2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1998-2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Stephane Eranian <eranian@hpl.hp.com>
9 * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10 * Copyright (C) 1999 VA Linux Systems
11 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12 * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
14 * Routines used by ia64 machines with contiguous (or virtually contiguous)
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/memblock.h>
21 #include <linux/nmi.h>
22 #include <linux/swap.h>
24 #include <asm/meminit.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/sections.h>
30 #ifdef CONFIG_VIRTUAL_MEM_MAP
31 static unsigned long max_gap;
35 * show_mem - give short summary of memory stats
37 * Shows a simple page count of reserved and used pages in the system.
38 * For discontig machines, it does this on a per-pgdat basis.
40 void show_mem(unsigned int filter)
42 int i, total_reserved = 0;
43 int total_shared = 0, total_cached = 0;
44 unsigned long total_present = 0;
47 printk(KERN_INFO "Mem-info:\n");
48 show_free_areas(filter);
49 printk(KERN_INFO "Node memory in pages:\n");
50 if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
52 for_each_online_pgdat(pgdat) {
53 unsigned long present;
55 int shared = 0, cached = 0, reserved = 0;
56 int nid = pgdat->node_id;
58 if (skip_free_areas_node(filter, nid))
60 pgdat_resize_lock(pgdat, &flags);
61 present = pgdat->node_present_pages;
62 for(i = 0; i < pgdat->node_spanned_pages; i++) {
64 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
66 if (pfn_valid(pgdat->node_start_pfn + i))
67 page = pfn_to_page(pgdat->node_start_pfn + i);
69 #ifdef CONFIG_VIRTUAL_MEM_MAP
70 if (max_gap < LARGE_GAP)
73 i = vmemmap_find_next_valid_pfn(nid, i) - 1;
76 if (PageReserved(page))
78 else if (PageSwapCache(page))
80 else if (page_count(page))
81 shared += page_count(page)-1;
83 pgdat_resize_unlock(pgdat, &flags);
84 total_present += present;
85 total_reserved += reserved;
86 total_cached += cached;
87 total_shared += shared;
88 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
89 "shrd: %10d, swpd: %10d\n", nid,
90 present, reserved, shared, cached);
92 printk(KERN_INFO "%ld pages of RAM\n", total_present);
93 printk(KERN_INFO "%d reserved pages\n", total_reserved);
94 printk(KERN_INFO "%d pages shared\n", total_shared);
95 printk(KERN_INFO "%d pages swap cached\n", total_cached);
96 printk(KERN_INFO "Total of %ld pages in page table cache\n",
97 quicklist_total_size());
98 printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
102 /* physical address where the bootmem map is located */
103 unsigned long bootmap_start;
106 * find_bootmap_location - callback to find a memory area for the bootmap
107 * @start: start of region
108 * @end: end of region
109 * @arg: unused callback data
111 * Find a place to put the bootmap and return its starting address in
112 * bootmap_start. This address must be page-aligned.
115 find_bootmap_location (u64 start, u64 end, void *arg)
117 u64 needed = *(unsigned long *)arg;
118 u64 range_start, range_end, free_start;
122 if (start == PAGE_OFFSET) {
129 free_start = PAGE_OFFSET;
131 for (i = 0; i < num_rsvd_regions; i++) {
132 range_start = max(start, free_start);
133 range_end = min(end, rsvd_region[i].start & PAGE_MASK);
135 free_start = PAGE_ALIGN(rsvd_region[i].end);
137 if (range_end <= range_start)
138 continue; /* skip over empty range */
140 if (range_end - range_start >= needed) {
141 bootmap_start = __pa(range_start);
142 return -1; /* done */
145 /* nothing more available in this segment */
146 if (range_end == end)
153 static void *cpu_data;
155 * per_cpu_init - setup per-cpu variables
157 * Allocate and setup per-cpu data areas.
159 void *per_cpu_init(void)
161 static bool first_time = true;
162 void *cpu0_data = __cpu0_per_cpu;
170 * get_free_pages() cannot be used before cpu_init() done.
171 * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
172 * to avoid that AP calls get_zeroed_page().
174 for_each_possible_cpu(cpu) {
175 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
177 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
178 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
179 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
182 * percpu area for cpu0 is moved from the __init area
183 * which is setup by head.S and used till this point.
184 * Update ar.k3. This move is ensures that percpu
185 * area for cpu0 is on the correct node and its
186 * virtual address isn't insanely far from other
187 * percpu areas which is important for congruent
191 ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
192 (unsigned long)__per_cpu_start);
194 cpu_data += PERCPU_PAGE_SIZE;
197 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
201 alloc_per_cpu_data(void)
203 cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
204 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
208 * setup_per_cpu_areas - setup percpu areas
210 * Arch code has already allocated and initialized percpu areas. All
211 * this function has to do is to teach the determined layout to the
212 * dynamic percpu allocator, which happens to be more complex than
213 * creating whole new ones using helpers.
216 setup_per_cpu_areas(void)
218 struct pcpu_alloc_info *ai;
219 struct pcpu_group_info *gi;
221 ssize_t static_size, reserved_size, dyn_size;
224 ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
226 panic("failed to allocate pcpu_alloc_info");
229 /* units are assigned consecutively to possible cpus */
230 for_each_possible_cpu(cpu)
231 gi->cpu_map[gi->nr_units++] = cpu;
234 static_size = __per_cpu_end - __per_cpu_start;
235 reserved_size = PERCPU_MODULE_RESERVE;
236 dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
238 panic("percpu area overflow static=%zd reserved=%zd\n",
239 static_size, reserved_size);
241 ai->static_size = static_size;
242 ai->reserved_size = reserved_size;
243 ai->dyn_size = dyn_size;
244 ai->unit_size = PERCPU_PAGE_SIZE;
245 ai->atom_size = PAGE_SIZE;
246 ai->alloc_size = PERCPU_PAGE_SIZE;
248 rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
250 panic("failed to setup percpu area (err=%d)", rc);
252 pcpu_free_alloc_info(ai);
255 #define alloc_per_cpu_data() do { } while (0)
256 #endif /* CONFIG_SMP */
259 * find_memory - setup memory map
261 * Walk the EFI memory map and find usable memory for the system, taking
262 * into account reserved areas.
267 unsigned long bootmap_size;
271 /* first find highest page frame number */
274 efi_memmap_walk(find_max_min_low_pfn, NULL);
275 max_pfn = max_low_pfn;
276 /* how many bytes to cover all the pages */
277 bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
279 /* look for a location to hold the bootmap */
280 bootmap_start = ~0UL;
281 efi_memmap_walk(find_bootmap_location, &bootmap_size);
282 if (bootmap_start == ~0UL)
283 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
285 bootmap_size = init_bootmem_node(NODE_DATA(0),
286 (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
288 /* Free all available memory, then mark bootmem-map as being in use. */
289 efi_memmap_walk(filter_rsvd_memory, free_bootmem);
290 reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
294 alloc_per_cpu_data();
298 * Set up the page tables.
304 unsigned long max_dma;
305 unsigned long max_zone_pfns[MAX_NR_ZONES];
307 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
308 #ifdef CONFIG_ZONE_DMA
309 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
310 max_zone_pfns[ZONE_DMA] = max_dma;
312 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
314 #ifdef CONFIG_VIRTUAL_MEM_MAP
315 efi_memmap_walk(filter_memory, register_active_ranges);
316 efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
317 if (max_gap < LARGE_GAP) {
318 vmem_map = (struct page *) 0;
319 free_area_init_nodes(max_zone_pfns);
321 unsigned long map_size;
323 /* allocate virtual_mem_map */
325 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
326 sizeof(struct page));
327 VMALLOC_END -= map_size;
328 vmem_map = (struct page *) VMALLOC_END;
329 efi_memmap_walk(create_mem_map_page_table, NULL);
332 * alloc_node_mem_map makes an adjustment for mem_map
333 * which isn't compatible with vmem_map.
335 NODE_DATA(0)->node_mem_map = vmem_map +
336 find_min_pfn_with_active_regions();
337 free_area_init_nodes(max_zone_pfns);
339 printk("Virtual mem_map starts at 0x%p\n", mem_map);
341 #else /* !CONFIG_VIRTUAL_MEM_MAP */
342 memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
343 free_area_init_nodes(max_zone_pfns);
344 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
345 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));