* Undo skip-over. */
1441 regs->regs[31] = old31;
1447 #ifdef CONFIG_MIPS_FP_SUPPORT
1450 * The COP3 opcode space and consequently the CP0.Status.CU3
1451 * bit and the CP0.Cause.CE=3 encoding have been removed as
1452 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1453 * up the space has been reused for COP1X instructions, that
1454 * are enabled by the CP0.Status.CU1 bit and consequently
1455 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1456 * exceptions. Some FPU-less processors that implement one
1457 * of these ISAs however use this code erroneously for COP1X
1458 * instructions. Therefore we redirect this trap to the FP
1461 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1467 void __user *fault_addr;
1468 unsigned long fcr31;
1471 err = enable_restore_fp_context(0);
1473 if (raw_cpu_has_fpu && !err)
1476 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1480 * We can't allow the emulated instruction to leave
1481 * any enabled Cause bits set in $fcr31.
1483 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1484 current->thread.fpu.fcr31 &= ~fcr31;
1486 /* Send a signal if required. */
1487 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1488 mt_ase_fp_affinity();
1492 #else /* CONFIG_MIPS_FP_SUPPORT */
1497 #endif /* CONFIG_MIPS_FP_SUPPORT */
1500 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1504 exception_exit(prev_state);
1507 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1509 enum ctx_state prev_state;
1511 prev_state = exception_enter();
1512 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1513 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1514 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1517 /* Clear MSACSR.Cause before enabling interrupts */
1518 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1521 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1524 exception_exit(prev_state);
1527 asmlinkage void do_msa(struct pt_regs *regs)
1529 enum ctx_state prev_state;
1532 prev_state = exception_enter();
1534 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1539 die_if_kernel("do_msa invoked from kernel context!", regs);
1541 err = enable_restore_fp_context(1);
1545 exception_exit(prev_state);
1548 asmlinkage void do_mdmx(struct pt_regs *regs)
1550 enum ctx_state prev_state;
1552 prev_state = exception_enter();
1554 exception_exit(prev_state);
1558 * Called with interrupts disabled.
1560 asmlinkage void do_watch(struct pt_regs *regs)
1562 enum ctx_state prev_state;
1564 prev_state = exception_enter();
1566 * Clear WP (bit 22) bit of cause register so we don't loop
1569 clear_c0_cause(CAUSEF_WP);
1572 * If the current thread has the watch registers loaded, save
1573 * their values and send SIGTRAP. Otherwise another thread
1574 * left the registers set, clear them and continue.
1576 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1577 mips_read_watch_registers();
1579 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1581 mips_clear_watch_registers();
1584 exception_exit(prev_state);
1587 asmlinkage void do_mcheck(struct pt_regs *regs)
1589 int multi_match = regs->cp0_status & ST0_TS;
1590 enum ctx_state prev_state;
1592 prev_state = exception_enter();
1601 show_code((void *)regs->cp0_epc, user_mode(regs));
1604 * Some chips may have other causes of machine check (e.g. SB1
1607 panic("Caught Machine Check exception - %scaused by multiple "
1608 "matching entries in the TLB.",
1609 (multi_match) ? "" : "not ");
1612 asmlinkage void do_mt(struct pt_regs *regs)
1616 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1617 >> VPECONTROL_EXCPT_SHIFT;
1620 printk(KERN_DEBUG "Thread Underflow\n");
1623 printk(KERN_DEBUG "Thread Overflow\n");
1626 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1629 printk(KERN_DEBUG "Gating Storage Exception\n");
1632 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1635 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1638 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1642 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1648 asmlinkage void do_dsp(struct pt_regs *regs)
1651 panic("Unexpected DSP exception");
1656 asmlinkage void do_reserved(struct pt_regs *regs)
1659 * Game over - no way to handle this if it ever occurs. Most probably
1660 * caused by a new unknown cpu type or after another deadly
1661 * hard/software error.
1664 panic("Caught reserved exception %ld - should not happen.",
1665 (regs->cp0_cause & 0x7f) >> 2);
1668 static int __initdata l1parity = 1;
1669 static int __init nol1parity(char *s)
1674 __setup("nol1par", nol1parity);
1675 static int __initdata l2parity = 1;
1676 static int __init nol2parity(char *s)
1681 __setup("nol2par", nol2parity);
1684 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1685 * it different ways.
1687 static inline __init void parity_protection_init(void)
1689 #define ERRCTL_PE 0x80000000
1690 #define ERRCTL_L2P 0x00800000
1692 if (mips_cm_revision() >= CM_REV_CM3) {
1693 ulong gcr_ectl, cp0_ectl;
1696 * With CM3 systems we need to ensure that the L1 & L2
1697 * parity enables are set to the same value, since this
1698 * is presumed by the hardware engineers.
1700 * If the user disabled either of L1 or L2 ECC checking,
1703 l1parity &= l2parity;
1704 l2parity &= l1parity;
1706 /* Probe L1 ECC support */
1707 cp0_ectl = read_c0_ecc();
1708 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1709 back_to_back_c0_hazard();
1710 cp0_ectl = read_c0_ecc();
1712 /* Probe L2 ECC support */
1713 gcr_ectl = read_gcr_err_control();
1715 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1716 !(cp0_ectl & ERRCTL_PE)) {
1718 * One of L1 or L2 ECC checking isn't supported,
1719 * so we cannot enable either.
1721 l1parity = l2parity = 0;
1724 /* Configure L1 ECC checking */
1726 cp0_ectl |= ERRCTL_PE;
1728 cp0_ectl &= ~ERRCTL_PE;
1729 write_c0_ecc(cp0_ectl);
1730 back_to_back_c0_hazard();
1731 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1733 /* Configure L2 ECC checking */
1735 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1737 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1738 write_gcr_err_control(gcr_ectl);
1739 gcr_ectl = read_gcr_err_control();
1740 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1741 WARN_ON(!!gcr_ectl != l2parity);
1743 pr_info("Cache parity protection %sabled\n",
1744 l1parity ? "en" : "dis");
1748 switch (current_cpu_type()) {
1754 case CPU_INTERAPTIV:
1757 case CPU_QEMU_GENERIC:
1760 unsigned long errctl;
1761 unsigned int l1parity_present, l2parity_present;
1763 errctl = read_c0_ecc();
1764 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1766 /* probe L1 parity support */
1767 write_c0_ecc(errctl | ERRCTL_PE);
1768 back_to_back_c0_hazard();
1769 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1771 /* probe L2 parity support */
1772 write_c0_ecc(errctl|ERRCTL_L2P);
1773 back_to_back_c0_hazard();
1774 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1776 if (l1parity_present && l2parity_present) {
1778 errctl |= ERRCTL_PE;
1779 if (l1parity ^ l2parity)
1780 errctl |= ERRCTL_L2P;
1781 } else if (l1parity_present) {
1783 errctl |= ERRCTL_PE;
1784 } else if (l2parity_present) {
1786 errctl |= ERRCTL_L2P;
1788 /* No parity available */
1791 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1793 write_c0_ecc(errctl);
1794 back_to_back_c0_hazard();
1795 errctl = read_c0_ecc();
1796 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1798 if (l1parity_present)
1799 printk(KERN_INFO "Cache parity protection %sabled\n",
1800 (errctl & ERRCTL_PE) ? "en" : "dis");
1802 if (l2parity_present) {
1803 if (l1parity_present && l1parity)
1804 errctl ^= ERRCTL_L2P;
1805 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1806 (errctl & ERRCTL_L2P) ? "en" : "dis");
1813 case CPU_LOONGSON32:
1814 write_c0_ecc(0x80000000);
1815 back_to_back_c0_hazard();
1816 /* Set the PE bit (bit 31) in the c0_errctl register. */
1817 printk(KERN_INFO "Cache parity protection %sabled\n",
1818 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1822 /* Clear the DE bit (bit 16) in the c0_status register. */
1823 printk(KERN_INFO "Enable cache parity protection for "
1824 "MIPS 20KC/25KF CPUs.\n");
1825 clear_c0_status(ST0_DE);
1832 asmlinkage void cache_parity_error(void)
1834 const int field = 2 * sizeof(unsigned long);
1835 unsigned int reg_val;
1837 /* For the moment, report the problem and hang. */
1838 printk("Cache error exception:\n");
1839 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1840 reg_val = read_c0_cacheerr();
1841 printk("c0_cacheerr == %08x\n", reg_val);
1843 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1844 reg_val & (1<<30) ? "secondary" : "primary",
1845 reg_val & (1<<31) ? "data" : "insn");
1846 if ((cpu_has_mips_r2_r6) &&
1847 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1848 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1849 reg_val & (1<<29) ? "ED " : "",
1850 reg_val & (1<<28) ? "ET " : "",
1851 reg_val & (1<<27) ? "ES " : "",
1852 reg_val & (1<<26) ? "EE " : "",
1853 reg_val & (1<<25) ? "EB " : "",
1854 reg_val & (1<<24) ? "EI " : "",
1855 reg_val & (1<<23) ? "E1 " : "",
1856 reg_val & (1<<22) ? "E0 " : "");
1858 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1859 reg_val & (1<<29) ? "ED " : "",
1860 reg_val & (1<<28) ? "ET " : "",
1861 reg_val & (1<<26) ? "EE " : "",
1862 reg_val & (1<<25) ? "EB " : "",
1863 reg_val & (1<<24) ? "EI " : "",
1864 reg_val & (1<<23) ? "E1 " : "",
1865 reg_val & (1<<22) ? "E0 " : "");
1867 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1869 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1870 if (reg_val & (1<<22))
1871 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1873 if (reg_val & (1<<23))
1874 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1877 panic("Can't handle the cache error!");
1880 asmlinkage void do_ftlb(void)
1882 const int field = 2 * sizeof(unsigned long);
1883 unsigned int reg_val;
1885 /* For the moment, report the problem and hang. */
1886 if ((cpu_has_mips_r2_r6) &&
1887 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1888 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1889 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1891 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1892 reg_val = read_c0_cacheerr();
1893 pr_err("c0_cacheerr == %08x\n", reg_val);
1895 if ((reg_val & 0xc0000000) == 0xc0000000) {
1896 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1898 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1899 reg_val & (1<<30) ? "secondary" : "primary",
1900 reg_val & (1<<31) ? "data" : "insn");
1903 pr_err("FTLB error exception\n");
1905 /* Just print the cacheerr bits for now */
1906 cache_parity_error();
1909 asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1911 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1912 LOONGSON_DIAG1_EXCCODE_SHIFT;
1913 enum ctx_state prev_state;
1915 prev_state = exception_enter();
1919 /* Undocumented exception, will trigger on certain
1920 * also-undocumented instructions accessible from userspace.
1921 * Processor state is not otherwise corrupted, but currently
1922 * we don't know how to proceed. Maybe there is some
1923 * undocumented control flag to enable the instructions?
1929 /* None of the other exceptions, documented or not, have
1930 * further details given; none are encountered in the wild
1931 * either. Panic in case some of them turn out to be fatal.
1934 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1937 exception_exit(prev_state);
1941 * SDBBP EJTAG debug exception handler.
1942 * We skip the instruction and return to the next instruction.
1944 void ejtag_exception_handler(struct pt_regs *regs)
1946 const int field = 2 * sizeof(unsigned long);
1947 unsigned long depc, old_epc, old_ra;
1950 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1951 depc = read_c0_depc();
1952 debug = read_c0_debug();
1953 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1954 if (debug & 0x80000000) {
1956 * In branch delay slot.
1957 * We cheat a little bit here and use EPC to calculate the
1958 * debug return address (DEPC). EPC is restored after the
1961 old_epc = regs->cp0_epc;
1962 old_ra = regs->regs[31];
1963 regs->cp0_epc = depc;
1964 compute_return_epc(regs);
1965 depc = regs->cp0_epc;
1966 regs->cp0_epc = old_epc;
1967 regs->regs[31] = old_ra;
1970 write_c0_depc(depc);
1973 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1974 write_c0_debug(debug | 0x100);
1979 * NMI exception handler.
1980 * No lock; only written during early bootup by CPU 0.
1982 static RAW_NOTIFIER_HEAD(nmi_chain);
1984 int register_nmi_notifier(struct notifier_block *nb)
1986 return raw_notifier_chain_register(&nmi_chain, nb);
1989 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1994 raw_notifier_call_chain(&nmi_chain, 0, regs);
1996 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1997 smp_processor_id(), regs->cp0_epc);
1998 regs->cp0_epc = read_c0_errorepc();
2003 unsigned long ebase;
2004 EXPORT_SYMBOL_GPL(ebase);
2005 unsigned long exception_handlers[32];
2006 unsigned long vi_handlers[64];
2008 void reserve_exception_space(phys_addr_t addr, unsigned long size)
2010 memblock_reserve(addr, size);
2013 void __init *set_except_vector(int n, void *addr)
2015 unsigned long handler = (unsigned long) addr;
2016 unsigned long old_handler;
2018 #ifdef CONFIG_CPU_MICROMIPS
2020 * Only the TLB handlers are cache aligned with an even
2021 * address. All other handlers are on an odd address and
2022 * require no modification. Otherwise, MIPS32 mode will
2023 * be entered when handling any TLB exceptions. That
2024 * would be bad...since we must stay in microMIPS mode.
2026 if (!(handler & 0x1))
2029 old_handler = xchg(&exception_handlers[n], handler);
2031 if (n == 0 && cpu_has_divec) {
2032 #ifdef CONFIG_CPU_MICROMIPS
2033 unsigned long jump_mask = ~((1 << 27) - 1);
2035 unsigned long jump_mask = ~((1 << 28) - 1);
2037 u32 *buf = (u32 *)(ebase + 0x200);
2038 unsigned int k0 = 26;
2039 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2040 uasm_i_j(&buf, handler & ~jump_mask);
2043 UASM_i_LA(&buf, k0, handler);
2044 uasm_i_jr(&buf, k0);
2047 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2049 return (void *)old_handler;
2052 static void do_default_vi(void)
2054 show_regs(get_irq_regs());
2055 panic("Caught unexpected vectored interrupt.");
2058 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2060 unsigned long handler;
2061 unsigned long old_handler = vi_handlers[n];
2062 int srssets = current_cpu_data.srsets;
2066 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2069 handler = (unsigned long) do_default_vi;
2072 handler = (unsigned long) addr;
2073 vi_handlers[n] = handler;
2075 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2078 panic("Shadow register set %d not supported", srs);
2081 if (board_bind_eic_interrupt)
2082 board_bind_eic_interrupt(n, srs);
2083 } else if (cpu_has_vint) {
2084 /* SRSMap is only defined if shadow sets are implemented */
2086 change_c0_srsmap(0xf << n*4, srs << n*4);
2091 * If no shadow set is selected then use the default handler
2092 * that does normal register saving and standard interrupt exit
2094 extern char except_vec_vi, except_vec_vi_lui;
2095 extern char except_vec_vi_ori, except_vec_vi_end;
2096 extern char rollback_except_vec_vi;
2097 char *vec_start = using_rollback_handler() ?
2098 &rollback_except_vec_vi : &except_vec_vi;
2099 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2101 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2103 const int lui_offset = &except_vec_vi_lui - vec_start;
2104 const int ori_offset = &except_vec_vi_ori - vec_start;
2106 const int handler_len = &except_vec_vi_end - vec_start;
2108 if (handler_len > VECTORSPACING) {
2110 * Sigh... panicing won't help as the console
2111 * is probably not configured :(
2113 panic("VECTORSPACING too small");
2116 set_handler(((unsigned long)b - ebase), vec_start,
2117 #ifdef CONFIG_CPU_MICROMIPS
2122 h = (u16 *)(b + lui_offset);
2123 *h = (handler >> 16) & 0xffff;
2124 h = (u16 *)(b + ori_offset);
2125 *h = (handler & 0xffff);
2126 local_flush_icache_range((unsigned long)b,
2127 (unsigned long)(b+handler_len));
2131 * In other cases jump directly to the interrupt handler. It
2132 * is the handler's responsibility to save registers if required
2133 * (eg hi/lo) and return from the exception using "eret".
2139 #ifdef CONFIG_CPU_MICROMIPS
2140 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2142 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2144 h[0] = (insn >> 16) & 0xffff;
2145 h[1] = insn & 0xffff;
2148 local_flush_icache_range((unsigned long)b,
2149 (unsigned long)(b+8));
2152 return (void *)old_handler;
2155 void *set_vi_handler(int n, vi_handler_t addr)
2157 return set_vi_srs_handler(n, addr, 0);
2160 extern void tlb_init(void);
2165 int cp0_compare_irq;
2166 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2167 int cp0_compare_irq_shift;
2170 * Performance counter IRQ or -1 if shared with timer
2172 int cp0_perfcount_irq;
2173 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2176 * Fast debug channel IRQ or -1 if not present
2179 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2183 static int __init ulri_disable(char *s)
2185 pr_info("Disabling ulri\n");
2190 __setup("noulri", ulri_disable);
2192 /* configure STATUS register */
2193 static void configure_status(void)
2196 * Disable coprocessors and select 32-bit or 64-bit addressing
2197 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2198 * flag that some firmware may have left set and the TS bit (for
2199 * IP27). Set XX for ISA IV code to work.
2201 unsigned int status_set = ST0_KERNEL_CUMASK;
2203 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2205 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2206 status_set |= ST0_XX;
2208 status_set |= ST0_MX;
2210 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2212 back_to_back_c0_hazard();
2215 unsigned int hwrena;
2216 EXPORT_SYMBOL_GPL(hwrena);
2218 /* configure HWRENA register */
2219 static void configure_hwrena(void)
2221 hwrena = cpu_hwrena_impl_bits;
2223 if (cpu_has_mips_r2_r6)
2224 hwrena |= MIPS_HWRENA_CPUNUM |
2225 MIPS_HWRENA_SYNCISTEP |
2229 if (!noulri && cpu_has_userlocal)
2230 hwrena |= MIPS_HWRENA_ULR;
2233 write_c0_hwrena(hwrena);
2236 static void configure_exception_vector(void)
2238 if (cpu_has_mips_r2_r6) {
2239 unsigned long sr = set_c0_status(ST0_BEV);
2240 /* If available, use WG to set top bits of EBASE */
2241 if (cpu_has_ebase_wg) {
2243 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2245 write_c0_ebase(ebase | MIPS_EBASE_WG);
2248 write_c0_ebase(ebase);
2249 write_c0_status(sr);
2251 if (cpu_has_veic || cpu_has_vint) {
2252 /* Setting vector spacing enables EI/VI mode */
2253 change_c0_intctl(0x3e0, VECTORSPACING);
2255 if (cpu_has_divec) {
2256 if (cpu_has_mipsmt) {
2257 unsigned int vpflags = dvpe();
2258 set_c0_cause(CAUSEF_IV);
2261 set_c0_cause(CAUSEF_IV);
2265 void per_cpu_trap_init(bool is_boot_cpu)
2267 unsigned int cpu = smp_processor_id();
2272 configure_exception_vector();
2275 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2277 * o read IntCtl.IPTI to determine the timer interrupt
2278 * o read IntCtl.IPPCI to determine the performance counter interrupt
2279 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2281 if (cpu_has_mips_r2_r6) {
2282 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2283 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2284 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2285 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2290 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2291 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2292 cp0_perfcount_irq = -1;
2297 cpu_data[cpu].asid_cache = 0;
2298 else if (!cpu_data[cpu].asid_cache)
2299 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2302 current->active_mm = &init_mm;
2303 BUG_ON(current->mm);
2304 enter_lazy_tlb(&init_mm, current);
2306 /* Boot CPU's cache setup in setup_arch(). */
2310 TLBMISS_HANDLER_SETUP();
2313 /* Install CPU exception handler */
2314 void set_handler(unsigned long offset, void *addr, unsigned long size)
2316 #ifdef CONFIG_CPU_MICROMIPS
2317 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2319 memcpy((void *)(ebase + offset), addr, size);
2321 local_flush_icache_range(ebase + offset, ebase + offset + size);
2324 static const char panic_null_cerr[] =
2325 "Trying to set NULL cache error exception handler\n";
2328 * Install uncached CPU exception handler.
2329 * This is suitable only for the cache error exception which is the only
2330 * exception handler that is being run uncached.
2332 void set_uncached_handler(unsigned long offset, void *addr,
2335 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2338 panic(panic_null_cerr);
2340 memcpy((void *)(uncached_ebase + offset), addr, size);
2343 static int __initdata rdhwr_noopt;
2344 static int __init set_rdhwr_noopt(char *str)
2350 __setup("rdhwr_noopt", set_rdhwr_noopt);
2352 void __init trap_init(void)
2354 extern char except_vec3_generic;
2355 extern char except_vec4;
2356 extern char except_vec3_r4000;
2357 unsigned long i, vec_size;
2358 phys_addr_t ebase_pa;
2362 if (!cpu_has_mips_r2_r6) {
2366 if (cpu_has_veic || cpu_has_vint)
2367 vec_size = 0x200 + VECTORSPACING*64;
2369 vec_size = PAGE_SIZE;
2371 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2373 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2374 __func__, vec_size, 1 << fls(vec_size));
2377 * Try to ensure ebase resides in KSeg0 if possible.
2379 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2380 * hitting a poorly defined exception base for Cache Errors.
2381 * The allocation is likely to be in the low 512MB of physical,
2382 * in which case we should be able to convert to KSeg0.
2384 * EVA is special though as it allows segments to be rearranged
2385 * and to become uncached during cache error handling.
2387 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2388 ebase = CKSEG0ADDR(ebase_pa);
2390 ebase = (unsigned long)phys_to_virt(ebase_pa);
2393 if (cpu_has_mmips) {
2394 unsigned int config3 = read_c0_config3();
2396 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2397 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2399 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2402 if (board_ebase_setup)
2403 board_ebase_setup();
2404 per_cpu_trap_init(true);
2405 memblock_set_bottom_up(false);
2408 * Copy the generic exception handlers to their final destination.
2409 * This will be overridden later as suitable for a particular
2412 set_handler(0x180, &except_vec3_generic, 0x80);
2415 * Setup default vectors
2417 for (i = 0; i <= 31; i++)
2418 set_except_vector(i, handle_reserved);
2421 * Copy the EJTAG debug exception vector handler code to it's final
2424 if (cpu_has_ejtag && board_ejtag_handler_setup)
2425 board_ejtag_handler_setup();
2428 * Only some CPUs have the watch exceptions.
2431 set_except_vector(EXCCODE_WATCH, handle_watch);
2434 * Initialise interrupt handlers
2436 if (cpu_has_veic || cpu_has_vint) {
2437 int nvec = cpu_has_veic ? 64 : 8;
2438 for (i = 0; i < nvec; i++)
2439 set_vi_handler(i, NULL);
2441 else if (cpu_has_divec)
2442 set_handler(0x200, &except_vec4, 0x8);
2445 * Some CPUs can enable/disable for cache parity detection, but does
2446 * it different ways.
2448 parity_protection_init();
2451 * The Data Bus Errors / Instruction Bus Errors are signaled
2452 * by external hardware. Therefore these two exceptions
2453 * may have board specific handlers.
2458 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2459 rollback_handle_int : handle_int);
2460 set_except_vector(EXCCODE_MOD, handle_tlbm);
2461 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2462 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2464 set_except_vector(EXCCODE_ADEL, handle_adel);
2465 set_except_vector(EXCCODE_ADES, handle_ades);
2467 set_except_vector(EXCCODE_IBE, handle_ibe);
2468 set_except_vector(EXCCODE_DBE, handle_dbe);
2470 set_except_vector(EXCCODE_SYS, handle_sys);
2471 set_except_vector(EXCCODE_BP, handle_bp);
2474 set_except_vector(EXCCODE_RI, handle_ri);
2476 if (cpu_has_vtag_icache)
2477 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2478 else if (current_cpu_type() == CPU_LOONGSON64)
2479 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2481 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2484 set_except_vector(EXCCODE_CPU, handle_cpu);
2485 set_except_vector(EXCCODE_OV, handle_ov);
2486 set_except_vector(EXCCODE_TR, handle_tr);
2487 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2489 if (board_nmi_handler_setup)
2490 board_nmi_handler_setup();
2492 if (cpu_has_fpu && !cpu_has_nofpuex)
2493 set_except_vector(EXCCODE_FPE, handle_fpe);
2495 if (cpu_has_ftlbparex)
2496 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2498 if (cpu_has_gsexcex)
2499 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2501 if (cpu_has_rixiex) {
2502 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2503 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2506 set_except_vector(EXCCODE_MSADIS, handle_msa);
2507 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2510 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2513 set_except_vector(EXCCODE_THREAD, handle_mt);
2515 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2517 if (board_cache_error_setup)
2518 board_cache_error_setup();
2521 /* Special exception: R4[04]00 uses also the divec space. */
2522 set_handler(0x180, &except_vec3_r4000, 0x100);
2523 else if (cpu_has_4kex)
2524 set_handler(0x180, &except_vec3_generic, 0x80);
2526 set_handler(0x080, &except_vec3_generic, 0x80);
2528 local_flush_icache_range(ebase, ebase + vec_size);
2530 sort_extable(__start___dbe_table, __stop___dbe_table);
2532 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2535 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2539 case CPU_PM_ENTER_FAILED:
2543 configure_exception_vector();
2545 /* Restore register with CPU number for TLB handlers */
2546 TLBMISS_HANDLER_RESTORE();
2554 static struct notifier_block trap_pm_notifier_block = {
2555 .notifier_call = trap_pm_notifier,
2558 static int __init trap_pm_init(void)
2560 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2562 arch_initcall(trap_pm_init);