Correct .gbs.conf settings
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
33
34 struct cpu_hw_events {
35         /* Array of events on this cpu. */
36         struct perf_event       *events[MIPS_MAX_HWEVENTS];
37
38         /*
39          * Set the bit (indexed by the counter number) when the counter
40          * is used for an event.
41          */
42         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
44         /*
45          * Software copy of the control register for each performance counter.
46          * MIPS CPUs vary in performance counters. They use this differently,
47          * and even may not use it.
48          */
49         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
50 };
51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52         .saved_ctrl = {0},
53 };
54
55 /* The description of MIPS performance events. */
56 struct mips_perf_event {
57         unsigned int event_id;
58         /*
59          * MIPS performance counters are indexed starting from 0.
60          * CNTR_EVEN indicates the indexes of the counters to be used are
61          * even numbers.
62          */
63         unsigned int cntr_mask;
64         #define CNTR_EVEN       0x55555555
65         #define CNTR_ODD        0xaaaaaaaa
66         #define CNTR_ALL        0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
68         enum {
69                 T  = 0,
70                 V  = 1,
71                 P  = 2,
72         } range;
73 #else
74         #define T
75         #define V
76         #define P
77 #endif
78 };
79
80 static struct mips_perf_event raw_event;
81 static DEFINE_MUTEX(raw_event_mutex);
82
83 #define C(x) PERF_COUNT_HW_CACHE_##x
84
85 struct mips_pmu {
86         u64             max_period;
87         u64             valid_count;
88         u64             overflow;
89         const char      *name;
90         int             irq;
91         u64             (*read_counter)(unsigned int idx);
92         void            (*write_counter)(unsigned int idx, u64 val);
93         const struct mips_perf_event *(*map_raw_event)(u64 config);
94         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95         const struct mips_perf_event (*cache_event_map)
96                                 [PERF_COUNT_HW_CACHE_MAX]
97                                 [PERF_COUNT_HW_CACHE_OP_MAX]
98                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99         unsigned int    num_counters;
100 };
101
102 static struct mips_pmu mipspmu;
103
104 #define M_CONFIG1_PC    (1 << 4)
105
106 #define M_PERFCTL_EXL                   (1      <<  0)
107 #define M_PERFCTL_KERNEL                (1      <<  1)
108 #define M_PERFCTL_SUPERVISOR            (1      <<  2)
109 #define M_PERFCTL_USER                  (1      <<  3)
110 #define M_PERFCTL_INTERRUPT_ENABLE      (1      <<  4)
111 #define M_PERFCTL_EVENT(event)          (((event) & 0x3ff)  << 5)
112 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << 16)
113
114 #ifdef CONFIG_CPU_BMIPS5000
115 #define M_PERFCTL_MT_EN(filter)         0
116 #else /* !CONFIG_CPU_BMIPS5000 */
117 #define M_PERFCTL_MT_EN(filter)         ((filter) << 20)
118 #endif /* CONFIG_CPU_BMIPS5000 */
119
120 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(0)
121 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(1)
122 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(2)
123 #define M_PERFCTL_TCID(tcid)            ((tcid)   << 22)
124 #define M_PERFCTL_WIDE                  (1      << 30)
125 #define M_PERFCTL_MORE                  (1      << 31)
126 #define M_PERFCTL_TC                    (1      << 30)
127
128 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (M_PERFCTL_EXL |                \
129                                         M_PERFCTL_KERNEL |              \
130                                         M_PERFCTL_USER |                \
131                                         M_PERFCTL_SUPERVISOR |          \
132                                         M_PERFCTL_INTERRUPT_ENABLE)
133
134 #ifdef CONFIG_MIPS_MT_SMP
135 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
136 #else
137 #define M_PERFCTL_CONFIG_MASK           0x1f
138 #endif
139 #define M_PERFCTL_EVENT_MASK            0xfe0
140
141
142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143 static int cpu_has_mipsmt_pertccounters;
144
145 static DEFINE_RWLOCK(pmuint_rwlock);
146
147 #if defined(CONFIG_CPU_BMIPS5000)
148 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
149                          0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150 #else
151 /*
152  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154  */
155 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
156                          0 : smp_processor_id())
157 #endif
158
159 /* Copied from op_model_mipsxx.c */
160 static unsigned int vpe_shift(void)
161 {
162         if (num_possible_cpus() > 1)
163                 return 1;
164
165         return 0;
166 }
167
168 static unsigned int counters_total_to_per_cpu(unsigned int counters)
169 {
170         return counters >> vpe_shift();
171 }
172
173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
174 #define vpe_id()        0
175
176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
177
178 static void resume_local_counters(void);
179 static void pause_local_counters(void);
180 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181 static int mipsxx_pmu_handle_shared_irq(void);
182
183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184 {
185         if (vpe_id() == 1)
186                 idx = (idx + 2) & 3;
187         return idx;
188 }
189
190 static u64 mipsxx_pmu_read_counter(unsigned int idx)
191 {
192         idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194         switch (idx) {
195         case 0:
196                 /*
197                  * The counters are unsigned, we must cast to truncate
198                  * off the high bits.
199                  */
200                 return (u32)read_c0_perfcntr0();
201         case 1:
202                 return (u32)read_c0_perfcntr1();
203         case 2:
204                 return (u32)read_c0_perfcntr2();
205         case 3:
206                 return (u32)read_c0_perfcntr3();
207         default:
208                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209                 return 0;
210         }
211 }
212
213 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214 {
215         idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217         switch (idx) {
218         case 0:
219                 return read_c0_perfcntr0_64();
220         case 1:
221                 return read_c0_perfcntr1_64();
222         case 2:
223                 return read_c0_perfcntr2_64();
224         case 3:
225                 return read_c0_perfcntr3_64();
226         default:
227                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228                 return 0;
229         }
230 }
231
232 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233 {
234         idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236         switch (idx) {
237         case 0:
238                 write_c0_perfcntr0(val);
239                 return;
240         case 1:
241                 write_c0_perfcntr1(val);
242                 return;
243         case 2:
244                 write_c0_perfcntr2(val);
245                 return;
246         case 3:
247                 write_c0_perfcntr3(val);
248                 return;
249         }
250 }
251
252 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253 {
254         idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256         switch (idx) {
257         case 0:
258                 write_c0_perfcntr0_64(val);
259                 return;
260         case 1:
261                 write_c0_perfcntr1_64(val);
262                 return;
263         case 2:
264                 write_c0_perfcntr2_64(val);
265                 return;
266         case 3:
267                 write_c0_perfcntr3_64(val);
268                 return;
269         }
270 }
271
272 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273 {
274         idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276         switch (idx) {
277         case 0:
278                 return read_c0_perfctrl0();
279         case 1:
280                 return read_c0_perfctrl1();
281         case 2:
282                 return read_c0_perfctrl2();
283         case 3:
284                 return read_c0_perfctrl3();
285         default:
286                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287                 return 0;
288         }
289 }
290
291 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292 {
293         idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295         switch (idx) {
296         case 0:
297                 write_c0_perfctrl0(val);
298                 return;
299         case 1:
300                 write_c0_perfctrl1(val);
301                 return;
302         case 2:
303                 write_c0_perfctrl2(val);
304                 return;
305         case 3:
306                 write_c0_perfctrl3(val);
307                 return;
308         }
309 }
310
311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312                                     struct hw_perf_event *hwc)
313 {
314         int i;
315
316         /*
317          * We only need to care the counter mask. The range has been
318          * checked definitely.
319          */
320         unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323                 /*
324                  * Note that some MIPS perf events can be counted by both
325                  * even and odd counters, wheresas many other are only by
326                  * even _or_ odd counters. This introduces an issue that
327                  * when the former kind of event takes the counter the
328                  * latter kind of event wants to use, then the "counter
329                  * allocation" for the latter event will fail. In fact if
330                  * they can be dynamically swapped, they both feel happy.
331                  * But here we leave this issue alone for now.
332                  */
333                 if (test_bit(i, &cntr_mask) &&
334                         !test_and_set_bit(i, cpuc->used_mask))
335                         return i;
336         }
337
338         return -EAGAIN;
339 }
340
341 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342 {
343         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
344
345         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348                 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349                 /* Make sure interrupt enabled. */
350                 M_PERFCTL_INTERRUPT_ENABLE;
351         if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352                 /* enable the counter for the calling thread */
353                 cpuc->saved_ctrl[idx] |=
354                         (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
356         /*
357          * We do not actually let the counter run. Leave it until start().
358          */
359 }
360
361 static void mipsxx_pmu_disable_event(int idx)
362 {
363         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
364         unsigned long flags;
365
366         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368         local_irq_save(flags);
369         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
371         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372         local_irq_restore(flags);
373 }
374
375 static int mipspmu_event_set_period(struct perf_event *event,
376                                     struct hw_perf_event *hwc,
377                                     int idx)
378 {
379         u64 left = local64_read(&hwc->period_left);
380         u64 period = hwc->sample_period;
381         int ret = 0;
382
383         if (unlikely((left + period) & (1ULL << 63))) {
384                 /* left underflowed by more than period. */
385                 left = period;
386                 local64_set(&hwc->period_left, left);
387                 hwc->last_period = period;
388                 ret = 1;
389         } else  if (unlikely((left + period) <= period)) {
390                 /* left underflowed by less than period. */
391                 left += period;
392                 local64_set(&hwc->period_left, left);
393                 hwc->last_period = period;
394                 ret = 1;
395         }
396
397         if (left > mipspmu.max_period) {
398                 left = mipspmu.max_period;
399                 local64_set(&hwc->period_left, left);
400         }
401
402         local64_set(&hwc->prev_count, mipspmu.overflow - left);
403
404         mipspmu.write_counter(idx, mipspmu.overflow - left);
405
406         perf_event_update_userpage(event);
407
408         return ret;
409 }
410
411 static void mipspmu_event_update(struct perf_event *event,
412                                  struct hw_perf_event *hwc,
413                                  int idx)
414 {
415         u64 prev_raw_count, new_raw_count;
416         u64 delta;
417
418 again:
419         prev_raw_count = local64_read(&hwc->prev_count);
420         new_raw_count = mipspmu.read_counter(idx);
421
422         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423                                 new_raw_count) != prev_raw_count)
424                 goto again;
425
426         delta = new_raw_count - prev_raw_count;
427
428         local64_add(delta, &event->count);
429         local64_sub(delta, &hwc->period_left);
430 }
431
432 static void mipspmu_start(struct perf_event *event, int flags)
433 {
434         struct hw_perf_event *hwc = &event->hw;
435
436         if (flags & PERF_EF_RELOAD)
437                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439         hwc->state = 0;
440
441         /* Set the period for the event. */
442         mipspmu_event_set_period(event, hwc, hwc->idx);
443
444         /* Enable the event. */
445         mipsxx_pmu_enable_event(hwc, hwc->idx);
446 }
447
448 static void mipspmu_stop(struct perf_event *event, int flags)
449 {
450         struct hw_perf_event *hwc = &event->hw;
451
452         if (!(hwc->state & PERF_HES_STOPPED)) {
453                 /* We are working on a local event. */
454                 mipsxx_pmu_disable_event(hwc->idx);
455                 barrier();
456                 mipspmu_event_update(event, hwc, hwc->idx);
457                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458         }
459 }
460
461 static int mipspmu_add(struct perf_event *event, int flags)
462 {
463         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
464         struct hw_perf_event *hwc = &event->hw;
465         int idx;
466         int err = 0;
467
468         perf_pmu_disable(event->pmu);
469
470         /* To look for a free counter for this event. */
471         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
472         if (idx < 0) {
473                 err = idx;
474                 goto out;
475         }
476
477         /*
478          * If there is an event in the counter we are going to use then
479          * make sure it is disabled.
480          */
481         event->hw.idx = idx;
482         mipsxx_pmu_disable_event(idx);
483         cpuc->events[idx] = event;
484
485         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486         if (flags & PERF_EF_START)
487                 mipspmu_start(event, PERF_EF_RELOAD);
488
489         /* Propagate our changes to the userspace mapping. */
490         perf_event_update_userpage(event);
491
492 out:
493         perf_pmu_enable(event->pmu);
494         return err;
495 }
496
497 static void mipspmu_del(struct perf_event *event, int flags)
498 {
499         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
500         struct hw_perf_event *hwc = &event->hw;
501         int idx = hwc->idx;
502
503         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
504
505         mipspmu_stop(event, PERF_EF_UPDATE);
506         cpuc->events[idx] = NULL;
507         clear_bit(idx, cpuc->used_mask);
508
509         perf_event_update_userpage(event);
510 }
511
512 static void mipspmu_read(struct perf_event *event)
513 {
514         struct hw_perf_event *hwc = &event->hw;
515
516         /* Don't read disabled counters! */
517         if (hwc->idx < 0)
518                 return;
519
520         mipspmu_event_update(event, hwc, hwc->idx);
521 }
522
523 static void mipspmu_enable(struct pmu *pmu)
524 {
525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526         write_unlock(&pmuint_rwlock);
527 #endif
528         resume_local_counters();
529 }
530
531 /*
532  * MIPS performance counters can be per-TC. The control registers can
533  * not be directly accessed accross CPUs. Hence if we want to do global
534  * control, we need cross CPU calls. on_each_cpu() can help us, but we
535  * can not make sure this function is called with interrupts enabled. So
536  * here we pause local counters and then grab a rwlock and leave the
537  * counters on other CPUs alone. If any counter interrupt raises while
538  * we own the write lock, simply pause local counters on that CPU and
539  * spin in the handler. Also we know we won't be switched to another
540  * CPU after pausing local counters and before grabbing the lock.
541  */
542 static void mipspmu_disable(struct pmu *pmu)
543 {
544         pause_local_counters();
545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546         write_lock(&pmuint_rwlock);
547 #endif
548 }
549
550 static atomic_t active_events = ATOMIC_INIT(0);
551 static DEFINE_MUTEX(pmu_reserve_mutex);
552 static int (*save_perf_irq)(void);
553
554 static int mipspmu_get_irq(void)
555 {
556         int err;
557
558         if (mipspmu.irq >= 0) {
559                 /* Request my own irq handler. */
560                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
561                         IRQF_PERCPU | IRQF_NOBALANCING,
562                         "mips_perf_pmu", NULL);
563                 if (err) {
564                         pr_warning("Unable to request IRQ%d for MIPS "
565                            "performance counters!\n", mipspmu.irq);
566                 }
567         } else if (cp0_perfcount_irq < 0) {
568                 /*
569                  * We are sharing the irq number with the timer interrupt.
570                  */
571                 save_perf_irq = perf_irq;
572                 perf_irq = mipsxx_pmu_handle_shared_irq;
573                 err = 0;
574         } else {
575                 pr_warning("The platform hasn't properly defined its "
576                         "interrupt controller.\n");
577                 err = -ENOENT;
578         }
579
580         return err;
581 }
582
583 static void mipspmu_free_irq(void)
584 {
585         if (mipspmu.irq >= 0)
586                 free_irq(mipspmu.irq, NULL);
587         else if (cp0_perfcount_irq < 0)
588                 perf_irq = save_perf_irq;
589 }
590
591 /*
592  * mipsxx/rm9000/loongson2 have different performance counters, they have
593  * specific low-level init routines.
594  */
595 static void reset_counters(void *arg);
596 static int __hw_perf_event_init(struct perf_event *event);
597
598 static void hw_perf_event_destroy(struct perf_event *event)
599 {
600         if (atomic_dec_and_mutex_lock(&active_events,
601                                 &pmu_reserve_mutex)) {
602                 /*
603                  * We must not call the destroy function with interrupts
604                  * disabled.
605                  */
606                 on_each_cpu(reset_counters,
607                         (void *)(long)mipspmu.num_counters, 1);
608                 mipspmu_free_irq();
609                 mutex_unlock(&pmu_reserve_mutex);
610         }
611 }
612
613 static int mipspmu_event_init(struct perf_event *event)
614 {
615         int err = 0;
616
617         /* does not support taken branch sampling */
618         if (has_branch_stack(event))
619                 return -EOPNOTSUPP;
620
621         switch (event->attr.type) {
622         case PERF_TYPE_RAW:
623         case PERF_TYPE_HARDWARE:
624         case PERF_TYPE_HW_CACHE:
625                 break;
626
627         default:
628                 return -ENOENT;
629         }
630
631         if (event->cpu >= nr_cpumask_bits ||
632             (event->cpu >= 0 && !cpu_online(event->cpu)))
633                 return -ENODEV;
634
635         if (!atomic_inc_not_zero(&active_events)) {
636                 mutex_lock(&pmu_reserve_mutex);
637                 if (atomic_read(&active_events) == 0)
638                         err = mipspmu_get_irq();
639
640                 if (!err)
641                         atomic_inc(&active_events);
642                 mutex_unlock(&pmu_reserve_mutex);
643         }
644
645         if (err)
646                 return err;
647
648         return __hw_perf_event_init(event);
649 }
650
651 static struct pmu pmu = {
652         .pmu_enable     = mipspmu_enable,
653         .pmu_disable    = mipspmu_disable,
654         .event_init     = mipspmu_event_init,
655         .add            = mipspmu_add,
656         .del            = mipspmu_del,
657         .start          = mipspmu_start,
658         .stop           = mipspmu_stop,
659         .read           = mipspmu_read,
660 };
661
662 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
663 {
664 /*
665  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
666  * event_id.
667  */
668 #ifdef CONFIG_MIPS_MT_SMP
669         return ((unsigned int)pev->range << 24) |
670                 (pev->cntr_mask & 0xffff00) |
671                 (pev->event_id & 0xff);
672 #else
673         return (pev->cntr_mask & 0xffff00) |
674                 (pev->event_id & 0xff);
675 #endif
676 }
677
678 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
679 {
680
681         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
682                 return ERR_PTR(-EOPNOTSUPP);
683         return &(*mipspmu.general_event_map)[idx];
684 }
685
686 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687 {
688         unsigned int cache_type, cache_op, cache_result;
689         const struct mips_perf_event *pev;
690
691         cache_type = (config >> 0) & 0xff;
692         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693                 return ERR_PTR(-EINVAL);
694
695         cache_op = (config >> 8) & 0xff;
696         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697                 return ERR_PTR(-EINVAL);
698
699         cache_result = (config >> 16) & 0xff;
700         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701                 return ERR_PTR(-EINVAL);
702
703         pev = &((*mipspmu.cache_event_map)
704                                         [cache_type]
705                                         [cache_op]
706                                         [cache_result]);
707
708         if (pev->cntr_mask == 0)
709                 return ERR_PTR(-EOPNOTSUPP);
710
711         return pev;
712
713 }
714
715 static int validate_group(struct perf_event *event)
716 {
717         struct perf_event *sibling, *leader = event->group_leader;
718         struct cpu_hw_events fake_cpuc;
719
720         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
721
722         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
723                 return -EINVAL;
724
725         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
726                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
727                         return -EINVAL;
728         }
729
730         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
731                 return -EINVAL;
732
733         return 0;
734 }
735
736 /* This is needed by specific irq handlers in perf_event_*.c */
737 static void handle_associated_event(struct cpu_hw_events *cpuc,
738                                     int idx, struct perf_sample_data *data,
739                                     struct pt_regs *regs)
740 {
741         struct perf_event *event = cpuc->events[idx];
742         struct hw_perf_event *hwc = &event->hw;
743
744         mipspmu_event_update(event, hwc, idx);
745         data->period = event->hw.last_period;
746         if (!mipspmu_event_set_period(event, hwc, idx))
747                 return;
748
749         if (perf_event_overflow(event, data, regs))
750                 mipsxx_pmu_disable_event(idx);
751 }
752
753
754 static int __n_counters(void)
755 {
756         if (!(read_c0_config1() & M_CONFIG1_PC))
757                 return 0;
758         if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
759                 return 1;
760         if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
761                 return 2;
762         if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
763                 return 3;
764
765         return 4;
766 }
767
768 static int n_counters(void)
769 {
770         int counters;
771
772         switch (current_cpu_type()) {
773         case CPU_R10000:
774                 counters = 2;
775                 break;
776
777         case CPU_R12000:
778         case CPU_R14000:
779                 counters = 4;
780                 break;
781
782         default:
783                 counters = __n_counters();
784         }
785
786         return counters;
787 }
788
789 static void reset_counters(void *arg)
790 {
791         int counters = (int)(long)arg;
792         switch (counters) {
793         case 4:
794                 mipsxx_pmu_write_control(3, 0);
795                 mipspmu.write_counter(3, 0);
796         case 3:
797                 mipsxx_pmu_write_control(2, 0);
798                 mipspmu.write_counter(2, 0);
799         case 2:
800                 mipsxx_pmu_write_control(1, 0);
801                 mipspmu.write_counter(1, 0);
802         case 1:
803                 mipsxx_pmu_write_control(0, 0);
804                 mipspmu.write_counter(0, 0);
805         }
806 }
807
808 /* 24K/34K/1004K cores can share the same event map. */
809 static const struct mips_perf_event mipsxxcore_event_map
810                                 [PERF_COUNT_HW_MAX] = {
811         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
812         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
813         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
814         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
815 };
816
817 /* 74K core has different branch event code. */
818 static const struct mips_perf_event mipsxx74Kcore_event_map
819                                 [PERF_COUNT_HW_MAX] = {
820         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
821         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
822         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
823         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
824 };
825
826 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
827         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
828         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
829         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
830         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
831         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
832         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
833         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
834 };
835
836 static const struct mips_perf_event bmips5000_event_map
837                                 [PERF_COUNT_HW_MAX] = {
838         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
839         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
840         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
841 };
842
843 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
844         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
845         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
846         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
847         [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
848         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
849         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
850 };
851
852 /* 24K/34K/1004K cores can share the same cache event map. */
853 static const struct mips_perf_event mipsxxcore_cache_map
854                                 [PERF_COUNT_HW_CACHE_MAX]
855                                 [PERF_COUNT_HW_CACHE_OP_MAX]
856                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
857 [C(L1D)] = {
858         /*
859          * Like some other architectures (e.g. ARM), the performance
860          * counters don't differentiate between read and write
861          * accesses/misses, so this isn't strictly correct, but it's the
862          * best we can do. Writes and reads get combined.
863          */
864         [C(OP_READ)] = {
865                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
866                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
867         },
868         [C(OP_WRITE)] = {
869                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
870                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
871         },
872 },
873 [C(L1I)] = {
874         [C(OP_READ)] = {
875                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
876                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
877         },
878         [C(OP_WRITE)] = {
879                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
880                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
881         },
882         [C(OP_PREFETCH)] = {
883                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
884                 /*
885                  * Note that MIPS has only "hit" events countable for
886                  * the prefetch operation.
887                  */
888         },
889 },
890 [C(LL)] = {
891         [C(OP_READ)] = {
892                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
893                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
894         },
895         [C(OP_WRITE)] = {
896                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
897                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
898         },
899 },
900 [C(DTLB)] = {
901         [C(OP_READ)] = {
902                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
903                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
904         },
905         [C(OP_WRITE)] = {
906                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
907                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
908         },
909 },
910 [C(ITLB)] = {
911         [C(OP_READ)] = {
912                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
913                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
914         },
915         [C(OP_WRITE)] = {
916                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
917                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
918         },
919 },
920 [C(BPU)] = {
921         /* Using the same code for *HW_BRANCH* */
922         [C(OP_READ)] = {
923                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
924                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
925         },
926         [C(OP_WRITE)] = {
927                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
928                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
929         },
930 },
931 };
932
933 /* 74K core has completely different cache event map. */
934 static const struct mips_perf_event mipsxx74Kcore_cache_map
935                                 [PERF_COUNT_HW_CACHE_MAX]
936                                 [PERF_COUNT_HW_CACHE_OP_MAX]
937                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
938 [C(L1D)] = {
939         /*
940          * Like some other architectures (e.g. ARM), the performance
941          * counters don't differentiate between read and write
942          * accesses/misses, so this isn't strictly correct, but it's the
943          * best we can do. Writes and reads get combined.
944          */
945         [C(OP_READ)] = {
946                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
947                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
948         },
949         [C(OP_WRITE)] = {
950                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
951                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
952         },
953 },
954 [C(L1I)] = {
955         [C(OP_READ)] = {
956                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
957                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
958         },
959         [C(OP_WRITE)] = {
960                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
961                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
962         },
963         [C(OP_PREFETCH)] = {
964                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
965                 /*
966                  * Note that MIPS has only "hit" events countable for
967                  * the prefetch operation.
968                  */
969         },
970 },
971 [C(LL)] = {
972         [C(OP_READ)] = {
973                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
974                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
975         },
976         [C(OP_WRITE)] = {
977                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
978                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
979         },
980 },
981 [C(ITLB)] = {
982         [C(OP_READ)] = {
983                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
984                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
985         },
986         [C(OP_WRITE)] = {
987                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
988                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
989         },
990 },
991 [C(BPU)] = {
992         /* Using the same code for *HW_BRANCH* */
993         [C(OP_READ)] = {
994                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
995                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
996         },
997         [C(OP_WRITE)] = {
998                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
999                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1000         },
1001 },
1002 };
1003
1004 /* BMIPS5000 */
1005 static const struct mips_perf_event bmips5000_cache_map
1006                                 [PERF_COUNT_HW_CACHE_MAX]
1007                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1008                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1009 [C(L1D)] = {
1010         /*
1011          * Like some other architectures (e.g. ARM), the performance
1012          * counters don't differentiate between read and write
1013          * accesses/misses, so this isn't strictly correct, but it's the
1014          * best we can do. Writes and reads get combined.
1015          */
1016         [C(OP_READ)] = {
1017                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1018                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1019         },
1020         [C(OP_WRITE)] = {
1021                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1022                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1023         },
1024 },
1025 [C(L1I)] = {
1026         [C(OP_READ)] = {
1027                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1028                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1029         },
1030         [C(OP_WRITE)] = {
1031                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1032                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1033         },
1034         [C(OP_PREFETCH)] = {
1035                 [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1036                 /*
1037                  * Note that MIPS has only "hit" events countable for
1038                  * the prefetch operation.
1039                  */
1040         },
1041 },
1042 [C(LL)] = {
1043         [C(OP_READ)] = {
1044                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1045                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1046         },
1047         [C(OP_WRITE)] = {
1048                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1049                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1050         },
1051 },
1052 [C(BPU)] = {
1053         /* Using the same code for *HW_BRANCH* */
1054         [C(OP_READ)] = {
1055                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1056         },
1057         [C(OP_WRITE)] = {
1058                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1059         },
1060 },
1061 };
1062
1063
1064 static const struct mips_perf_event octeon_cache_map
1065                                 [PERF_COUNT_HW_CACHE_MAX]
1066                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1067                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1068 [C(L1D)] = {
1069         [C(OP_READ)] = {
1070                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1071                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1072         },
1073         [C(OP_WRITE)] = {
1074                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1075         },
1076 },
1077 [C(L1I)] = {
1078         [C(OP_READ)] = {
1079                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1080         },
1081         [C(OP_PREFETCH)] = {
1082                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1083         },
1084 },
1085 [C(DTLB)] = {
1086         /*
1087          * Only general DTLB misses are counted use the same event for
1088          * read and write.
1089          */
1090         [C(OP_READ)] = {
1091                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1092         },
1093         [C(OP_WRITE)] = {
1094                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1095         },
1096 },
1097 [C(ITLB)] = {
1098         [C(OP_READ)] = {
1099                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1100         },
1101 },
1102 };
1103
1104 static const struct mips_perf_event xlp_cache_map
1105                                 [PERF_COUNT_HW_CACHE_MAX]
1106                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1107                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1108 [C(L1D)] = {
1109         [C(OP_READ)] = {
1110                 [C(RESULT_ACCESS)]      = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1111                 [C(RESULT_MISS)]        = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1112         },
1113         [C(OP_WRITE)] = {
1114                 [C(RESULT_ACCESS)]      = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1115                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1116         },
1117 },
1118 [C(L1I)] = {
1119         [C(OP_READ)] = {
1120                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1121                 [C(RESULT_MISS)]        = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1122         },
1123 },
1124 [C(LL)] = {
1125         [C(OP_READ)] = {
1126                 [C(RESULT_ACCESS)]      = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1127                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1128         },
1129         [C(OP_WRITE)] = {
1130                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1131                 [C(RESULT_MISS)]        = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1132         },
1133 },
1134 [C(DTLB)] = {
1135         /*
1136          * Only general DTLB misses are counted use the same event for
1137          * read and write.
1138          */
1139         [C(OP_READ)] = {
1140                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1141         },
1142         [C(OP_WRITE)] = {
1143                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1144         },
1145 },
1146 [C(ITLB)] = {
1147         [C(OP_READ)] = {
1148                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1149         },
1150         [C(OP_WRITE)] = {
1151                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1152         },
1153 },
1154 [C(BPU)] = {
1155         [C(OP_READ)] = {
1156                 [C(RESULT_MISS)]        = { 0x25, CNTR_ALL },
1157         },
1158 },
1159 };
1160
1161 #ifdef CONFIG_MIPS_MT_SMP
1162 static void check_and_calc_range(struct perf_event *event,
1163                                  const struct mips_perf_event *pev)
1164 {
1165         struct hw_perf_event *hwc = &event->hw;
1166
1167         if (event->cpu >= 0) {
1168                 if (pev->range > V) {
1169                         /*
1170                          * The user selected an event that is processor
1171                          * wide, while expecting it to be VPE wide.
1172                          */
1173                         hwc->config_base |= M_TC_EN_ALL;
1174                 } else {
1175                         /*
1176                          * FIXME: cpu_data[event->cpu].vpe_id reports 0
1177                          * for both CPUs.
1178                          */
1179                         hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1180                         hwc->config_base |= M_TC_EN_VPE;
1181                 }
1182         } else
1183                 hwc->config_base |= M_TC_EN_ALL;
1184 }
1185 #else
1186 static void check_and_calc_range(struct perf_event *event,
1187                                  const struct mips_perf_event *pev)
1188 {
1189 }
1190 #endif
1191
1192 static int __hw_perf_event_init(struct perf_event *event)
1193 {
1194         struct perf_event_attr *attr = &event->attr;
1195         struct hw_perf_event *hwc = &event->hw;
1196         const struct mips_perf_event *pev;
1197         int err;
1198
1199         /* Returning MIPS event descriptor for generic perf event. */
1200         if (PERF_TYPE_HARDWARE == event->attr.type) {
1201                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1202                         return -EINVAL;
1203                 pev = mipspmu_map_general_event(event->attr.config);
1204         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1205                 pev = mipspmu_map_cache_event(event->attr.config);
1206         } else if (PERF_TYPE_RAW == event->attr.type) {
1207                 /* We are working on the global raw event. */
1208                 mutex_lock(&raw_event_mutex);
1209                 pev = mipspmu.map_raw_event(event->attr.config);
1210         } else {
1211                 /* The event type is not (yet) supported. */
1212                 return -EOPNOTSUPP;
1213         }
1214
1215         if (IS_ERR(pev)) {
1216                 if (PERF_TYPE_RAW == event->attr.type)
1217                         mutex_unlock(&raw_event_mutex);
1218                 return PTR_ERR(pev);
1219         }
1220
1221         /*
1222          * We allow max flexibility on how each individual counter shared
1223          * by the single CPU operates (the mode exclusion and the range).
1224          */
1225         hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1226
1227         /* Calculate range bits and validate it. */
1228         if (num_possible_cpus() > 1)
1229                 check_and_calc_range(event, pev);
1230
1231         hwc->event_base = mipspmu_perf_event_encode(pev);
1232         if (PERF_TYPE_RAW == event->attr.type)
1233                 mutex_unlock(&raw_event_mutex);
1234
1235         if (!attr->exclude_user)
1236                 hwc->config_base |= M_PERFCTL_USER;
1237         if (!attr->exclude_kernel) {
1238                 hwc->config_base |= M_PERFCTL_KERNEL;
1239                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1240                 hwc->config_base |= M_PERFCTL_EXL;
1241         }
1242         if (!attr->exclude_hv)
1243                 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1244
1245         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1246         /*
1247          * The event can belong to another cpu. We do not assign a local
1248          * counter for it for now.
1249          */
1250         hwc->idx = -1;
1251         hwc->config = 0;
1252
1253         if (!hwc->sample_period) {
1254                 hwc->sample_period  = mipspmu.max_period;
1255                 hwc->last_period    = hwc->sample_period;
1256                 local64_set(&hwc->period_left, hwc->sample_period);
1257         }
1258
1259         err = 0;
1260         if (event->group_leader != event)
1261                 err = validate_group(event);
1262
1263         event->destroy = hw_perf_event_destroy;
1264
1265         if (err)
1266                 event->destroy(event);
1267
1268         return err;
1269 }
1270
1271 static void pause_local_counters(void)
1272 {
1273         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1274         int ctr = mipspmu.num_counters;
1275         unsigned long flags;
1276
1277         local_irq_save(flags);
1278         do {
1279                 ctr--;
1280                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1281                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1282                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1283         } while (ctr > 0);
1284         local_irq_restore(flags);
1285 }
1286
1287 static void resume_local_counters(void)
1288 {
1289         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1290         int ctr = mipspmu.num_counters;
1291
1292         do {
1293                 ctr--;
1294                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1295         } while (ctr > 0);
1296 }
1297
1298 static int mipsxx_pmu_handle_shared_irq(void)
1299 {
1300         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1301         struct perf_sample_data data;
1302         unsigned int counters = mipspmu.num_counters;
1303         u64 counter;
1304         int handled = IRQ_NONE;
1305         struct pt_regs *regs;
1306
1307         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1308                 return handled;
1309         /*
1310          * First we pause the local counters, so that when we are locked
1311          * here, the counters are all paused. When it gets locked due to
1312          * perf_disable(), the timer interrupt handler will be delayed.
1313          *
1314          * See also mipsxx_pmu_start().
1315          */
1316         pause_local_counters();
1317 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1318         read_lock(&pmuint_rwlock);
1319 #endif
1320
1321         regs = get_irq_regs();
1322
1323         perf_sample_data_init(&data, 0, 0);
1324
1325         switch (counters) {
1326 #define HANDLE_COUNTER(n)                                               \
1327         case n + 1:                                                     \
1328                 if (test_bit(n, cpuc->used_mask)) {                     \
1329                         counter = mipspmu.read_counter(n);              \
1330                         if (counter & mipspmu.overflow) {               \
1331                                 handle_associated_event(cpuc, n, &data, regs); \
1332                                 handled = IRQ_HANDLED;                  \
1333                         }                                               \
1334                 }
1335         HANDLE_COUNTER(3)
1336         HANDLE_COUNTER(2)
1337         HANDLE_COUNTER(1)
1338         HANDLE_COUNTER(0)
1339         }
1340
1341         /*
1342          * Do all the work for the pending perf events. We can do this
1343          * in here because the performance counter interrupt is a regular
1344          * interrupt, not NMI.
1345          */
1346         if (handled == IRQ_HANDLED)
1347                 irq_work_run();
1348
1349 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1350         read_unlock(&pmuint_rwlock);
1351 #endif
1352         resume_local_counters();
1353         return handled;
1354 }
1355
1356 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1357 {
1358         return mipsxx_pmu_handle_shared_irq();
1359 }
1360
1361 /* 24K */
1362 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1363         ((b) == 0 || (b) == 1 || (b) == 11)
1364
1365 /* 34K */
1366 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1367         ((b) == 0 || (b) == 1 || (b) == 11)
1368 #ifdef CONFIG_MIPS_MT_SMP
1369 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1370         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1371          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1372          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1373          ((b) >= 64 && (b) <= 67))
1374 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1375 #endif
1376
1377 /* 74K */
1378 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1379         ((b) == 0 || (b) == 1)
1380
1381 /* 1004K */
1382 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1383         ((b) == 0 || (b) == 1 || (b) == 11)
1384 #ifdef CONFIG_MIPS_MT_SMP
1385 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1386         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1387          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1388          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1389          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1390          ((b) >= 64 && (b) <= 67))
1391 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1392 #endif
1393
1394 /* BMIPS5000 */
1395 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1396         ((b) == 0 || (b) == 1)
1397
1398
1399 /*
1400  * User can use 0-255 raw events, where 0-127 for the events of even
1401  * counters, and 128-255 for odd counters. Note that bit 7 is used to
1402  * indicate the parity. So, for example, when user wants to take the
1403  * Event Num of 15 for odd counters (by referring to the user manual),
1404  * then 128 needs to be added to 15 as the input for the event config,
1405  * i.e., 143 (0x8F) to be used.
1406  */
1407 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1408 {
1409         unsigned int raw_id = config & 0xff;
1410         unsigned int base_id = raw_id & 0x7f;
1411
1412         raw_event.event_id = base_id;
1413
1414         switch (current_cpu_type()) {
1415         case CPU_24K:
1416                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1417                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1418                 else
1419                         raw_event.cntr_mask =
1420                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1421 #ifdef CONFIG_MIPS_MT_SMP
1422                 /*
1423                  * This is actually doing nothing. Non-multithreading
1424                  * CPUs will not check and calculate the range.
1425                  */
1426                 raw_event.range = P;
1427 #endif
1428                 break;
1429         case CPU_34K:
1430                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1431                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1432                 else
1433                         raw_event.cntr_mask =
1434                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1435 #ifdef CONFIG_MIPS_MT_SMP
1436                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1437                         raw_event.range = P;
1438                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1439                         raw_event.range = V;
1440                 else
1441                         raw_event.range = T;
1442 #endif
1443                 break;
1444         case CPU_74K:
1445                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1446                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1447                 else
1448                         raw_event.cntr_mask =
1449                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1450 #ifdef CONFIG_MIPS_MT_SMP
1451                 raw_event.range = P;
1452 #endif
1453                 break;
1454         case CPU_1004K:
1455                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1456                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1457                 else
1458                         raw_event.cntr_mask =
1459                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1460 #ifdef CONFIG_MIPS_MT_SMP
1461                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1462                         raw_event.range = P;
1463                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1464                         raw_event.range = V;
1465                 else
1466                         raw_event.range = T;
1467 #endif
1468                 break;
1469         case CPU_BMIPS5000:
1470                 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1471                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1472                 else
1473                         raw_event.cntr_mask =
1474                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1475         }
1476
1477         return &raw_event;
1478 }
1479
1480 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1481 {
1482         unsigned int raw_id = config & 0xff;
1483         unsigned int base_id = raw_id & 0x7f;
1484
1485
1486         raw_event.cntr_mask = CNTR_ALL;
1487         raw_event.event_id = base_id;
1488
1489         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1490                 if (base_id > 0x42)
1491                         return ERR_PTR(-EOPNOTSUPP);
1492         } else {
1493                 if (base_id > 0x3a)
1494                         return ERR_PTR(-EOPNOTSUPP);
1495         }
1496
1497         switch (base_id) {
1498         case 0x00:
1499         case 0x0f:
1500         case 0x1e:
1501         case 0x1f:
1502         case 0x2f:
1503         case 0x34:
1504         case 0x3b ... 0x3f:
1505                 return ERR_PTR(-EOPNOTSUPP);
1506         default:
1507                 break;
1508         }
1509
1510         return &raw_event;
1511 }
1512
1513 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1514 {
1515         unsigned int raw_id = config & 0xff;
1516
1517         /* Only 1-63 are defined */
1518         if ((raw_id < 0x01) || (raw_id > 0x3f))
1519                 return ERR_PTR(-EOPNOTSUPP);
1520
1521         raw_event.cntr_mask = CNTR_ALL;
1522         raw_event.event_id = raw_id;
1523
1524         return &raw_event;
1525 }
1526
1527 static int __init
1528 init_hw_perf_events(void)
1529 {
1530         int counters, irq;
1531         int counter_bits;
1532
1533         pr_info("Performance counters: ");
1534
1535         counters = n_counters();
1536         if (counters == 0) {
1537                 pr_cont("No available PMU.\n");
1538                 return -ENODEV;
1539         }
1540
1541 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1542         cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1543         if (!cpu_has_mipsmt_pertccounters)
1544                 counters = counters_total_to_per_cpu(counters);
1545 #endif
1546
1547 #ifdef MSC01E_INT_BASE
1548         if (cpu_has_veic) {
1549                 /*
1550                  * Using platform specific interrupt controller defines.
1551                  */
1552                 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1553         } else {
1554 #endif
1555                 if ((cp0_perfcount_irq >= 0) &&
1556                                 (cp0_compare_irq != cp0_perfcount_irq))
1557                         irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1558                 else
1559                         irq = -1;
1560 #ifdef MSC01E_INT_BASE
1561         }
1562 #endif
1563
1564         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1565
1566         switch (current_cpu_type()) {
1567         case CPU_24K:
1568                 mipspmu.name = "mips/24K";
1569                 mipspmu.general_event_map = &mipsxxcore_event_map;
1570                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1571                 break;
1572         case CPU_34K:
1573                 mipspmu.name = "mips/34K";
1574                 mipspmu.general_event_map = &mipsxxcore_event_map;
1575                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1576                 break;
1577         case CPU_74K:
1578                 mipspmu.name = "mips/74K";
1579                 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1580                 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1581                 break;
1582         case CPU_1004K:
1583                 mipspmu.name = "mips/1004K";
1584                 mipspmu.general_event_map = &mipsxxcore_event_map;
1585                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1586                 break;
1587         case CPU_LOONGSON1:
1588                 mipspmu.name = "mips/loongson1";
1589                 mipspmu.general_event_map = &mipsxxcore_event_map;
1590                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1591                 break;
1592         case CPU_CAVIUM_OCTEON:
1593         case CPU_CAVIUM_OCTEON_PLUS:
1594         case CPU_CAVIUM_OCTEON2:
1595                 mipspmu.name = "octeon";
1596                 mipspmu.general_event_map = &octeon_event_map;
1597                 mipspmu.cache_event_map = &octeon_cache_map;
1598                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1599                 break;
1600         case CPU_BMIPS5000:
1601                 mipspmu.name = "BMIPS5000";
1602                 mipspmu.general_event_map = &bmips5000_event_map;
1603                 mipspmu.cache_event_map = &bmips5000_cache_map;
1604                 break;
1605         case CPU_XLP:
1606                 mipspmu.name = "xlp";
1607                 mipspmu.general_event_map = &xlp_event_map;
1608                 mipspmu.cache_event_map = &xlp_cache_map;
1609                 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1610                 break;
1611         default:
1612                 pr_cont("Either hardware does not support performance "
1613                         "counters, or not yet implemented.\n");
1614                 return -ENODEV;
1615         }
1616
1617         mipspmu.num_counters = counters;
1618         mipspmu.irq = irq;
1619
1620         if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1621                 mipspmu.max_period = (1ULL << 63) - 1;
1622                 mipspmu.valid_count = (1ULL << 63) - 1;
1623                 mipspmu.overflow = 1ULL << 63;
1624                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1625                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1626                 counter_bits = 64;
1627         } else {
1628                 mipspmu.max_period = (1ULL << 31) - 1;
1629                 mipspmu.valid_count = (1ULL << 31) - 1;
1630                 mipspmu.overflow = 1ULL << 31;
1631                 mipspmu.read_counter = mipsxx_pmu_read_counter;
1632                 mipspmu.write_counter = mipsxx_pmu_write_counter;
1633                 counter_bits = 32;
1634         }
1635
1636         on_each_cpu(reset_counters, (void *)(long)counters, 1);
1637
1638         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1639                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1640                 irq < 0 ? " (share with timer interrupt)" : "");
1641
1642         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1643
1644         return 0;
1645 }
1646 early_initcall(init_hw_perf_events);