LoongArch: Parse MADT to get multi-processor information
[platform/kernel/linux-starfive.git] / arch / loongarch / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 2000, 2001 Kanoj Sarcar
7  * Copyright (C) 2000, 2001 Ralf Baechle
8  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
9  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
10  */
11 #include <linux/cpu.h>
12 #include <linux/cpumask.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/seq_file.h>
16 #include <linux/smp.h>
17 #include <linux/threads.h>
18 #include <linux/export.h>
19 #include <linux/time.h>
20 #include <linux/tracepoint.h>
21 #include <linux/sched/hotplug.h>
22 #include <linux/sched/task_stack.h>
23
24 #include <asm/cpu.h>
25 #include <asm/idle.h>
26 #include <asm/loongson.h>
27 #include <asm/mmu_context.h>
28 #include <asm/numa.h>
29 #include <asm/processor.h>
30 #include <asm/setup.h>
31 #include <asm/time.h>
32
33 int __cpu_number_map[NR_CPUS];   /* Map physical to logical */
34 EXPORT_SYMBOL(__cpu_number_map);
35
36 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
37 EXPORT_SYMBOL(__cpu_logical_map);
38
39 /* Number of threads (siblings) per CPU core */
40 int smp_num_siblings = 1;
41 EXPORT_SYMBOL(smp_num_siblings);
42
43 /* Representing the threads (siblings) of each logical CPU */
44 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
45 EXPORT_SYMBOL(cpu_sibling_map);
46
47 /* Representing the core map of multi-core chips of each logical CPU */
48 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
49 EXPORT_SYMBOL(cpu_core_map);
50
51 static DECLARE_COMPLETION(cpu_starting);
52 static DECLARE_COMPLETION(cpu_running);
53
54 /*
55  * A logcal cpu mask containing only one VPE per core to
56  * reduce the number of IPIs on large MT systems.
57  */
58 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
59 EXPORT_SYMBOL(cpu_foreign_map);
60
61 /* representing cpus for which sibling maps can be computed */
62 static cpumask_t cpu_sibling_setup_map;
63
64 /* representing cpus for which core maps can be computed */
65 static cpumask_t cpu_core_setup_map;
66
67 struct secondary_data cpuboot_data;
68 static DEFINE_PER_CPU(int, cpu_state);
69
70 enum ipi_msg_type {
71         IPI_RESCHEDULE,
72         IPI_CALL_FUNCTION,
73 };
74
75 static const char *ipi_types[NR_IPI] __tracepoint_string = {
76         [IPI_RESCHEDULE] = "Rescheduling interrupts",
77         [IPI_CALL_FUNCTION] = "Function call interrupts",
78 };
79
80 void show_ipi_list(struct seq_file *p, int prec)
81 {
82         unsigned int cpu, i;
83
84         for (i = 0; i < NR_IPI; i++) {
85                 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
86                 for_each_online_cpu(cpu)
87                         seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
88                 seq_printf(p, " LoongArch  %d  %s\n", i + 1, ipi_types[i]);
89         }
90 }
91
92 /* Send mailbox buffer via Mail_Send */
93 static void csr_mail_send(uint64_t data, int cpu, int mailbox)
94 {
95         uint64_t val;
96
97         /* Send high 32 bits */
98         val = IOCSR_MBUF_SEND_BLOCKING;
99         val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
100         val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
101         val |= (data & IOCSR_MBUF_SEND_H32_MASK);
102         iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
103
104         /* Send low 32 bits */
105         val = IOCSR_MBUF_SEND_BLOCKING;
106         val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
107         val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
108         val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
109         iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
110 };
111
112 static u32 ipi_read_clear(int cpu)
113 {
114         u32 action;
115
116         /* Load the ipi register to figure out what we're supposed to do */
117         action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
118         /* Clear the ipi register to clear the interrupt */
119         iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
120         smp_mb();
121
122         return action;
123 }
124
125 static void ipi_write_action(int cpu, u32 action)
126 {
127         unsigned int irq = 0;
128
129         while ((irq = ffs(action))) {
130                 uint32_t val = IOCSR_IPI_SEND_BLOCKING;
131
132                 val |= (irq - 1);
133                 val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
134                 iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
135                 action &= ~BIT(irq - 1);
136         }
137 }
138
139 void loongson3_send_ipi_single(int cpu, unsigned int action)
140 {
141         ipi_write_action(cpu_logical_map(cpu), (u32)action);
142 }
143
144 void loongson3_send_ipi_mask(const struct cpumask *mask, unsigned int action)
145 {
146         unsigned int i;
147
148         for_each_cpu(i, mask)
149                 ipi_write_action(cpu_logical_map(i), (u32)action);
150 }
151
152 irqreturn_t loongson3_ipi_interrupt(int irq, void *dev)
153 {
154         unsigned int action;
155         unsigned int cpu = smp_processor_id();
156
157         action = ipi_read_clear(cpu_logical_map(cpu));
158
159         if (action & SMP_RESCHEDULE) {
160                 scheduler_ipi();
161                 per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
162         }
163
164         if (action & SMP_CALL_FUNCTION) {
165                 generic_smp_call_function_interrupt();
166                 per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
167         }
168
169         return IRQ_HANDLED;
170 }
171
172 void __init loongson3_smp_setup(void)
173 {
174         cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
175         cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
176
177         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
178         pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
179 }
180
181 void __init loongson3_prepare_cpus(unsigned int max_cpus)
182 {
183         int i = 0;
184
185         for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
186                 set_cpu_present(i, true);
187                 csr_mail_send(0, __cpu_logical_map[i], 0);
188         }
189
190         per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
191 }
192
193 /*
194  * Setup the PC, SP, and TP of a secondary processor and start it running!
195  */
196 void loongson3_boot_secondary(int cpu, struct task_struct *idle)
197 {
198         unsigned long entry;
199
200         pr_info("Booting CPU#%d...\n", cpu);
201
202         entry = __pa_symbol((unsigned long)&smpboot_entry);
203         cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
204         cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
205
206         csr_mail_send(entry, cpu_logical_map(cpu), 0);
207
208         loongson3_send_ipi_single(cpu, SMP_BOOT_CPU);
209 }
210
211 /*
212  * SMP init and finish on secondary CPUs
213  */
214 void loongson3_init_secondary(void)
215 {
216         unsigned int cpu = smp_processor_id();
217         unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
218                              ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
219
220         change_csr_ecfg(ECFG0_IM, imask);
221
222         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
223
224 #ifdef CONFIG_NUMA
225         numa_add_cpu(cpu);
226 #endif
227         per_cpu(cpu_state, cpu) = CPU_ONLINE;
228         cpu_data[cpu].core =
229                      cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
230         cpu_data[cpu].package =
231                      cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
232 }
233
234 void loongson3_smp_finish(void)
235 {
236         local_irq_enable();
237         iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
238         pr_info("CPU#%d finished\n", smp_processor_id());
239 }
240
241 #ifdef CONFIG_HOTPLUG_CPU
242
243 static bool io_master(int cpu)
244 {
245         return test_bit(cpu, &loongson_sysconf.cores_io_master);
246 }
247
248 int loongson3_cpu_disable(void)
249 {
250         unsigned long flags;
251         unsigned int cpu = smp_processor_id();
252
253         if (io_master(cpu))
254                 return -EBUSY;
255
256 #ifdef CONFIG_NUMA
257         numa_remove_cpu(cpu);
258 #endif
259         set_cpu_online(cpu, false);
260         calculate_cpu_foreign_map();
261         local_irq_save(flags);
262         irq_migrate_all_off_this_cpu();
263         clear_csr_ecfg(ECFG0_IM);
264         local_irq_restore(flags);
265         local_flush_tlb_all();
266
267         return 0;
268 }
269
270 void loongson3_cpu_die(unsigned int cpu)
271 {
272         while (per_cpu(cpu_state, cpu) != CPU_DEAD)
273                 cpu_relax();
274
275         mb();
276 }
277
278 void play_dead(void)
279 {
280         register uint64_t addr;
281         register void (*init_fn)(void);
282
283         idle_task_exit();
284         local_irq_enable();
285         set_csr_ecfg(ECFGF_IPI);
286         __this_cpu_write(cpu_state, CPU_DEAD);
287
288         __smp_mb();
289         do {
290                 __asm__ __volatile__("idle 0\n\t");
291                 addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
292         } while (addr == 0);
293
294         init_fn = (void *)TO_CACHE(addr);
295         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
296
297         init_fn();
298         unreachable();
299 }
300
301 #endif
302
303 /*
304  * Power management
305  */
306 #ifdef CONFIG_PM
307
308 static int loongson3_ipi_suspend(void)
309 {
310         return 0;
311 }
312
313 static void loongson3_ipi_resume(void)
314 {
315         iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
316 }
317
318 static struct syscore_ops loongson3_ipi_syscore_ops = {
319         .resume         = loongson3_ipi_resume,
320         .suspend        = loongson3_ipi_suspend,
321 };
322
323 /*
324  * Enable boot cpu ipi before enabling nonboot cpus
325  * during syscore_resume.
326  */
327 static int __init ipi_pm_init(void)
328 {
329         register_syscore_ops(&loongson3_ipi_syscore_ops);
330         return 0;
331 }
332
333 core_initcall(ipi_pm_init);
334 #endif
335
336 static inline void set_cpu_sibling_map(int cpu)
337 {
338         int i;
339
340         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
341
342         if (smp_num_siblings <= 1)
343                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
344         else {
345                 for_each_cpu(i, &cpu_sibling_setup_map) {
346                         if (cpus_are_siblings(cpu, i)) {
347                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
348                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
349                         }
350                 }
351         }
352 }
353
354 static inline void set_cpu_core_map(int cpu)
355 {
356         int i;
357
358         cpumask_set_cpu(cpu, &cpu_core_setup_map);
359
360         for_each_cpu(i, &cpu_core_setup_map) {
361                 if (cpu_data[cpu].package == cpu_data[i].package) {
362                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
363                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
364                 }
365         }
366 }
367
368 /*
369  * Calculate a new cpu_foreign_map mask whenever a
370  * new cpu appears or disappears.
371  */
372 void calculate_cpu_foreign_map(void)
373 {
374         int i, k, core_present;
375         cpumask_t temp_foreign_map;
376
377         /* Re-calculate the mask */
378         cpumask_clear(&temp_foreign_map);
379         for_each_online_cpu(i) {
380                 core_present = 0;
381                 for_each_cpu(k, &temp_foreign_map)
382                         if (cpus_are_siblings(i, k))
383                                 core_present = 1;
384                 if (!core_present)
385                         cpumask_set_cpu(i, &temp_foreign_map);
386         }
387
388         for_each_online_cpu(i)
389                 cpumask_andnot(&cpu_foreign_map[i],
390                                &temp_foreign_map, &cpu_sibling_map[i]);
391 }
392
393 /* Preload SMP state for boot cpu */
394 void smp_prepare_boot_cpu(void)
395 {
396         unsigned int cpu, node, rr_node;
397
398         set_cpu_possible(0, true);
399         set_cpu_online(0, true);
400         set_my_cpu_offset(per_cpu_offset(0));
401
402         rr_node = first_node(node_online_map);
403         for_each_possible_cpu(cpu) {
404                 node = early_cpu_to_node(cpu);
405
406                 /*
407                  * The mapping between present cpus and nodes has been
408                  * built during MADT and SRAT parsing.
409                  *
410                  * If possible cpus = present cpus here, early_cpu_to_node
411                  * will return valid node.
412                  *
413                  * If possible cpus > present cpus here (e.g. some possible
414                  * cpus will be added by cpu-hotplug later), for possible but
415                  * not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
416                  * and we just map them to online nodes in round-robin way.
417                  * Once hotplugged, new correct mapping will be built for them.
418                  */
419                 if (node != NUMA_NO_NODE)
420                         set_cpu_numa_node(cpu, node);
421                 else {
422                         set_cpu_numa_node(cpu, rr_node);
423                         rr_node = next_node_in(rr_node, node_online_map);
424                 }
425         }
426 }
427
428 /* called from main before smp_init() */
429 void __init smp_prepare_cpus(unsigned int max_cpus)
430 {
431         init_new_context(current, &init_mm);
432         current_thread_info()->cpu = 0;
433         loongson3_prepare_cpus(max_cpus);
434         set_cpu_sibling_map(0);
435         set_cpu_core_map(0);
436         calculate_cpu_foreign_map();
437 #ifndef CONFIG_HOTPLUG_CPU
438         init_cpu_present(cpu_possible_mask);
439 #endif
440 }
441
442 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
443 {
444         loongson3_boot_secondary(cpu, tidle);
445
446         /* Wait for CPU to start and be ready to sync counters */
447         if (!wait_for_completion_timeout(&cpu_starting,
448                                          msecs_to_jiffies(5000))) {
449                 pr_crit("CPU%u: failed to start\n", cpu);
450                 return -EIO;
451         }
452
453         /* Wait for CPU to finish startup & mark itself online before return */
454         wait_for_completion(&cpu_running);
455
456         return 0;
457 }
458
459 /*
460  * First C code run on the secondary CPUs after being started up by
461  * the master.
462  */
463 asmlinkage void start_secondary(void)
464 {
465         unsigned int cpu;
466
467         sync_counter();
468         cpu = smp_processor_id();
469         set_my_cpu_offset(per_cpu_offset(cpu));
470
471         cpu_probe();
472         constant_clockevent_init();
473         loongson3_init_secondary();
474
475         set_cpu_sibling_map(cpu);
476         set_cpu_core_map(cpu);
477
478         notify_cpu_starting(cpu);
479
480         /* Notify boot CPU that we're starting */
481         complete(&cpu_starting);
482
483         /* The CPU is running, now mark it online */
484         set_cpu_online(cpu, true);
485
486         calculate_cpu_foreign_map();
487
488         /*
489          * Notify boot CPU that we're up & online and it can safely return
490          * from __cpu_up()
491          */
492         complete(&cpu_running);
493
494         /*
495          * irq will be enabled in loongson3_smp_finish(), enabling it too
496          * early is dangerous.
497          */
498         WARN_ON_ONCE(!irqs_disabled());
499         loongson3_smp_finish();
500
501         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
502 }
503
504 void __init smp_cpus_done(unsigned int max_cpus)
505 {
506 }
507
508 static void stop_this_cpu(void *dummy)
509 {
510         set_cpu_online(smp_processor_id(), false);
511         calculate_cpu_foreign_map();
512         local_irq_disable();
513         while (true);
514 }
515
516 void smp_send_stop(void)
517 {
518         smp_call_function(stop_this_cpu, NULL, 0);
519 }
520
521 int setup_profiling_timer(unsigned int multiplier)
522 {
523         return 0;
524 }
525
526 static void flush_tlb_all_ipi(void *info)
527 {
528         local_flush_tlb_all();
529 }
530
531 void flush_tlb_all(void)
532 {
533         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
534 }
535
536 static void flush_tlb_mm_ipi(void *mm)
537 {
538         local_flush_tlb_mm((struct mm_struct *)mm);
539 }
540
541 void flush_tlb_mm(struct mm_struct *mm)
542 {
543         if (atomic_read(&mm->mm_users) == 0)
544                 return;         /* happens as a result of exit_mmap() */
545
546         preempt_disable();
547
548         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
549                 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
550         } else {
551                 unsigned int cpu;
552
553                 for_each_online_cpu(cpu) {
554                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
555                                 cpu_context(cpu, mm) = 0;
556                 }
557                 local_flush_tlb_mm(mm);
558         }
559
560         preempt_enable();
561 }
562
563 struct flush_tlb_data {
564         struct vm_area_struct *vma;
565         unsigned long addr1;
566         unsigned long addr2;
567 };
568
569 static void flush_tlb_range_ipi(void *info)
570 {
571         struct flush_tlb_data *fd = info;
572
573         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
574 }
575
576 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
577 {
578         struct mm_struct *mm = vma->vm_mm;
579
580         preempt_disable();
581         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
582                 struct flush_tlb_data fd = {
583                         .vma = vma,
584                         .addr1 = start,
585                         .addr2 = end,
586                 };
587
588                 on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
589         } else {
590                 unsigned int cpu;
591
592                 for_each_online_cpu(cpu) {
593                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
594                                 cpu_context(cpu, mm) = 0;
595                 }
596                 local_flush_tlb_range(vma, start, end);
597         }
598         preempt_enable();
599 }
600
601 static void flush_tlb_kernel_range_ipi(void *info)
602 {
603         struct flush_tlb_data *fd = info;
604
605         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
606 }
607
608 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
609 {
610         struct flush_tlb_data fd = {
611                 .addr1 = start,
612                 .addr2 = end,
613         };
614
615         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
616 }
617
618 static void flush_tlb_page_ipi(void *info)
619 {
620         struct flush_tlb_data *fd = info;
621
622         local_flush_tlb_page(fd->vma, fd->addr1);
623 }
624
625 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
626 {
627         preempt_disable();
628         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
629                 struct flush_tlb_data fd = {
630                         .vma = vma,
631                         .addr1 = page,
632                 };
633
634                 on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
635         } else {
636                 unsigned int cpu;
637
638                 for_each_online_cpu(cpu) {
639                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
640                                 cpu_context(cpu, vma->vm_mm) = 0;
641                 }
642                 local_flush_tlb_page(vma, page);
643         }
644         preempt_enable();
645 }
646 EXPORT_SYMBOL(flush_tlb_page);
647
648 static void flush_tlb_one_ipi(void *info)
649 {
650         unsigned long vaddr = (unsigned long) info;
651
652         local_flush_tlb_one(vaddr);
653 }
654
655 void flush_tlb_one(unsigned long vaddr)
656 {
657         on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
658 }
659 EXPORT_SYMBOL(flush_tlb_one);