5 * In contrary to the Amiga and Atari platforms, the Mac hardware seems to
6 * exclusively use the autovector interrupts (the 'generic level0-level7'
7 * interrupts with exception vectors 0x19-0x1f). The following interrupt levels
10 * - slot 0: one second interrupt (CA2)
11 * - slot 1: VBlank (CA1)
12 * - slot 2: ADB data ready (SR full)
13 * - slot 3: ADB data (CB2)
14 * - slot 4: ADB clock (CB1)
17 * - slot 7: status of IRQ; signals 'any enabled int.'
20 * - slot 0: SCSI DRQ (CA2)
21 * - slot 1: NUBUS IRQ (CA1) need to read port A to find which
22 * - slot 2: /EXP IRQ (only on IIci)
23 * - slot 3: SCSI IRQ (CB2)
24 * - slot 4: ASC IRQ (CB1)
25 * - slot 5: timer 2 (not on IIci)
26 * - slot 6: timer 1 (not on IIci)
27 * - slot 7: status of IRQ; signals 'any enabled int.'
29 * 2 - OSS (IIfx only?)
30 * - slot 0: SCSI interrupt
31 * - slot 1: Sound interrupt
33 * Levels 3-6 vary by machine type. For VIA or RBV Macintoshes:
37 * 4 - SCC (slot number determined by reading RR3 on the SSC itself)
38 * - slot 1: SCC channel A
39 * - slot 2: SCC channel B
42 * [serial errors or special conditions seem to raise level 6
43 * interrupts on some models (LC4xx?)]
47 * For OSS Macintoshes (IIfx only at this point):
58 * - slot 1: SCC channel A
59 * - slot 2: SCC channel B
65 * For PSC Macintoshes (660AV, 840AV):
71 * - slot 1: SCC channel A interrupt
72 * - slot 2: SCC channel B interrupt
79 * Finally we have good 'ole level 7, the non-maskable interrupt:
81 * 7 - NMI (programmer's switch on the back of some Macs)
82 * Also RAM parity error on models which support it (IIc, IIfx?)
84 * The current interrupt logic looks something like this:
86 * - We install dispatchers for the autovector interrupts (1-7). These
87 * dispatchers are responsible for querying the hardware (the
88 * VIA/RBV/OSS/PSC chips) to determine the actual interrupt source. Using
89 * this information a machspec interrupt number is generated by placing the
90 * index of the interrupt hardware into the low three bits and the original
91 * autovector interrupt number in the upper 5 bits. The handlers for the
92 * resulting machspec interrupt are then called.
94 * - Nubus is a special case because its interrupts are hidden behind two
95 * layers of hardware. Nubus interrupts come in as index 1 on VIA #2,
96 * which translates to IRQ number 17. In this spot we install _another_
97 * dispatcher. This dispatcher finds the interrupting slot number (9-F) and
98 * then forms a new machspec interrupt number as above with the slot number
99 * minus 9 in the low three bits and the pseudo-level 7 in the upper five
100 * bits. The handlers for this new machspec interrupt number are then
101 * called. This puts Nubus interrupts into the range 56-62.
103 * - The Baboon interrupts (used on some PowerBooks) are an even more special
104 * case. They're hidden behind the Nubus slot $C interrupt thus adding a
105 * third layer of indirection. Why oh why did the Apple engineers do that?
107 * - We support "fast" and "slow" handlers, just like the Amiga port. The
108 * fast handlers are called first and with all interrupts disabled. They
109 * are expected to execute quickly (hence the name). The slow handlers are
110 * called last with interrupts enabled and the interrupt level restored.
111 * They must therefore be reentrant.
117 #include <linux/module.h>
118 #include <linux/types.h>
119 #include <linux/kernel.h>
120 #include <linux/sched.h>
121 #include <linux/kernel_stat.h>
122 #include <linux/interrupt.h> /* for intr_count */
123 #include <linux/delay.h>
124 #include <linux/seq_file.h>
126 #include <asm/system.h>
128 #include <asm/traps.h>
129 #include <asm/bootinfo.h>
130 #include <asm/macintosh.h>
131 #include <asm/mac_via.h>
132 #include <asm/mac_psc.h>
133 #include <asm/hwtest.h>
134 #include <asm/errno.h>
135 #include <asm/macints.h>
136 #include <asm/irq_regs.h>
137 #include <asm/mac_oss.h>
139 #define DEBUG_SPURIOUS
142 /* SCC interrupt mask */
150 extern void via_register_interrupts(void);
151 extern void via_irq_enable(int);
152 extern void via_irq_disable(int);
153 extern void via_irq_clear(int);
154 extern int via_irq_pending(int);
160 extern void oss_register_interrupts(void);
161 extern void oss_irq_enable(int);
162 extern void oss_irq_disable(int);
163 extern void oss_irq_clear(int);
164 extern int oss_irq_pending(int);
170 extern void psc_register_interrupts(void);
171 extern void psc_irq_enable(int);
172 extern void psc_irq_disable(int);
173 extern void psc_irq_clear(int);
174 extern int psc_irq_pending(int);
180 extern void iop_register_interrupts(void);
186 extern int baboon_present;
188 extern void baboon_register_interrupts(void);
189 extern void baboon_irq_enable(int);
190 extern void baboon_irq_disable(int);
191 extern void baboon_irq_clear(int);
194 * SCC interrupt routines
197 static void scc_irq_enable(unsigned int);
198 static void scc_irq_disable(unsigned int);
201 * console_loglevel determines NMI handler function
204 irqreturn_t mac_nmi_handler(int, void *);
205 irqreturn_t mac_debug_handler(int, void *);
207 /* #define DEBUG_MACINTS */
209 void mac_enable_irq(unsigned int irq);
210 void mac_disable_irq(unsigned int irq);
212 static struct irq_controller mac_irq_controller = {
214 .lock = __SPIN_LOCK_UNLOCKED(mac_irq_controller.lock),
215 .enable = mac_enable_irq,
216 .disable = mac_disable_irq,
219 void __init mac_init_IRQ(void)
222 printk("mac_init_IRQ(): Setting things up...\n");
226 m68k_setup_irq_controller(&mac_irq_controller, IRQ_USER,
227 NUM_MAC_SOURCES - IRQ_USER);
228 /* Make sure the SONIC interrupt is cleared or things get ugly */
230 printk("Killing onboard sonic... ");
231 /* This address should hopefully be mapped already */
232 if (hwreg_present((void*)(0x50f0a000))) {
233 *(long *)(0x50f0a014) = 0x7fffL;
234 *(long *)(0x50f0a010) = 0L;
237 #endif /* SHUTUP_SONIC */
240 * Now register the handlers for the master IRQ handlers
241 * at levels 1-7. Most of the work is done elsewhere.
245 oss_register_interrupts();
247 via_register_interrupts();
249 psc_register_interrupts();
251 baboon_register_interrupts();
252 iop_register_interrupts();
253 if (request_irq(IRQ_AUTO_7, mac_nmi_handler, 0, "NMI",
255 pr_err("Couldn't register NMI\n");
257 printk("mac_init_IRQ(): Done!\n");
262 * mac_enable_irq - enable an interrupt source
263 * mac_disable_irq - disable an interrupt source
264 * mac_clear_irq - clears a pending interrupt
265 * mac_pending_irq - Returns the pending status of an IRQ (nonzero = pending)
267 * These routines are just dispatchers to the VIA/OSS/PSC routines.
270 void mac_enable_irq(unsigned int irq)
272 int irq_src = IRQ_SRC(irq);
291 else if (oss_present)
293 else if (irq_src == 4)
298 baboon_irq_enable(irq);
303 void mac_disable_irq(unsigned int irq)
305 int irq_src = IRQ_SRC(irq);
309 via_irq_disable(irq);
314 oss_irq_disable(irq);
316 via_irq_disable(irq);
323 psc_irq_disable(irq);
324 else if (oss_present)
325 oss_irq_disable(irq);
326 else if (irq_src == 4)
327 scc_irq_disable(irq);
331 baboon_irq_disable(irq);
336 void mac_clear_irq(unsigned int irq)
338 switch(IRQ_SRC(irq)) {
355 else if (oss_present)
360 baboon_irq_clear(irq);
365 int mac_irq_pending(unsigned int irq)
367 switch(IRQ_SRC(irq)) {
369 return via_irq_pending(irq);
373 return oss_irq_pending(irq);
375 return via_irq_pending(irq);
381 return psc_irq_pending(irq);
382 else if (oss_present)
383 return oss_irq_pending(irq);
387 EXPORT_SYMBOL(mac_irq_pending);
389 static int num_debug[8];
391 irqreturn_t mac_debug_handler(int irq, void *dev_id)
393 if (num_debug[irq] < 10) {
394 printk("DEBUG: Unexpected IRQ %d\n", irq);
401 static volatile int nmi_hold;
403 irqreturn_t mac_nmi_handler(int irq, void *dev_id)
407 * generate debug output on NMI switch if 'debug' kernel option given
408 * (only works with Penguin!)
412 for (i=0; i<100; i++)
417 printk("... pausing, press NMI to resume ...");
425 while (nmi_hold == 1)
428 if (console_loglevel >= 8) {
430 struct pt_regs *fp = get_irq_regs();
432 printk("PC: %08lx\nSR: %04x SP: %p\n", fp->pc, fp->sr, fp);
433 printk("d0: %08lx d1: %08lx d2: %08lx d3: %08lx\n",
434 fp->d0, fp->d1, fp->d2, fp->d3);
435 printk("d4: %08lx d5: %08lx a0: %08lx a1: %08lx\n",
436 fp->d4, fp->d5, fp->a0, fp->a1);
438 if (STACK_MAGIC != *(unsigned long *)current->kernel_stack_page)
439 printk("Corrupted stack page\n");
440 printk("Process %s (pid: %d, stackpage=%08lx)\n",
441 current->comm, current->pid, current->kernel_stack_page);
443 dump_stack((struct frame *)fp);
445 /* printk("NMI "); */
453 * Simple routines for masking and unmasking
454 * SCC interrupts in cases where this can't be
455 * done in hardware (only the PSC can do that.)
458 static void scc_irq_enable(unsigned int irq)
460 int irq_idx = IRQ_IDX(irq);
462 scc_mask |= (1 << irq_idx);
465 static void scc_irq_disable(unsigned int irq)
467 int irq_idx = IRQ_IDX(irq);
469 scc_mask &= ~(1 << irq_idx);
473 * SCC master interrupt handler. We have to do a bit of magic here
474 * to figure out what channel gave us the interrupt; putting this
475 * here is cleaner than hacking it into drivers/char/macserial.c.
478 void mac_scc_dispatch(int irq, void *dev_id)
480 volatile unsigned char *scc = (unsigned char *) mac_bi_data.sccbase + 2;
484 /* Read RR3 from the chip. Always do this on channel A */
485 /* This must be an atomic operation so disable irqs. */
487 local_irq_save(flags);
490 local_irq_restore(flags);
492 /* Now dispatch. Bits 0-2 are for channel B and */
493 /* bits 3-5 are for channel A. We can safely */
494 /* ignore the remaining bits here. */
496 /* Note that we're ignoring scc_mask for now. */
497 /* If we actually mask the ints then we tend to */
498 /* get hammered by very persistent SCC irqs, */
499 /* and since they're autovector interrupts they */
500 /* pretty much kill the system. */
503 m68k_handle_int(IRQ_SCCA);
505 m68k_handle_int(IRQ_SCCB);