Merge commit 'kumar/next' into merge
[platform/adaptation/renesas_rcar/renesas_kernel.git] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *      David Mosberger-Tang <davidm@hpl.hp.com>
11  *      Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *      Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/time.h>
30 #include <linux/efi.h>
31 #include <linux/kexec.h>
32 #include <linux/mm.h>
33
34 #include <asm/io.h>
35 #include <asm/kregs.h>
36 #include <asm/meminit.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/mca.h>
40 #include <asm/tlbflush.h>
41
42 #define EFI_DEBUG       0
43
44 extern efi_status_t efi_call_phys (void *, ...);
45
46 struct efi efi;
47 EXPORT_SYMBOL(efi);
48 static efi_runtime_services_t *runtime;
49 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
50
51 #define efi_call_virt(f, args...)       (*(f))(args)
52
53 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
54 static efi_status_t                                                            \
55 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
56 {                                                                              \
57         struct ia64_fpreg fr[6];                                               \
58         efi_time_cap_t *atc = NULL;                                            \
59         efi_status_t ret;                                                      \
60                                                                                \
61         if (tc)                                                                \
62                 atc = adjust_arg(tc);                                          \
63         ia64_save_scratch_fpregs(fr);                                          \
64         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
65                                 adjust_arg(tm), atc);                          \
66         ia64_load_scratch_fpregs(fr);                                          \
67         return ret;                                                            \
68 }
69
70 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
71 static efi_status_t                                                            \
72 prefix##_set_time (efi_time_t *tm)                                             \
73 {                                                                              \
74         struct ia64_fpreg fr[6];                                               \
75         efi_status_t ret;                                                      \
76                                                                                \
77         ia64_save_scratch_fpregs(fr);                                          \
78         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
79                                 adjust_arg(tm));                               \
80         ia64_load_scratch_fpregs(fr);                                          \
81         return ret;                                                            \
82 }
83
84 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
85 static efi_status_t                                                            \
86 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
87                           efi_time_t *tm)                                      \
88 {                                                                              \
89         struct ia64_fpreg fr[6];                                               \
90         efi_status_t ret;                                                      \
91                                                                                \
92         ia64_save_scratch_fpregs(fr);                                          \
93         ret = efi_call_##prefix(                                               \
94                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
95                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
96         ia64_load_scratch_fpregs(fr);                                          \
97         return ret;                                                            \
98 }
99
100 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
101 static efi_status_t                                                            \
102 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
103 {                                                                              \
104         struct ia64_fpreg fr[6];                                               \
105         efi_time_t *atm = NULL;                                                \
106         efi_status_t ret;                                                      \
107                                                                                \
108         if (tm)                                                                \
109                 atm = adjust_arg(tm);                                          \
110         ia64_save_scratch_fpregs(fr);                                          \
111         ret = efi_call_##prefix(                                               \
112                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
113                 enabled, atm);                                                 \
114         ia64_load_scratch_fpregs(fr);                                          \
115         return ret;                                                            \
116 }
117
118 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
119 static efi_status_t                                                            \
120 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
121                        unsigned long *data_size, void *data)                   \
122 {                                                                              \
123         struct ia64_fpreg fr[6];                                               \
124         u32 *aattr = NULL;                                                     \
125         efi_status_t ret;                                                      \
126                                                                                \
127         if (attr)                                                              \
128                 aattr = adjust_arg(attr);                                      \
129         ia64_save_scratch_fpregs(fr);                                          \
130         ret = efi_call_##prefix(                                               \
131                 (efi_get_variable_t *) __va(runtime->get_variable),            \
132                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
133                 adjust_arg(data_size), adjust_arg(data));                      \
134         ia64_load_scratch_fpregs(fr);                                          \
135         return ret;                                                            \
136 }
137
138 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
139 static efi_status_t                                                            \
140 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
141                             efi_guid_t *vendor)                                \
142 {                                                                              \
143         struct ia64_fpreg fr[6];                                               \
144         efi_status_t ret;                                                      \
145                                                                                \
146         ia64_save_scratch_fpregs(fr);                                          \
147         ret = efi_call_##prefix(                                               \
148                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
149                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
150         ia64_load_scratch_fpregs(fr);                                          \
151         return ret;                                                            \
152 }
153
154 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
155 static efi_status_t                                                            \
156 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
157                        unsigned long attr, unsigned long data_size,            \
158                        void *data)                                             \
159 {                                                                              \
160         struct ia64_fpreg fr[6];                                               \
161         efi_status_t ret;                                                      \
162                                                                                \
163         ia64_save_scratch_fpregs(fr);                                          \
164         ret = efi_call_##prefix(                                               \
165                 (efi_set_variable_t *) __va(runtime->set_variable),            \
166                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
167                 adjust_arg(data));                                             \
168         ia64_load_scratch_fpregs(fr);                                          \
169         return ret;                                                            \
170 }
171
172 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
173 static efi_status_t                                                            \
174 prefix##_get_next_high_mono_count (u32 *count)                                 \
175 {                                                                              \
176         struct ia64_fpreg fr[6];                                               \
177         efi_status_t ret;                                                      \
178                                                                                \
179         ia64_save_scratch_fpregs(fr);                                          \
180         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
181                                 __va(runtime->get_next_high_mono_count),       \
182                                 adjust_arg(count));                            \
183         ia64_load_scratch_fpregs(fr);                                          \
184         return ret;                                                            \
185 }
186
187 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
188 static void                                                                    \
189 prefix##_reset_system (int reset_type, efi_status_t status,                    \
190                        unsigned long data_size, efi_char16_t *data)            \
191 {                                                                              \
192         struct ia64_fpreg fr[6];                                               \
193         efi_char16_t *adata = NULL;                                            \
194                                                                                \
195         if (data)                                                              \
196                 adata = adjust_arg(data);                                      \
197                                                                                \
198         ia64_save_scratch_fpregs(fr);                                          \
199         efi_call_##prefix(                                                     \
200                 (efi_reset_system_t *) __va(runtime->reset_system),            \
201                 reset_type, status, data_size, adata);                         \
202         /* should not return, but just in case... */                           \
203         ia64_load_scratch_fpregs(fr);                                          \
204 }
205
206 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
207
208 STUB_GET_TIME(phys, phys_ptr)
209 STUB_SET_TIME(phys, phys_ptr)
210 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
211 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
212 STUB_GET_VARIABLE(phys, phys_ptr)
213 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
214 STUB_SET_VARIABLE(phys, phys_ptr)
215 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
216 STUB_RESET_SYSTEM(phys, phys_ptr)
217
218 #define id(arg) arg
219
220 STUB_GET_TIME(virt, id)
221 STUB_SET_TIME(virt, id)
222 STUB_GET_WAKEUP_TIME(virt, id)
223 STUB_SET_WAKEUP_TIME(virt, id)
224 STUB_GET_VARIABLE(virt, id)
225 STUB_GET_NEXT_VARIABLE(virt, id)
226 STUB_SET_VARIABLE(virt, id)
227 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
228 STUB_RESET_SYSTEM(virt, id)
229
230 void
231 efi_gettimeofday (struct timespec *ts)
232 {
233         efi_time_t tm;
234
235         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
236                 memset(ts, 0, sizeof(*ts));
237                 return;
238         }
239
240         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
241                             tm.hour, tm.minute, tm.second);
242         ts->tv_nsec = tm.nanosecond;
243 }
244
245 static int
246 is_memory_available (efi_memory_desc_t *md)
247 {
248         if (!(md->attribute & EFI_MEMORY_WB))
249                 return 0;
250
251         switch (md->type) {
252               case EFI_LOADER_CODE:
253               case EFI_LOADER_DATA:
254               case EFI_BOOT_SERVICES_CODE:
255               case EFI_BOOT_SERVICES_DATA:
256               case EFI_CONVENTIONAL_MEMORY:
257                 return 1;
258         }
259         return 0;
260 }
261
262 typedef struct kern_memdesc {
263         u64 attribute;
264         u64 start;
265         u64 num_pages;
266 } kern_memdesc_t;
267
268 static kern_memdesc_t *kern_memmap;
269
270 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
271
272 static inline u64
273 kmd_end(kern_memdesc_t *kmd)
274 {
275         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
276 }
277
278 static inline u64
279 efi_md_end(efi_memory_desc_t *md)
280 {
281         return (md->phys_addr + efi_md_size(md));
282 }
283
284 static inline int
285 efi_wb(efi_memory_desc_t *md)
286 {
287         return (md->attribute & EFI_MEMORY_WB);
288 }
289
290 static inline int
291 efi_uc(efi_memory_desc_t *md)
292 {
293         return (md->attribute & EFI_MEMORY_UC);
294 }
295
296 static void
297 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
298 {
299         kern_memdesc_t *k;
300         u64 start, end, voff;
301
302         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
303         for (k = kern_memmap; k->start != ~0UL; k++) {
304                 if (k->attribute != attr)
305                         continue;
306                 start = PAGE_ALIGN(k->start);
307                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
308                 if (start < end)
309                         if ((*callback)(start + voff, end + voff, arg) < 0)
310                                 return;
311         }
312 }
313
314 /*
315  * Walk the EFI memory map and call CALLBACK once for each EFI memory
316  * descriptor that has memory that is available for OS use.
317  */
318 void
319 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
320 {
321         walk(callback, arg, EFI_MEMORY_WB);
322 }
323
324 /*
325  * Walk the EFI memory map and call CALLBACK once for each EFI memory
326  * descriptor that has memory that is available for uncached allocator.
327  */
328 void
329 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
330 {
331         walk(callback, arg, EFI_MEMORY_UC);
332 }
333
334 /*
335  * Look for the PAL_CODE region reported by EFI and map it using an
336  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
337  * Abstraction Layer chapter 11 in ADAG
338  */
339 void *
340 efi_get_pal_addr (void)
341 {
342         void *efi_map_start, *efi_map_end, *p;
343         efi_memory_desc_t *md;
344         u64 efi_desc_size;
345         int pal_code_count = 0;
346         u64 vaddr, mask;
347
348         efi_map_start = __va(ia64_boot_param->efi_memmap);
349         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
350         efi_desc_size = ia64_boot_param->efi_memdesc_size;
351
352         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
353                 md = p;
354                 if (md->type != EFI_PAL_CODE)
355                         continue;
356
357                 if (++pal_code_count > 1) {
358                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
359                                "dropped @ %llx\n", md->phys_addr);
360                         continue;
361                 }
362                 /*
363                  * The only ITLB entry in region 7 that is used is the one
364                  * installed by __start().  That entry covers a 64MB range.
365                  */
366                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
367                 vaddr = PAGE_OFFSET + md->phys_addr;
368
369                 /*
370                  * We must check that the PAL mapping won't overlap with the
371                  * kernel mapping.
372                  *
373                  * PAL code is guaranteed to be aligned on a power of 2 between
374                  * 4k and 256KB and that only one ITR is needed to map it. This
375                  * implies that the PAL code is always aligned on its size,
376                  * i.e., the closest matching page size supported by the TLB.
377                  * Therefore PAL code is guaranteed never to cross a 64MB unless
378                  * it is bigger than 64MB (very unlikely!).  So for now the
379                  * following test is enough to determine whether or not we need
380                  * a dedicated ITR for the PAL code.
381                  */
382                 if ((vaddr & mask) == (KERNEL_START & mask)) {
383                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
384                                __func__);
385                         continue;
386                 }
387
388                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
389                         panic("Whoa!  PAL code size bigger than a granule!");
390
391 #if EFI_DEBUG
392                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
393
394                 printk(KERN_INFO "CPU %d: mapping PAL code "
395                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
396                        smp_processor_id(), md->phys_addr,
397                        md->phys_addr + efi_md_size(md),
398                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
399 #endif
400                 return __va(md->phys_addr);
401         }
402         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
403                __func__);
404         return NULL;
405 }
406
407
408 static u8 __init palo_checksum(u8 *buffer, u32 length)
409 {
410         u8 sum = 0;
411         u8 *end = buffer + length;
412
413         while (buffer < end)
414                 sum = (u8) (sum + *(buffer++));
415
416         return sum;
417 }
418
419 /*
420  * Parse and handle PALO table which is published at:
421  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
422  */
423 static void __init handle_palo(unsigned long palo_phys)
424 {
425         struct palo_table *palo = __va(palo_phys);
426         u8  checksum;
427
428         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
429                 printk(KERN_INFO "PALO signature incorrect.\n");
430                 return;
431         }
432
433         checksum = palo_checksum((u8 *)palo, palo->length);
434         if (checksum) {
435                 printk(KERN_INFO "PALO checksum incorrect.\n");
436                 return;
437         }
438
439         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
440 }
441
442 void
443 efi_map_pal_code (void)
444 {
445         void *pal_vaddr = efi_get_pal_addr ();
446         u64 psr;
447
448         if (!pal_vaddr)
449                 return;
450
451         /*
452          * Cannot write to CRx with PSR.ic=1
453          */
454         psr = ia64_clear_ic();
455         ia64_itr(0x1, IA64_TR_PALCODE,
456                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
457                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
458                  IA64_GRANULE_SHIFT);
459         paravirt_dv_serialize_data();
460         ia64_set_psr(psr);              /* restore psr */
461 }
462
463 void __init
464 efi_init (void)
465 {
466         void *efi_map_start, *efi_map_end;
467         efi_config_table_t *config_tables;
468         efi_char16_t *c16;
469         u64 efi_desc_size;
470         char *cp, vendor[100] = "unknown";
471         int i;
472         unsigned long palo_phys;
473
474         /*
475          * It's too early to be able to use the standard kernel command line
476          * support...
477          */
478         for (cp = boot_command_line; *cp; ) {
479                 if (memcmp(cp, "mem=", 4) == 0) {
480                         mem_limit = memparse(cp + 4, &cp);
481                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
482                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
483                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
484                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
485                 } else {
486                         while (*cp != ' ' && *cp)
487                                 ++cp;
488                         while (*cp == ' ')
489                                 ++cp;
490                 }
491         }
492         if (min_addr != 0UL)
493                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
494                        min_addr >> 20);
495         if (max_addr != ~0UL)
496                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
497                        max_addr >> 20);
498
499         efi.systab = __va(ia64_boot_param->efi_systab);
500
501         /*
502          * Verify the EFI Table
503          */
504         if (efi.systab == NULL)
505                 panic("Whoa! Can't find EFI system table.\n");
506         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
507                 panic("Whoa! EFI system table signature incorrect\n");
508         if ((efi.systab->hdr.revision >> 16) == 0)
509                 printk(KERN_WARNING "Warning: EFI system table version "
510                        "%d.%02d, expected 1.00 or greater\n",
511                        efi.systab->hdr.revision >> 16,
512                        efi.systab->hdr.revision & 0xffff);
513
514         config_tables = __va(efi.systab->tables);
515
516         /* Show what we know for posterity */
517         c16 = __va(efi.systab->fw_vendor);
518         if (c16) {
519                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
520                         vendor[i] = *c16++;
521                 vendor[i] = '\0';
522         }
523
524         printk(KERN_INFO "EFI v%u.%.02u by %s:",
525                efi.systab->hdr.revision >> 16,
526                efi.systab->hdr.revision & 0xffff, vendor);
527
528         efi.mps        = EFI_INVALID_TABLE_ADDR;
529         efi.acpi       = EFI_INVALID_TABLE_ADDR;
530         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
531         efi.smbios     = EFI_INVALID_TABLE_ADDR;
532         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
533         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
534         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
535         efi.uga        = EFI_INVALID_TABLE_ADDR;
536
537         palo_phys      = EFI_INVALID_TABLE_ADDR;
538
539         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
540                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
541                         efi.mps = config_tables[i].table;
542                         printk(" MPS=0x%lx", config_tables[i].table);
543                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
544                         efi.acpi20 = config_tables[i].table;
545                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
546                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
547                         efi.acpi = config_tables[i].table;
548                         printk(" ACPI=0x%lx", config_tables[i].table);
549                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
550                         efi.smbios = config_tables[i].table;
551                         printk(" SMBIOS=0x%lx", config_tables[i].table);
552                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
553                         efi.sal_systab = config_tables[i].table;
554                         printk(" SALsystab=0x%lx", config_tables[i].table);
555                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
556                         efi.hcdp = config_tables[i].table;
557                         printk(" HCDP=0x%lx", config_tables[i].table);
558                 } else if (efi_guidcmp(config_tables[i].guid,
559                          PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
560                         palo_phys = config_tables[i].table;
561                         printk(" PALO=0x%lx", config_tables[i].table);
562                 }
563         }
564         printk("\n");
565
566         if (palo_phys != EFI_INVALID_TABLE_ADDR)
567                 handle_palo(palo_phys);
568
569         runtime = __va(efi.systab->runtime);
570         efi.get_time = phys_get_time;
571         efi.set_time = phys_set_time;
572         efi.get_wakeup_time = phys_get_wakeup_time;
573         efi.set_wakeup_time = phys_set_wakeup_time;
574         efi.get_variable = phys_get_variable;
575         efi.get_next_variable = phys_get_next_variable;
576         efi.set_variable = phys_set_variable;
577         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
578         efi.reset_system = phys_reset_system;
579
580         efi_map_start = __va(ia64_boot_param->efi_memmap);
581         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
582         efi_desc_size = ia64_boot_param->efi_memdesc_size;
583
584 #if EFI_DEBUG
585         /* print EFI memory map: */
586         {
587                 efi_memory_desc_t *md;
588                 void *p;
589
590                 for (i = 0, p = efi_map_start; p < efi_map_end;
591                      ++i, p += efi_desc_size)
592                 {
593                         const char *unit;
594                         unsigned long size;
595
596                         md = p;
597                         size = md->num_pages << EFI_PAGE_SHIFT;
598
599                         if ((size >> 40) > 0) {
600                                 size >>= 40;
601                                 unit = "TB";
602                         } else if ((size >> 30) > 0) {
603                                 size >>= 30;
604                                 unit = "GB";
605                         } else if ((size >> 20) > 0) {
606                                 size >>= 20;
607                                 unit = "MB";
608                         } else {
609                                 size >>= 10;
610                                 unit = "KB";
611                         }
612
613                         printk("mem%02d: type=%2u, attr=0x%016lx, "
614                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
615                                i, md->type, md->attribute, md->phys_addr,
616                                md->phys_addr + efi_md_size(md), size, unit);
617                 }
618         }
619 #endif
620
621         efi_map_pal_code();
622         efi_enter_virtual_mode();
623 }
624
625 void
626 efi_enter_virtual_mode (void)
627 {
628         void *efi_map_start, *efi_map_end, *p;
629         efi_memory_desc_t *md;
630         efi_status_t status;
631         u64 efi_desc_size;
632
633         efi_map_start = __va(ia64_boot_param->efi_memmap);
634         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
635         efi_desc_size = ia64_boot_param->efi_memdesc_size;
636
637         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
638                 md = p;
639                 if (md->attribute & EFI_MEMORY_RUNTIME) {
640                         /*
641                          * Some descriptors have multiple bits set, so the
642                          * order of the tests is relevant.
643                          */
644                         if (md->attribute & EFI_MEMORY_WB) {
645                                 md->virt_addr = (u64) __va(md->phys_addr);
646                         } else if (md->attribute & EFI_MEMORY_UC) {
647                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
648                         } else if (md->attribute & EFI_MEMORY_WC) {
649 #if 0
650                                 md->virt_addr = ia64_remap(md->phys_addr,
651                                                            (_PAGE_A |
652                                                             _PAGE_P |
653                                                             _PAGE_D |
654                                                             _PAGE_MA_WC |
655                                                             _PAGE_PL_0 |
656                                                             _PAGE_AR_RW));
657 #else
658                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
659                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
660 #endif
661                         } else if (md->attribute & EFI_MEMORY_WT) {
662 #if 0
663                                 md->virt_addr = ia64_remap(md->phys_addr,
664                                                            (_PAGE_A |
665                                                             _PAGE_P |
666                                                             _PAGE_D |
667                                                             _PAGE_MA_WT |
668                                                             _PAGE_PL_0 |
669                                                             _PAGE_AR_RW));
670 #else
671                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
672                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
673 #endif
674                         }
675                 }
676         }
677
678         status = efi_call_phys(__va(runtime->set_virtual_address_map),
679                                ia64_boot_param->efi_memmap_size,
680                                efi_desc_size,
681                                ia64_boot_param->efi_memdesc_version,
682                                ia64_boot_param->efi_memmap);
683         if (status != EFI_SUCCESS) {
684                 printk(KERN_WARNING "warning: unable to switch EFI into "
685                        "virtual mode (status=%lu)\n", status);
686                 return;
687         }
688
689         /*
690          * Now that EFI is in virtual mode, we call the EFI functions more
691          * efficiently:
692          */
693         efi.get_time = virt_get_time;
694         efi.set_time = virt_set_time;
695         efi.get_wakeup_time = virt_get_wakeup_time;
696         efi.set_wakeup_time = virt_set_wakeup_time;
697         efi.get_variable = virt_get_variable;
698         efi.get_next_variable = virt_get_next_variable;
699         efi.set_variable = virt_set_variable;
700         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
701         efi.reset_system = virt_reset_system;
702 }
703
704 /*
705  * Walk the EFI memory map looking for the I/O port range.  There can only be
706  * one entry of this type, other I/O port ranges should be described via ACPI.
707  */
708 u64
709 efi_get_iobase (void)
710 {
711         void *efi_map_start, *efi_map_end, *p;
712         efi_memory_desc_t *md;
713         u64 efi_desc_size;
714
715         efi_map_start = __va(ia64_boot_param->efi_memmap);
716         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
717         efi_desc_size = ia64_boot_param->efi_memdesc_size;
718
719         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
720                 md = p;
721                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
722                         if (md->attribute & EFI_MEMORY_UC)
723                                 return md->phys_addr;
724                 }
725         }
726         return 0;
727 }
728
729 static struct kern_memdesc *
730 kern_memory_descriptor (unsigned long phys_addr)
731 {
732         struct kern_memdesc *md;
733
734         for (md = kern_memmap; md->start != ~0UL; md++) {
735                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
736                          return md;
737         }
738         return NULL;
739 }
740
741 static efi_memory_desc_t *
742 efi_memory_descriptor (unsigned long phys_addr)
743 {
744         void *efi_map_start, *efi_map_end, *p;
745         efi_memory_desc_t *md;
746         u64 efi_desc_size;
747
748         efi_map_start = __va(ia64_boot_param->efi_memmap);
749         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
750         efi_desc_size = ia64_boot_param->efi_memdesc_size;
751
752         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
753                 md = p;
754
755                 if (phys_addr - md->phys_addr < efi_md_size(md))
756                          return md;
757         }
758         return NULL;
759 }
760
761 static int
762 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
763 {
764         void *efi_map_start, *efi_map_end, *p;
765         efi_memory_desc_t *md;
766         u64 efi_desc_size;
767         unsigned long end;
768
769         efi_map_start = __va(ia64_boot_param->efi_memmap);
770         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
771         efi_desc_size = ia64_boot_param->efi_memdesc_size;
772
773         end = phys_addr + size;
774
775         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
776                 md = p;
777                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
778                         return 1;
779         }
780         return 0;
781 }
782
783 u32
784 efi_mem_type (unsigned long phys_addr)
785 {
786         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
787
788         if (md)
789                 return md->type;
790         return 0;
791 }
792
793 u64
794 efi_mem_attributes (unsigned long phys_addr)
795 {
796         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
797
798         if (md)
799                 return md->attribute;
800         return 0;
801 }
802 EXPORT_SYMBOL(efi_mem_attributes);
803
804 u64
805 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
806 {
807         unsigned long end = phys_addr + size;
808         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
809         u64 attr;
810
811         if (!md)
812                 return 0;
813
814         /*
815          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
816          * the kernel that firmware needs this region mapped.
817          */
818         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
819         do {
820                 unsigned long md_end = efi_md_end(md);
821
822                 if (end <= md_end)
823                         return attr;
824
825                 md = efi_memory_descriptor(md_end);
826                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
827                         return 0;
828         } while (md);
829         return 0;       /* never reached */
830 }
831
832 u64
833 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
834 {
835         unsigned long end = phys_addr + size;
836         struct kern_memdesc *md;
837         u64 attr;
838
839         /*
840          * This is a hack for ioremap calls before we set up kern_memmap.
841          * Maybe we should do efi_memmap_init() earlier instead.
842          */
843         if (!kern_memmap) {
844                 attr = efi_mem_attribute(phys_addr, size);
845                 if (attr & EFI_MEMORY_WB)
846                         return EFI_MEMORY_WB;
847                 return 0;
848         }
849
850         md = kern_memory_descriptor(phys_addr);
851         if (!md)
852                 return 0;
853
854         attr = md->attribute;
855         do {
856                 unsigned long md_end = kmd_end(md);
857
858                 if (end <= md_end)
859                         return attr;
860
861                 md = kern_memory_descriptor(md_end);
862                 if (!md || md->attribute != attr)
863                         return 0;
864         } while (md);
865         return 0;       /* never reached */
866 }
867 EXPORT_SYMBOL(kern_mem_attribute);
868
869 int
870 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
871 {
872         u64 attr;
873
874         /*
875          * /dev/mem reads and writes use copy_to_user(), which implicitly
876          * uses a granule-sized kernel identity mapping.  It's really
877          * only safe to do this for regions in kern_memmap.  For more
878          * details, see Documentation/ia64/aliasing.txt.
879          */
880         attr = kern_mem_attribute(phys_addr, size);
881         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
882                 return 1;
883         return 0;
884 }
885
886 int
887 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
888 {
889         unsigned long phys_addr = pfn << PAGE_SHIFT;
890         u64 attr;
891
892         attr = efi_mem_attribute(phys_addr, size);
893
894         /*
895          * /dev/mem mmap uses normal user pages, so we don't need the entire
896          * granule, but the entire region we're mapping must support the same
897          * attribute.
898          */
899         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
900                 return 1;
901
902         /*
903          * Intel firmware doesn't tell us about all the MMIO regions, so
904          * in general we have to allow mmap requests.  But if EFI *does*
905          * tell us about anything inside this region, we should deny it.
906          * The user can always map a smaller region to avoid the overlap.
907          */
908         if (efi_memmap_intersects(phys_addr, size))
909                 return 0;
910
911         return 1;
912 }
913
914 pgprot_t
915 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
916                      pgprot_t vma_prot)
917 {
918         unsigned long phys_addr = pfn << PAGE_SHIFT;
919         u64 attr;
920
921         /*
922          * For /dev/mem mmap, we use user mappings, but if the region is
923          * in kern_memmap (and hence may be covered by a kernel mapping),
924          * we must use the same attribute as the kernel mapping.
925          */
926         attr = kern_mem_attribute(phys_addr, size);
927         if (attr & EFI_MEMORY_WB)
928                 return pgprot_cacheable(vma_prot);
929         else if (attr & EFI_MEMORY_UC)
930                 return pgprot_noncached(vma_prot);
931
932         /*
933          * Some chipsets don't support UC access to memory.  If
934          * WB is supported, we prefer that.
935          */
936         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
937                 return pgprot_cacheable(vma_prot);
938
939         return pgprot_noncached(vma_prot);
940 }
941
942 int __init
943 efi_uart_console_only(void)
944 {
945         efi_status_t status;
946         char *s, name[] = "ConOut";
947         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
948         efi_char16_t *utf16, name_utf16[32];
949         unsigned char data[1024];
950         unsigned long size = sizeof(data);
951         struct efi_generic_dev_path *hdr, *end_addr;
952         int uart = 0;
953
954         /* Convert to UTF-16 */
955         utf16 = name_utf16;
956         s = name;
957         while (*s)
958                 *utf16++ = *s++ & 0x7f;
959         *utf16 = 0;
960
961         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
962         if (status != EFI_SUCCESS) {
963                 printk(KERN_ERR "No EFI %s variable?\n", name);
964                 return 0;
965         }
966
967         hdr = (struct efi_generic_dev_path *) data;
968         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
969         while (hdr < end_addr) {
970                 if (hdr->type == EFI_DEV_MSG &&
971                     hdr->sub_type == EFI_DEV_MSG_UART)
972                         uart = 1;
973                 else if (hdr->type == EFI_DEV_END_PATH ||
974                           hdr->type == EFI_DEV_END_PATH2) {
975                         if (!uart)
976                                 return 0;
977                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
978                                 return 1;
979                         uart = 0;
980                 }
981                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
982         }
983         printk(KERN_ERR "Malformed %s value\n", name);
984         return 0;
985 }
986
987 /*
988  * Look for the first granule aligned memory descriptor memory
989  * that is big enough to hold EFI memory map. Make sure this
990  * descriptor is atleast granule sized so it does not get trimmed
991  */
992 struct kern_memdesc *
993 find_memmap_space (void)
994 {
995         u64     contig_low=0, contig_high=0;
996         u64     as = 0, ae;
997         void *efi_map_start, *efi_map_end, *p, *q;
998         efi_memory_desc_t *md, *pmd = NULL, *check_md;
999         u64     space_needed, efi_desc_size;
1000         unsigned long total_mem = 0;
1001
1002         efi_map_start = __va(ia64_boot_param->efi_memmap);
1003         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1004         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1005
1006         /*
1007          * Worst case: we need 3 kernel descriptors for each efi descriptor
1008          * (if every entry has a WB part in the middle, and UC head and tail),
1009          * plus one for the end marker.
1010          */
1011         space_needed = sizeof(kern_memdesc_t) *
1012                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1013
1014         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1015                 md = p;
1016                 if (!efi_wb(md)) {
1017                         continue;
1018                 }
1019                 if (pmd == NULL || !efi_wb(pmd) ||
1020                     efi_md_end(pmd) != md->phys_addr) {
1021                         contig_low = GRANULEROUNDUP(md->phys_addr);
1022                         contig_high = efi_md_end(md);
1023                         for (q = p + efi_desc_size; q < efi_map_end;
1024                              q += efi_desc_size) {
1025                                 check_md = q;
1026                                 if (!efi_wb(check_md))
1027                                         break;
1028                                 if (contig_high != check_md->phys_addr)
1029                                         break;
1030                                 contig_high = efi_md_end(check_md);
1031                         }
1032                         contig_high = GRANULEROUNDDOWN(contig_high);
1033                 }
1034                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1035                         continue;
1036
1037                 /* Round ends inward to granule boundaries */
1038                 as = max(contig_low, md->phys_addr);
1039                 ae = min(contig_high, efi_md_end(md));
1040
1041                 /* keep within max_addr= and min_addr= command line arg */
1042                 as = max(as, min_addr);
1043                 ae = min(ae, max_addr);
1044                 if (ae <= as)
1045                         continue;
1046
1047                 /* avoid going over mem= command line arg */
1048                 if (total_mem + (ae - as) > mem_limit)
1049                         ae -= total_mem + (ae - as) - mem_limit;
1050
1051                 if (ae <= as)
1052                         continue;
1053
1054                 if (ae - as > space_needed)
1055                         break;
1056         }
1057         if (p >= efi_map_end)
1058                 panic("Can't allocate space for kernel memory descriptors");
1059
1060         return __va(as);
1061 }
1062
1063 /*
1064  * Walk the EFI memory map and gather all memory available for kernel
1065  * to use.  We can allocate partial granules only if the unavailable
1066  * parts exist, and are WB.
1067  */
1068 unsigned long
1069 efi_memmap_init(u64 *s, u64 *e)
1070 {
1071         struct kern_memdesc *k, *prev = NULL;
1072         u64     contig_low=0, contig_high=0;
1073         u64     as, ae, lim;
1074         void *efi_map_start, *efi_map_end, *p, *q;
1075         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1076         u64     efi_desc_size;
1077         unsigned long total_mem = 0;
1078
1079         k = kern_memmap = find_memmap_space();
1080
1081         efi_map_start = __va(ia64_boot_param->efi_memmap);
1082         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1083         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1084
1085         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1086                 md = p;
1087                 if (!efi_wb(md)) {
1088                         if (efi_uc(md) &&
1089                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1090                              md->type == EFI_BOOT_SERVICES_DATA)) {
1091                                 k->attribute = EFI_MEMORY_UC;
1092                                 k->start = md->phys_addr;
1093                                 k->num_pages = md->num_pages;
1094                                 k++;
1095                         }
1096                         continue;
1097                 }
1098                 if (pmd == NULL || !efi_wb(pmd) ||
1099                     efi_md_end(pmd) != md->phys_addr) {
1100                         contig_low = GRANULEROUNDUP(md->phys_addr);
1101                         contig_high = efi_md_end(md);
1102                         for (q = p + efi_desc_size; q < efi_map_end;
1103                              q += efi_desc_size) {
1104                                 check_md = q;
1105                                 if (!efi_wb(check_md))
1106                                         break;
1107                                 if (contig_high != check_md->phys_addr)
1108                                         break;
1109                                 contig_high = efi_md_end(check_md);
1110                         }
1111                         contig_high = GRANULEROUNDDOWN(contig_high);
1112                 }
1113                 if (!is_memory_available(md))
1114                         continue;
1115
1116 #ifdef CONFIG_CRASH_DUMP
1117                 /* saved_max_pfn should ignore max_addr= command line arg */
1118                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1119                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1120 #endif
1121                 /*
1122                  * Round ends inward to granule boundaries
1123                  * Give trimmings to uncached allocator
1124                  */
1125                 if (md->phys_addr < contig_low) {
1126                         lim = min(efi_md_end(md), contig_low);
1127                         if (efi_uc(md)) {
1128                                 if (k > kern_memmap &&
1129                                     (k-1)->attribute == EFI_MEMORY_UC &&
1130                                     kmd_end(k-1) == md->phys_addr) {
1131                                         (k-1)->num_pages +=
1132                                                 (lim - md->phys_addr)
1133                                                 >> EFI_PAGE_SHIFT;
1134                                 } else {
1135                                         k->attribute = EFI_MEMORY_UC;
1136                                         k->start = md->phys_addr;
1137                                         k->num_pages = (lim - md->phys_addr)
1138                                                 >> EFI_PAGE_SHIFT;
1139                                         k++;
1140                                 }
1141                         }
1142                         as = contig_low;
1143                 } else
1144                         as = md->phys_addr;
1145
1146                 if (efi_md_end(md) > contig_high) {
1147                         lim = max(md->phys_addr, contig_high);
1148                         if (efi_uc(md)) {
1149                                 if (lim == md->phys_addr && k > kern_memmap &&
1150                                     (k-1)->attribute == EFI_MEMORY_UC &&
1151                                     kmd_end(k-1) == md->phys_addr) {
1152                                         (k-1)->num_pages += md->num_pages;
1153                                 } else {
1154                                         k->attribute = EFI_MEMORY_UC;
1155                                         k->start = lim;
1156                                         k->num_pages = (efi_md_end(md) - lim)
1157                                                 >> EFI_PAGE_SHIFT;
1158                                         k++;
1159                                 }
1160                         }
1161                         ae = contig_high;
1162                 } else
1163                         ae = efi_md_end(md);
1164
1165                 /* keep within max_addr= and min_addr= command line arg */
1166                 as = max(as, min_addr);
1167                 ae = min(ae, max_addr);
1168                 if (ae <= as)
1169                         continue;
1170
1171                 /* avoid going over mem= command line arg */
1172                 if (total_mem + (ae - as) > mem_limit)
1173                         ae -= total_mem + (ae - as) - mem_limit;
1174
1175                 if (ae <= as)
1176                         continue;
1177                 if (prev && kmd_end(prev) == md->phys_addr) {
1178                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1179                         total_mem += ae - as;
1180                         continue;
1181                 }
1182                 k->attribute = EFI_MEMORY_WB;
1183                 k->start = as;
1184                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1185                 total_mem += ae - as;
1186                 prev = k++;
1187         }
1188         k->start = ~0L; /* end-marker */
1189
1190         /* reserve the memory we are using for kern_memmap */
1191         *s = (u64)kern_memmap;
1192         *e = (u64)++k;
1193
1194         return total_mem;
1195 }
1196
1197 void
1198 efi_initialize_iomem_resources(struct resource *code_resource,
1199                                struct resource *data_resource,
1200                                struct resource *bss_resource)
1201 {
1202         struct resource *res;
1203         void *efi_map_start, *efi_map_end, *p;
1204         efi_memory_desc_t *md;
1205         u64 efi_desc_size;
1206         char *name;
1207         unsigned long flags;
1208
1209         efi_map_start = __va(ia64_boot_param->efi_memmap);
1210         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1211         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1212
1213         res = NULL;
1214
1215         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1216                 md = p;
1217
1218                 if (md->num_pages == 0) /* should not happen */
1219                         continue;
1220
1221                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1222                 switch (md->type) {
1223
1224                         case EFI_MEMORY_MAPPED_IO:
1225                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1226                                 continue;
1227
1228                         case EFI_LOADER_CODE:
1229                         case EFI_LOADER_DATA:
1230                         case EFI_BOOT_SERVICES_DATA:
1231                         case EFI_BOOT_SERVICES_CODE:
1232                         case EFI_CONVENTIONAL_MEMORY:
1233                                 if (md->attribute & EFI_MEMORY_WP) {
1234                                         name = "System ROM";
1235                                         flags |= IORESOURCE_READONLY;
1236                                 } else if (md->attribute == EFI_MEMORY_UC)
1237                                         name = "Uncached RAM";
1238                                 else
1239                                         name = "System RAM";
1240                                 break;
1241
1242                         case EFI_ACPI_MEMORY_NVS:
1243                                 name = "ACPI Non-volatile Storage";
1244                                 break;
1245
1246                         case EFI_UNUSABLE_MEMORY:
1247                                 name = "reserved";
1248                                 flags |= IORESOURCE_DISABLED;
1249                                 break;
1250
1251                         case EFI_RESERVED_TYPE:
1252                         case EFI_RUNTIME_SERVICES_CODE:
1253                         case EFI_RUNTIME_SERVICES_DATA:
1254                         case EFI_ACPI_RECLAIM_MEMORY:
1255                         default:
1256                                 name = "reserved";
1257                                 break;
1258                 }
1259
1260                 if ((res = kzalloc(sizeof(struct resource),
1261                                    GFP_KERNEL)) == NULL) {
1262                         printk(KERN_ERR
1263                                "failed to allocate resource for iomem\n");
1264                         return;
1265                 }
1266
1267                 res->name = name;
1268                 res->start = md->phys_addr;
1269                 res->end = md->phys_addr + efi_md_size(md) - 1;
1270                 res->flags = flags;
1271
1272                 if (insert_resource(&iomem_resource, res) < 0)
1273                         kfree(res);
1274                 else {
1275                         /*
1276                          * We don't know which region contains
1277                          * kernel data so we try it repeatedly and
1278                          * let the resource manager test it.
1279                          */
1280                         insert_resource(res, code_resource);
1281                         insert_resource(res, data_resource);
1282                         insert_resource(res, bss_resource);
1283 #ifdef CONFIG_KEXEC
1284                         insert_resource(res, &efi_memmap_res);
1285                         insert_resource(res, &boot_param_res);
1286                         if (crashk_res.end > crashk_res.start)
1287                                 insert_resource(res, &crashk_res);
1288 #endif
1289                 }
1290         }
1291 }
1292
1293 #ifdef CONFIG_KEXEC
1294 /* find a block of memory aligned to 64M exclude reserved regions
1295    rsvd_regions are sorted
1296  */
1297 unsigned long __init
1298 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1299 {
1300         int i;
1301         u64 start, end;
1302         u64 alignment = 1UL << _PAGE_SIZE_64M;
1303         void *efi_map_start, *efi_map_end, *p;
1304         efi_memory_desc_t *md;
1305         u64 efi_desc_size;
1306
1307         efi_map_start = __va(ia64_boot_param->efi_memmap);
1308         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1309         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1310
1311         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1312                 md = p;
1313                 if (!efi_wb(md))
1314                         continue;
1315                 start = ALIGN(md->phys_addr, alignment);
1316                 end = efi_md_end(md);
1317                 for (i = 0; i < n; i++) {
1318                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1319                                 if (__pa(r[i].start) > start + size)
1320                                         return start;
1321                                 start = ALIGN(__pa(r[i].end), alignment);
1322                                 if (i < n-1 &&
1323                                     __pa(r[i+1].start) < start + size)
1324                                         continue;
1325                                 else
1326                                         break;
1327                         }
1328                 }
1329                 if (end > start + size)
1330                         return start;
1331         }
1332
1333         printk(KERN_WARNING
1334                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1335         return ~0UL;
1336 }
1337 #endif
1338
1339 #ifdef CONFIG_CRASH_DUMP
1340 /* locate the size find a the descriptor at a certain address */
1341 unsigned long __init
1342 vmcore_find_descriptor_size (unsigned long address)
1343 {
1344         void *efi_map_start, *efi_map_end, *p;
1345         efi_memory_desc_t *md;
1346         u64 efi_desc_size;
1347         unsigned long ret = 0;
1348
1349         efi_map_start = __va(ia64_boot_param->efi_memmap);
1350         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1351         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1352
1353         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1354                 md = p;
1355                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1356                     && md->phys_addr == address) {
1357                         ret = efi_md_size(md);
1358                         break;
1359                 }
1360         }
1361
1362         if (ret == 0)
1363                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1364
1365         return ret;
1366 }
1367 #endif