Merge drm/drm-fixes into drm-misc-fixes
[platform/kernel/linux-starfive.git] / arch / mips / kernel / elf.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2014 Imagination Technologies
4  * Author: Paul Burton <paul.burton@mips.com>
5  */
6
7 #include <linux/binfmts.h>
8 #include <linux/elf.h>
9 #include <linux/export.h>
10 #include <linux/sched.h>
11
12 #include <asm/cpu-features.h>
13 #include <asm/cpu-info.h>
14
15 #ifdef CONFIG_MIPS_FP_SUPPORT
16
17 /* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
18 bool mips_use_nan_legacy;
19 bool mips_use_nan_2008;
20
21 /* FPU modes */
22 enum {
23         FP_FRE,
24         FP_FR0,
25         FP_FR1,
26 };
27
28 /**
29  * struct mode_req - ABI FPU mode requirements
30  * @single:     The program being loaded needs an FPU but it will only issue
31  *              single precision instructions meaning that it can execute in
32  *              either FR0 or FR1.
33  * @soft:       The soft(-float) requirement means that the program being
34  *              loaded needs has no FPU dependency at all (i.e. it has no
35  *              FPU instructions).
36  * @fr1:        The program being loaded depends on FPU being in FR=1 mode.
37  * @frdefault:  The program being loaded depends on the default FPU mode.
38  *              That is FR0 for O32 and FR1 for N32/N64.
39  * @fre:        The program being loaded depends on FPU with FRE=1. This mode is
40  *              a bridge which uses FR=1 whilst still being able to maintain
41  *              full compatibility with pre-existing code using the O32 FP32
42  *              ABI.
43  *
44  * More information about the FP ABIs can be found here:
45  *
46  * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
47  *
48  */
49
50 struct mode_req {
51         bool single;
52         bool soft;
53         bool fr1;
54         bool frdefault;
55         bool fre;
56 };
57
58 static const struct mode_req fpu_reqs[] = {
59         [MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
60         [MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
61         [MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
62         [MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
63         [MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
64         [MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
65         [MIPS_ABI_FP_64]     = { false, false, true,  false, false },
66         [MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
67 };
68
69 /*
70  * Mode requirements when .MIPS.abiflags is not present in the ELF.
71  * Not present means that everything is acceptable except FR1.
72  */
73 static struct mode_req none_req = { true, true, false, true, true };
74
75 int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
76                      bool is_interp, struct arch_elf_state *state)
77 {
78         union {
79                 struct elf32_hdr e32;
80                 struct elf64_hdr e64;
81         } *ehdr = _ehdr;
82         struct elf32_phdr *phdr32 = _phdr;
83         struct elf64_phdr *phdr64 = _phdr;
84         struct mips_elf_abiflags_v0 abiflags;
85         bool elf32;
86         u32 flags;
87         int ret;
88         loff_t pos;
89
90         elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
91         flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
92
93         /* Let's see if this is an O32 ELF */
94         if (elf32) {
95                 if (flags & EF_MIPS_FP64) {
96                         /*
97                          * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
98                          * later if needed
99                          */
100                         if (is_interp)
101                                 state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
102                         else
103                                 state->fp_abi = MIPS_ABI_FP_OLD_64;
104                 }
105                 if (phdr32->p_type != PT_MIPS_ABIFLAGS)
106                         return 0;
107
108                 if (phdr32->p_filesz < sizeof(abiflags))
109                         return -EINVAL;
110                 pos = phdr32->p_offset;
111         } else {
112                 if (phdr64->p_type != PT_MIPS_ABIFLAGS)
113                         return 0;
114                 if (phdr64->p_filesz < sizeof(abiflags))
115                         return -EINVAL;
116                 pos = phdr64->p_offset;
117         }
118
119         ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
120         if (ret < 0)
121                 return ret;
122         if (ret != sizeof(abiflags))
123                 return -EIO;
124
125         /* Record the required FP ABIs for use by mips_check_elf */
126         if (is_interp)
127                 state->interp_fp_abi = abiflags.fp_abi;
128         else
129                 state->fp_abi = abiflags.fp_abi;
130
131         return 0;
132 }
133
134 int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
135                    struct arch_elf_state *state)
136 {
137         union {
138                 struct elf32_hdr e32;
139                 struct elf64_hdr e64;
140         } *ehdr = _ehdr;
141         union {
142                 struct elf32_hdr e32;
143                 struct elf64_hdr e64;
144         } *iehdr = _interp_ehdr;
145         struct mode_req prog_req, interp_req;
146         int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
147         bool elf32;
148         u32 flags;
149
150         elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
151         flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
152
153         /*
154          * Determine the NaN personality, reject the binary if not allowed.
155          * Also ensure that any interpreter matches the executable.
156          */
157         if (flags & EF_MIPS_NAN2008) {
158                 if (mips_use_nan_2008)
159                         state->nan_2008 = 1;
160                 else
161                         return -ENOEXEC;
162         } else {
163                 if (mips_use_nan_legacy)
164                         state->nan_2008 = 0;
165                 else
166                         return -ENOEXEC;
167         }
168         if (has_interpreter) {
169                 bool ielf32;
170                 u32 iflags;
171
172                 ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
173                 iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
174
175                 if ((flags ^ iflags) & EF_MIPS_NAN2008)
176                         return -ELIBBAD;
177         }
178
179         if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
180                 return 0;
181
182         fp_abi = state->fp_abi;
183
184         if (has_interpreter) {
185                 interp_fp_abi = state->interp_fp_abi;
186
187                 abi0 = min(fp_abi, interp_fp_abi);
188                 abi1 = max(fp_abi, interp_fp_abi);
189         } else {
190                 abi0 = abi1 = fp_abi;
191         }
192
193         if (elf32 && !(flags & EF_MIPS_ABI2)) {
194                 /* Default to a mode capable of running code expecting FR=0 */
195                 state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
196
197                 /* Allow all ABIs we know about */
198                 max_abi = MIPS_ABI_FP_64A;
199         } else {
200                 /* MIPS64 code always uses FR=1, thus the default is easy */
201                 state->overall_fp_mode = FP_FR1;
202
203                 /* Disallow access to the various FPXX & FP64 ABIs */
204                 max_abi = MIPS_ABI_FP_SOFT;
205         }
206
207         if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
208             (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
209                 return -ELIBBAD;
210
211         /* It's time to determine the FPU mode requirements */
212         prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
213         interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
214
215         /*
216          * Check whether the program's and interp's ABIs have a matching FPU
217          * mode requirement.
218          */
219         prog_req.single = interp_req.single && prog_req.single;
220         prog_req.soft = interp_req.soft && prog_req.soft;
221         prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
222         prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
223         prog_req.fre = interp_req.fre && prog_req.fre;
224
225         /*
226          * Determine the desired FPU mode
227          *
228          * Decision making:
229          *
230          * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
231          *   means that we have a combination of program and interpreter
232          *   that inherently require the hybrid FP mode.
233          * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
234          *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
235          *   instructions so we don't care about the mode. We will simply use
236          *   the one preferred by the hardware. In fpxx case, that ABI can
237          *   handle both FR=1 and FR=0, so, again, we simply choose the one
238          *   preferred by the hardware. Next, if we only use single-precision
239          *   FPU instructions, and the default ABI FPU mode is not good
240          *   (ie single + any ABI combination), we set again the FPU mode to the
241          *   one is preferred by the hardware. Next, if we know that the code
242          *   will only use single-precision instructions, shown by single being
243          *   true but frdefault being false, then we again set the FPU mode to
244          *   the one that is preferred by the hardware.
245          * - We want FP_FR1 if that's the only matching mode and the default one
246          *   is not good.
247          * - Return with -ELIBADD if we can't find a matching FPU mode.
248          */
249         if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
250                 state->overall_fp_mode = FP_FRE;
251         else if ((prog_req.fr1 && prog_req.frdefault) ||
252                  (prog_req.single && !prog_req.frdefault))
253                 /* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
254                 state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
255                                           cpu_has_mips_r2_r6) ?
256                                           FP_FR1 : FP_FR0;
257         else if (prog_req.fr1)
258                 state->overall_fp_mode = FP_FR1;
259         else  if (!prog_req.fre && !prog_req.frdefault &&
260                   !prog_req.fr1 && !prog_req.single && !prog_req.soft)
261                 return -ELIBBAD;
262
263         return 0;
264 }
265
266 static inline void set_thread_fp_mode(int hybrid, int regs32)
267 {
268         if (hybrid)
269                 set_thread_flag(TIF_HYBRID_FPREGS);
270         else
271                 clear_thread_flag(TIF_HYBRID_FPREGS);
272         if (regs32)
273                 set_thread_flag(TIF_32BIT_FPREGS);
274         else
275                 clear_thread_flag(TIF_32BIT_FPREGS);
276 }
277
278 void mips_set_personality_fp(struct arch_elf_state *state)
279 {
280         /*
281          * This function is only ever called for O32 ELFs so we should
282          * not be worried about N32/N64 binaries.
283          */
284
285         if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
286                 return;
287
288         switch (state->overall_fp_mode) {
289         case FP_FRE:
290                 set_thread_fp_mode(1, 0);
291                 break;
292         case FP_FR0:
293                 set_thread_fp_mode(0, 1);
294                 break;
295         case FP_FR1:
296                 set_thread_fp_mode(0, 0);
297                 break;
298         default:
299                 BUG();
300         }
301 }
302
303 /*
304  * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
305  * in FCSR according to the ELF NaN personality.
306  */
307 void mips_set_personality_nan(struct arch_elf_state *state)
308 {
309         struct cpuinfo_mips *c = &boot_cpu_data;
310         struct task_struct *t = current;
311
312         t->thread.fpu.fcr31 = c->fpu_csr31;
313         switch (state->nan_2008) {
314         case 0:
315                 break;
316         case 1:
317                 if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
318                         t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
319                 if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
320                         t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
321                 break;
322         default:
323                 BUG();
324         }
325 }
326
327 #endif /* CONFIG_MIPS_FP_SUPPORT */
328
329 int mips_elf_read_implies_exec(void *elf_ex, int exstack)
330 {
331         /*
332          * Set READ_IMPLIES_EXEC only on non-NX systems that
333          * do not request a specific state via PT_GNU_STACK.
334          */
335         return (!cpu_has_rixi && exstack == EXSTACK_DEFAULT);
336 }
337 EXPORT_SYMBOL(mips_elf_read_implies_exec);