mm, show_mem: suppress page counts in non-blockable contexts
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / ia64 / mm / contig.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/nmi.h>
22 #include <linux/swap.h>
23
24 #include <asm/meminit.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/sections.h>
28 #include <asm/mca.h>
29
30 #ifdef CONFIG_VIRTUAL_MEM_MAP
31 static unsigned long max_gap;
32 #endif
33
34 /**
35  * show_mem - give short summary of memory stats
36  *
37  * Shows a simple page count of reserved and used pages in the system.
38  * For discontig machines, it does this on a per-pgdat basis.
39  */
40 void show_mem(unsigned int filter)
41 {
42         int i, total_reserved = 0;
43         int total_shared = 0, total_cached = 0;
44         unsigned long total_present = 0;
45         pg_data_t *pgdat;
46
47         printk(KERN_INFO "Mem-info:\n");
48         show_free_areas(filter);
49         printk(KERN_INFO "Node memory in pages:\n");
50         if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
51                 return;
52         for_each_online_pgdat(pgdat) {
53                 unsigned long present;
54                 unsigned long flags;
55                 int shared = 0, cached = 0, reserved = 0;
56                 int nid = pgdat->node_id;
57
58                 if (skip_free_areas_node(filter, nid))
59                         continue;
60                 pgdat_resize_lock(pgdat, &flags);
61                 present = pgdat->node_present_pages;
62                 for(i = 0; i < pgdat->node_spanned_pages; i++) {
63                         struct page *page;
64                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
65                                 touch_nmi_watchdog();
66                         if (pfn_valid(pgdat->node_start_pfn + i))
67                                 page = pfn_to_page(pgdat->node_start_pfn + i);
68                         else {
69 #ifdef CONFIG_VIRTUAL_MEM_MAP
70                                 if (max_gap < LARGE_GAP)
71                                         continue;
72 #endif
73                                 i = vmemmap_find_next_valid_pfn(nid, i) - 1;
74                                 continue;
75                         }
76                         if (PageReserved(page))
77                                 reserved++;
78                         else if (PageSwapCache(page))
79                                 cached++;
80                         else if (page_count(page))
81                                 shared += page_count(page)-1;
82                 }
83                 pgdat_resize_unlock(pgdat, &flags);
84                 total_present += present;
85                 total_reserved += reserved;
86                 total_cached += cached;
87                 total_shared += shared;
88                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
89                        "shrd: %10d, swpd: %10d\n", nid,
90                        present, reserved, shared, cached);
91         }
92         printk(KERN_INFO "%ld pages of RAM\n", total_present);
93         printk(KERN_INFO "%d reserved pages\n", total_reserved);
94         printk(KERN_INFO "%d pages shared\n", total_shared);
95         printk(KERN_INFO "%d pages swap cached\n", total_cached);
96         printk(KERN_INFO "Total of %ld pages in page table cache\n",
97                quicklist_total_size());
98         printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
99 }
100
101
102 /* physical address where the bootmem map is located */
103 unsigned long bootmap_start;
104
105 /**
106  * find_bootmap_location - callback to find a memory area for the bootmap
107  * @start: start of region
108  * @end: end of region
109  * @arg: unused callback data
110  *
111  * Find a place to put the bootmap and return its starting address in
112  * bootmap_start.  This address must be page-aligned.
113  */
114 static int __init
115 find_bootmap_location (u64 start, u64 end, void *arg)
116 {
117         u64 needed = *(unsigned long *)arg;
118         u64 range_start, range_end, free_start;
119         int i;
120
121 #if IGNORE_PFN0
122         if (start == PAGE_OFFSET) {
123                 start += PAGE_SIZE;
124                 if (start >= end)
125                         return 0;
126         }
127 #endif
128
129         free_start = PAGE_OFFSET;
130
131         for (i = 0; i < num_rsvd_regions; i++) {
132                 range_start = max(start, free_start);
133                 range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
134
135                 free_start = PAGE_ALIGN(rsvd_region[i].end);
136
137                 if (range_end <= range_start)
138                         continue; /* skip over empty range */
139
140                 if (range_end - range_start >= needed) {
141                         bootmap_start = __pa(range_start);
142                         return -1;      /* done */
143                 }
144
145                 /* nothing more available in this segment */
146                 if (range_end == end)
147                         return 0;
148         }
149         return 0;
150 }
151
152 #ifdef CONFIG_SMP
153 static void *cpu_data;
154 /**
155  * per_cpu_init - setup per-cpu variables
156  *
157  * Allocate and setup per-cpu data areas.
158  */
159 void * __cpuinit
160 per_cpu_init (void)
161 {
162         static bool first_time = true;
163         void *cpu0_data = __cpu0_per_cpu;
164         unsigned int cpu;
165
166         if (!first_time)
167                 goto skip;
168         first_time = false;
169
170         /*
171          * get_free_pages() cannot be used before cpu_init() done.
172          * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
173          * to avoid that AP calls get_zeroed_page().
174          */
175         for_each_possible_cpu(cpu) {
176                 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
177
178                 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
179                 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
180                 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
181
182                 /*
183                  * percpu area for cpu0 is moved from the __init area
184                  * which is setup by head.S and used till this point.
185                  * Update ar.k3.  This move is ensures that percpu
186                  * area for cpu0 is on the correct node and its
187                  * virtual address isn't insanely far from other
188                  * percpu areas which is important for congruent
189                  * percpu allocator.
190                  */
191                 if (cpu == 0)
192                         ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
193                                     (unsigned long)__per_cpu_start);
194
195                 cpu_data += PERCPU_PAGE_SIZE;
196         }
197 skip:
198         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
199 }
200
201 static inline void
202 alloc_per_cpu_data(void)
203 {
204         cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
205                                    PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
206 }
207
208 /**
209  * setup_per_cpu_areas - setup percpu areas
210  *
211  * Arch code has already allocated and initialized percpu areas.  All
212  * this function has to do is to teach the determined layout to the
213  * dynamic percpu allocator, which happens to be more complex than
214  * creating whole new ones using helpers.
215  */
216 void __init
217 setup_per_cpu_areas(void)
218 {
219         struct pcpu_alloc_info *ai;
220         struct pcpu_group_info *gi;
221         unsigned int cpu;
222         ssize_t static_size, reserved_size, dyn_size;
223         int rc;
224
225         ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
226         if (!ai)
227                 panic("failed to allocate pcpu_alloc_info");
228         gi = &ai->groups[0];
229
230         /* units are assigned consecutively to possible cpus */
231         for_each_possible_cpu(cpu)
232                 gi->cpu_map[gi->nr_units++] = cpu;
233
234         /* set parameters */
235         static_size = __per_cpu_end - __per_cpu_start;
236         reserved_size = PERCPU_MODULE_RESERVE;
237         dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
238         if (dyn_size < 0)
239                 panic("percpu area overflow static=%zd reserved=%zd\n",
240                       static_size, reserved_size);
241
242         ai->static_size         = static_size;
243         ai->reserved_size       = reserved_size;
244         ai->dyn_size            = dyn_size;
245         ai->unit_size           = PERCPU_PAGE_SIZE;
246         ai->atom_size           = PAGE_SIZE;
247         ai->alloc_size          = PERCPU_PAGE_SIZE;
248
249         rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
250         if (rc)
251                 panic("failed to setup percpu area (err=%d)", rc);
252
253         pcpu_free_alloc_info(ai);
254 }
255 #else
256 #define alloc_per_cpu_data() do { } while (0)
257 #endif /* CONFIG_SMP */
258
259 /**
260  * find_memory - setup memory map
261  *
262  * Walk the EFI memory map and find usable memory for the system, taking
263  * into account reserved areas.
264  */
265 void __init
266 find_memory (void)
267 {
268         unsigned long bootmap_size;
269
270         reserve_memory();
271
272         /* first find highest page frame number */
273         min_low_pfn = ~0UL;
274         max_low_pfn = 0;
275         efi_memmap_walk(find_max_min_low_pfn, NULL);
276         max_pfn = max_low_pfn;
277         /* how many bytes to cover all the pages */
278         bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
279
280         /* look for a location to hold the bootmap */
281         bootmap_start = ~0UL;
282         efi_memmap_walk(find_bootmap_location, &bootmap_size);
283         if (bootmap_start == ~0UL)
284                 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
285
286         bootmap_size = init_bootmem_node(NODE_DATA(0),
287                         (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
288
289         /* Free all available memory, then mark bootmem-map as being in use. */
290         efi_memmap_walk(filter_rsvd_memory, free_bootmem);
291         reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
292
293         find_initrd();
294
295         alloc_per_cpu_data();
296 }
297
298 static int count_pages(u64 start, u64 end, void *arg)
299 {
300         unsigned long *count = arg;
301
302         *count += (end - start) >> PAGE_SHIFT;
303         return 0;
304 }
305
306 /*
307  * Set up the page tables.
308  */
309
310 void __init
311 paging_init (void)
312 {
313         unsigned long max_dma;
314         unsigned long max_zone_pfns[MAX_NR_ZONES];
315
316         num_physpages = 0;
317         efi_memmap_walk(count_pages, &num_physpages);
318
319         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
320 #ifdef CONFIG_ZONE_DMA
321         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
322         max_zone_pfns[ZONE_DMA] = max_dma;
323 #endif
324         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
325
326 #ifdef CONFIG_VIRTUAL_MEM_MAP
327         efi_memmap_walk(filter_memory, register_active_ranges);
328         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
329         if (max_gap < LARGE_GAP) {
330                 vmem_map = (struct page *) 0;
331                 free_area_init_nodes(max_zone_pfns);
332         } else {
333                 unsigned long map_size;
334
335                 /* allocate virtual_mem_map */
336
337                 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
338                         sizeof(struct page));
339                 VMALLOC_END -= map_size;
340                 vmem_map = (struct page *) VMALLOC_END;
341                 efi_memmap_walk(create_mem_map_page_table, NULL);
342
343                 /*
344                  * alloc_node_mem_map makes an adjustment for mem_map
345                  * which isn't compatible with vmem_map.
346                  */
347                 NODE_DATA(0)->node_mem_map = vmem_map +
348                         find_min_pfn_with_active_regions();
349                 free_area_init_nodes(max_zone_pfns);
350
351                 printk("Virtual mem_map starts at 0x%p\n", mem_map);
352         }
353 #else /* !CONFIG_VIRTUAL_MEM_MAP */
354         memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
355         free_area_init_nodes(max_zone_pfns);
356 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
357         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
358 }