2 * Extensible Firmware Interface
4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 * Stephane Eranian <eranian@hpl.hp.com>
11 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
12 * Bjorn Helgaas <bjorn.helgaas@hp.com>
14 * All EFI Runtime Services are not implemented yet as EFI only
15 * supports physical mode addressing on SoftSDV. This is to be fixed
16 * in a future version. --drummond 1999-07-20
18 * Implemented EFI runtime services and virtual mode calls. --davidm
20 * Goutham Rao: <goutham.rao@intel.com>
21 * Skip non-WB memory and ignore empty memory ranges.
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/init.h>
26 #include <linux/types.h>
27 #include <linux/time.h>
28 #include <linux/efi.h>
31 #include <asm/kregs.h>
32 #include <asm/meminit.h>
33 #include <asm/pgtable.h>
34 #include <asm/processor.h>
39 extern efi_status_t efi_call_phys (void *, ...);
43 static efi_runtime_services_t *runtime;
44 static unsigned long mem_limit = ~0UL, max_addr = ~0UL;
46 #define efi_call_virt(f, args...) (*(f))(args)
48 #define STUB_GET_TIME(prefix, adjust_arg) \
50 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
52 struct ia64_fpreg fr[6]; \
53 efi_time_cap_t *atc = NULL; \
57 atc = adjust_arg(tc); \
58 ia64_save_scratch_fpregs(fr); \
59 ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
60 ia64_load_scratch_fpregs(fr); \
64 #define STUB_SET_TIME(prefix, adjust_arg) \
66 prefix##_set_time (efi_time_t *tm) \
68 struct ia64_fpreg fr[6]; \
71 ia64_save_scratch_fpregs(fr); \
72 ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
73 ia64_load_scratch_fpregs(fr); \
77 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
79 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
81 struct ia64_fpreg fr[6]; \
84 ia64_save_scratch_fpregs(fr); \
85 ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
86 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
87 ia64_load_scratch_fpregs(fr); \
91 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
93 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
95 struct ia64_fpreg fr[6]; \
96 efi_time_t *atm = NULL; \
100 atm = adjust_arg(tm); \
101 ia64_save_scratch_fpregs(fr); \
102 ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
104 ia64_load_scratch_fpregs(fr); \
108 #define STUB_GET_VARIABLE(prefix, adjust_arg) \
109 static efi_status_t \
110 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
111 unsigned long *data_size, void *data) \
113 struct ia64_fpreg fr[6]; \
118 aattr = adjust_arg(attr); \
119 ia64_save_scratch_fpregs(fr); \
120 ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
121 adjust_arg(name), adjust_arg(vendor), aattr, \
122 adjust_arg(data_size), adjust_arg(data)); \
123 ia64_load_scratch_fpregs(fr); \
127 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
128 static efi_status_t \
129 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
131 struct ia64_fpreg fr[6]; \
134 ia64_save_scratch_fpregs(fr); \
135 ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
136 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
137 ia64_load_scratch_fpregs(fr); \
141 #define STUB_SET_VARIABLE(prefix, adjust_arg) \
142 static efi_status_t \
143 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
144 unsigned long data_size, void *data) \
146 struct ia64_fpreg fr[6]; \
149 ia64_save_scratch_fpregs(fr); \
150 ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
151 adjust_arg(name), adjust_arg(vendor), attr, data_size, \
153 ia64_load_scratch_fpregs(fr); \
157 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
158 static efi_status_t \
159 prefix##_get_next_high_mono_count (u32 *count) \
161 struct ia64_fpreg fr[6]; \
164 ia64_save_scratch_fpregs(fr); \
165 ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
166 __va(runtime->get_next_high_mono_count), adjust_arg(count)); \
167 ia64_load_scratch_fpregs(fr); \
171 #define STUB_RESET_SYSTEM(prefix, adjust_arg) \
173 prefix##_reset_system (int reset_type, efi_status_t status, \
174 unsigned long data_size, efi_char16_t *data) \
176 struct ia64_fpreg fr[6]; \
177 efi_char16_t *adata = NULL; \
180 adata = adjust_arg(data); \
182 ia64_save_scratch_fpregs(fr); \
183 efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
184 reset_type, status, data_size, adata); \
185 /* should not return, but just in case... */ \
186 ia64_load_scratch_fpregs(fr); \
189 #define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
191 STUB_GET_TIME(phys, phys_ptr)
192 STUB_SET_TIME(phys, phys_ptr)
193 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
194 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
195 STUB_GET_VARIABLE(phys, phys_ptr)
196 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
197 STUB_SET_VARIABLE(phys, phys_ptr)
198 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
199 STUB_RESET_SYSTEM(phys, phys_ptr)
203 STUB_GET_TIME(virt, id)
204 STUB_SET_TIME(virt, id)
205 STUB_GET_WAKEUP_TIME(virt, id)
206 STUB_SET_WAKEUP_TIME(virt, id)
207 STUB_GET_VARIABLE(virt, id)
208 STUB_GET_NEXT_VARIABLE(virt, id)
209 STUB_SET_VARIABLE(virt, id)
210 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
211 STUB_RESET_SYSTEM(virt, id)
214 efi_gettimeofday (struct timespec *ts)
218 memset(ts, 0, sizeof(ts));
219 if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
222 ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
223 ts->tv_nsec = tm.nanosecond;
227 is_available_memory (efi_memory_desc_t *md)
229 if (!(md->attribute & EFI_MEMORY_WB))
233 case EFI_LOADER_CODE:
234 case EFI_LOADER_DATA:
235 case EFI_BOOT_SERVICES_CODE:
236 case EFI_BOOT_SERVICES_DATA:
237 case EFI_CONVENTIONAL_MEMORY:
243 typedef struct kern_memdesc {
249 static kern_memdesc_t *kern_memmap;
251 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
254 kmd_end(kern_memdesc_t *kmd)
256 return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
260 efi_md_end(efi_memory_desc_t *md)
262 return (md->phys_addr + efi_md_size(md));
266 efi_wb(efi_memory_desc_t *md)
268 return (md->attribute & EFI_MEMORY_WB);
272 efi_uc(efi_memory_desc_t *md)
274 return (md->attribute & EFI_MEMORY_UC);
278 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
281 u64 start, end, voff;
283 voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
284 for (k = kern_memmap; k->start != ~0UL; k++) {
285 if (k->attribute != attr)
287 start = PAGE_ALIGN(k->start);
288 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
290 if ((*callback)(start + voff, end + voff, arg) < 0)
296 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
297 * has memory that is available for OS use.
300 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
302 walk(callback, arg, EFI_MEMORY_WB);
306 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
307 * has memory that is available for uncached allocator.
310 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
312 walk(callback, arg, EFI_MEMORY_UC);
316 * Look for the PAL_CODE region reported by EFI and maps it using an
317 * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
318 * Abstraction Layer chapter 11 in ADAG
322 efi_get_pal_addr (void)
324 void *efi_map_start, *efi_map_end, *p;
325 efi_memory_desc_t *md;
327 int pal_code_count = 0;
330 efi_map_start = __va(ia64_boot_param->efi_memmap);
331 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
332 efi_desc_size = ia64_boot_param->efi_memdesc_size;
334 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
336 if (md->type != EFI_PAL_CODE)
339 if (++pal_code_count > 1) {
340 printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
345 * The only ITLB entry in region 7 that is used is the one installed by
346 * __start(). That entry covers a 64MB range.
348 mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
349 vaddr = PAGE_OFFSET + md->phys_addr;
352 * We must check that the PAL mapping won't overlap with the kernel
355 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
356 * 256KB and that only one ITR is needed to map it. This implies that the
357 * PAL code is always aligned on its size, i.e., the closest matching page
358 * size supported by the TLB. Therefore PAL code is guaranteed never to
359 * cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
360 * now the following test is enough to determine whether or not we need a
361 * dedicated ITR for the PAL code.
363 if ((vaddr & mask) == (KERNEL_START & mask)) {
364 printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
369 if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
370 panic("Woah! PAL code size bigger than a granule!");
373 mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
375 printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
376 smp_processor_id(), md->phys_addr,
377 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
378 vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
380 return __va(md->phys_addr);
382 printk(KERN_WARNING "%s: no PAL-code memory-descriptor found",
388 efi_map_pal_code (void)
390 void *pal_vaddr = efi_get_pal_addr ();
397 * Cannot write to CRx with PSR.ic=1
399 psr = ia64_clear_ic();
400 ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
401 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
403 ia64_set_psr(psr); /* restore psr */
410 void *efi_map_start, *efi_map_end;
411 efi_config_table_t *config_tables;
414 char *cp, vendor[100] = "unknown";
415 extern char saved_command_line[];
418 /* it's too early to be able to use the standard kernel command line support... */
419 for (cp = saved_command_line; *cp; ) {
420 if (memcmp(cp, "mem=", 4) == 0) {
421 mem_limit = memparse(cp + 4, &cp);
422 } else if (memcmp(cp, "max_addr=", 9) == 0) {
423 max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
425 while (*cp != ' ' && *cp)
431 if (max_addr != ~0UL)
432 printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
434 efi.systab = __va(ia64_boot_param->efi_systab);
437 * Verify the EFI Table
439 if (efi.systab == NULL)
440 panic("Woah! Can't find EFI system table.\n");
441 if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
442 panic("Woah! EFI system table signature incorrect\n");
443 if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
444 printk(KERN_WARNING "Warning: EFI system table major version mismatch: "
445 "got %d.%02d, expected %d.%02d\n",
446 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff,
447 EFI_SYSTEM_TABLE_REVISION >> 16, EFI_SYSTEM_TABLE_REVISION & 0xffff);
449 config_tables = __va(efi.systab->tables);
451 /* Show what we know for posterity */
452 c16 = __va(efi.systab->fw_vendor);
454 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
459 printk(KERN_INFO "EFI v%u.%.02u by %s:",
460 efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
462 efi.mps = EFI_INVALID_TABLE_ADDR;
463 efi.acpi = EFI_INVALID_TABLE_ADDR;
464 efi.acpi20 = EFI_INVALID_TABLE_ADDR;
465 efi.smbios = EFI_INVALID_TABLE_ADDR;
466 efi.sal_systab = EFI_INVALID_TABLE_ADDR;
467 efi.boot_info = EFI_INVALID_TABLE_ADDR;
468 efi.hcdp = EFI_INVALID_TABLE_ADDR;
469 efi.uga = EFI_INVALID_TABLE_ADDR;
471 for (i = 0; i < (int) efi.systab->nr_tables; i++) {
472 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
473 efi.mps = config_tables[i].table;
474 printk(" MPS=0x%lx", config_tables[i].table);
475 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
476 efi.acpi20 = config_tables[i].table;
477 printk(" ACPI 2.0=0x%lx", config_tables[i].table);
478 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
479 efi.acpi = config_tables[i].table;
480 printk(" ACPI=0x%lx", config_tables[i].table);
481 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
482 efi.smbios = config_tables[i].table;
483 printk(" SMBIOS=0x%lx", config_tables[i].table);
484 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
485 efi.sal_systab = config_tables[i].table;
486 printk(" SALsystab=0x%lx", config_tables[i].table);
487 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
488 efi.hcdp = config_tables[i].table;
489 printk(" HCDP=0x%lx", config_tables[i].table);
494 runtime = __va(efi.systab->runtime);
495 efi.get_time = phys_get_time;
496 efi.set_time = phys_set_time;
497 efi.get_wakeup_time = phys_get_wakeup_time;
498 efi.set_wakeup_time = phys_set_wakeup_time;
499 efi.get_variable = phys_get_variable;
500 efi.get_next_variable = phys_get_next_variable;
501 efi.set_variable = phys_set_variable;
502 efi.get_next_high_mono_count = phys_get_next_high_mono_count;
503 efi.reset_system = phys_reset_system;
505 efi_map_start = __va(ia64_boot_param->efi_memmap);
506 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
507 efi_desc_size = ia64_boot_param->efi_memdesc_size;
510 /* print EFI memory map: */
512 efi_memory_desc_t *md;
515 for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
517 printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
518 i, md->type, md->attribute, md->phys_addr,
519 md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
520 md->num_pages >> (20 - EFI_PAGE_SHIFT));
526 efi_enter_virtual_mode();
530 efi_enter_virtual_mode (void)
532 void *efi_map_start, *efi_map_end, *p;
533 efi_memory_desc_t *md;
537 efi_map_start = __va(ia64_boot_param->efi_memmap);
538 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
539 efi_desc_size = ia64_boot_param->efi_memdesc_size;
541 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
543 if (md->attribute & EFI_MEMORY_RUNTIME) {
545 * Some descriptors have multiple bits set, so the order of
546 * the tests is relevant.
548 if (md->attribute & EFI_MEMORY_WB) {
549 md->virt_addr = (u64) __va(md->phys_addr);
550 } else if (md->attribute & EFI_MEMORY_UC) {
551 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
552 } else if (md->attribute & EFI_MEMORY_WC) {
554 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
560 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
561 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
563 } else if (md->attribute & EFI_MEMORY_WT) {
565 md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
566 | _PAGE_D | _PAGE_MA_WT
570 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
571 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
577 status = efi_call_phys(__va(runtime->set_virtual_address_map),
578 ia64_boot_param->efi_memmap_size,
579 efi_desc_size, ia64_boot_param->efi_memdesc_version,
580 ia64_boot_param->efi_memmap);
581 if (status != EFI_SUCCESS) {
582 printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
583 "(status=%lu)\n", status);
588 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
590 efi.get_time = virt_get_time;
591 efi.set_time = virt_set_time;
592 efi.get_wakeup_time = virt_get_wakeup_time;
593 efi.set_wakeup_time = virt_set_wakeup_time;
594 efi.get_variable = virt_get_variable;
595 efi.get_next_variable = virt_get_next_variable;
596 efi.set_variable = virt_set_variable;
597 efi.get_next_high_mono_count = virt_get_next_high_mono_count;
598 efi.reset_system = virt_reset_system;
602 * Walk the EFI memory map looking for the I/O port range. There can only be one entry of
603 * this type, other I/O port ranges should be described via ACPI.
606 efi_get_iobase (void)
608 void *efi_map_start, *efi_map_end, *p;
609 efi_memory_desc_t *md;
612 efi_map_start = __va(ia64_boot_param->efi_memmap);
613 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
614 efi_desc_size = ia64_boot_param->efi_memdesc_size;
616 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
618 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
619 if (md->attribute & EFI_MEMORY_UC)
620 return md->phys_addr;
626 static struct kern_memdesc *
627 kern_memory_descriptor (unsigned long phys_addr)
629 struct kern_memdesc *md;
631 for (md = kern_memmap; md->start != ~0UL; md++) {
632 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
638 static efi_memory_desc_t *
639 efi_memory_descriptor (unsigned long phys_addr)
641 void *efi_map_start, *efi_map_end, *p;
642 efi_memory_desc_t *md;
645 efi_map_start = __va(ia64_boot_param->efi_memmap);
646 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
647 efi_desc_size = ia64_boot_param->efi_memdesc_size;
649 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
652 if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
659 efi_mem_type (unsigned long phys_addr)
661 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
669 efi_mem_attributes (unsigned long phys_addr)
671 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
674 return md->attribute;
677 EXPORT_SYMBOL(efi_mem_attributes);
680 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
682 unsigned long end = phys_addr + size;
683 efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
690 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
691 * the kernel that firmware needs this region mapped.
693 attr = md->attribute & ~EFI_MEMORY_RUNTIME;
695 unsigned long md_end = efi_md_end(md);
700 md = efi_memory_descriptor(md_end);
701 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
708 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
710 unsigned long end = phys_addr + size;
711 struct kern_memdesc *md;
715 * This is a hack for ioremap calls before we set up kern_memmap.
716 * Maybe we should do efi_memmap_init() earlier instead.
719 attr = efi_mem_attribute(phys_addr, size);
720 if (attr & EFI_MEMORY_WB)
721 return EFI_MEMORY_WB;
725 md = kern_memory_descriptor(phys_addr);
729 attr = md->attribute;
731 unsigned long md_end = kmd_end(md);
736 md = kern_memory_descriptor(md_end);
737 if (!md || md->attribute != attr)
742 EXPORT_SYMBOL(kern_mem_attribute);
745 valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
750 * /dev/mem reads and writes use copy_to_user(), which implicitly
751 * uses a granule-sized kernel identity mapping. It's really
752 * only safe to do this for regions in kern_memmap. For more
753 * details, see Documentation/ia64/aliasing.txt.
755 attr = kern_mem_attribute(phys_addr, size);
756 if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
762 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
765 * MMIO regions are often missing from the EFI memory map.
766 * We must allow mmap of them for programs like X, so we
767 * currently can't do any useful validation.
773 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
776 unsigned long phys_addr = pfn << PAGE_SHIFT;
780 * For /dev/mem mmap, we use user mappings, but if the region is
781 * in kern_memmap (and hence may be covered by a kernel mapping),
782 * we must use the same attribute as the kernel mapping.
784 attr = kern_mem_attribute(phys_addr, size);
785 if (attr & EFI_MEMORY_WB)
786 return pgprot_cacheable(vma_prot);
787 else if (attr & EFI_MEMORY_UC)
788 return pgprot_noncached(vma_prot);
791 * Some chipsets don't support UC access to memory. If
792 * WB is supported, we prefer that.
794 if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
795 return pgprot_cacheable(vma_prot);
797 return pgprot_noncached(vma_prot);
801 efi_uart_console_only(void)
804 char *s, name[] = "ConOut";
805 efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
806 efi_char16_t *utf16, name_utf16[32];
807 unsigned char data[1024];
808 unsigned long size = sizeof(data);
809 struct efi_generic_dev_path *hdr, *end_addr;
812 /* Convert to UTF-16 */
816 *utf16++ = *s++ & 0x7f;
819 status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
820 if (status != EFI_SUCCESS) {
821 printk(KERN_ERR "No EFI %s variable?\n", name);
825 hdr = (struct efi_generic_dev_path *) data;
826 end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
827 while (hdr < end_addr) {
828 if (hdr->type == EFI_DEV_MSG &&
829 hdr->sub_type == EFI_DEV_MSG_UART)
831 else if (hdr->type == EFI_DEV_END_PATH ||
832 hdr->type == EFI_DEV_END_PATH2) {
835 if (hdr->sub_type == EFI_DEV_END_ENTIRE)
839 hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
841 printk(KERN_ERR "Malformed %s value\n", name);
846 * Look for the first granule aligned memory descriptor memory
847 * that is big enough to hold EFI memory map. Make sure this
848 * descriptor is atleast granule sized so it does not get trimmed
850 struct kern_memdesc *
851 find_memmap_space (void)
853 u64 contig_low=0, contig_high=0;
855 void *efi_map_start, *efi_map_end, *p, *q;
856 efi_memory_desc_t *md, *pmd = NULL, *check_md;
857 u64 space_needed, efi_desc_size;
858 unsigned long total_mem = 0;
860 efi_map_start = __va(ia64_boot_param->efi_memmap);
861 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
862 efi_desc_size = ia64_boot_param->efi_memdesc_size;
865 * Worst case: we need 3 kernel descriptors for each efi descriptor
866 * (if every entry has a WB part in the middle, and UC head and tail),
867 * plus one for the end marker.
869 space_needed = sizeof(kern_memdesc_t) *
870 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
872 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
877 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
878 contig_low = GRANULEROUNDUP(md->phys_addr);
879 contig_high = efi_md_end(md);
880 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
882 if (!efi_wb(check_md))
884 if (contig_high != check_md->phys_addr)
886 contig_high = efi_md_end(check_md);
888 contig_high = GRANULEROUNDDOWN(contig_high);
890 if (!is_available_memory(md) || md->type == EFI_LOADER_DATA)
893 /* Round ends inward to granule boundaries */
894 as = max(contig_low, md->phys_addr);
895 ae = min(contig_high, efi_md_end(md));
897 /* keep within max_addr= command line arg */
898 ae = min(ae, max_addr);
902 /* avoid going over mem= command line arg */
903 if (total_mem + (ae - as) > mem_limit)
904 ae -= total_mem + (ae - as) - mem_limit;
909 if (ae - as > space_needed)
912 if (p >= efi_map_end)
913 panic("Can't allocate space for kernel memory descriptors");
919 * Walk the EFI memory map and gather all memory available for kernel
920 * to use. We can allocate partial granules only if the unavailable
921 * parts exist, and are WB.
924 efi_memmap_init(unsigned long *s, unsigned long *e)
926 struct kern_memdesc *k, *prev = NULL;
927 u64 contig_low=0, contig_high=0;
929 void *efi_map_start, *efi_map_end, *p, *q;
930 efi_memory_desc_t *md, *pmd = NULL, *check_md;
932 unsigned long total_mem = 0;
934 k = kern_memmap = find_memmap_space();
936 efi_map_start = __va(ia64_boot_param->efi_memmap);
937 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
938 efi_desc_size = ia64_boot_param->efi_memdesc_size;
940 for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
943 if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
944 md->type == EFI_BOOT_SERVICES_DATA)) {
945 k->attribute = EFI_MEMORY_UC;
946 k->start = md->phys_addr;
947 k->num_pages = md->num_pages;
952 if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
953 contig_low = GRANULEROUNDUP(md->phys_addr);
954 contig_high = efi_md_end(md);
955 for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
957 if (!efi_wb(check_md))
959 if (contig_high != check_md->phys_addr)
961 contig_high = efi_md_end(check_md);
963 contig_high = GRANULEROUNDDOWN(contig_high);
965 if (!is_available_memory(md))
969 * Round ends inward to granule boundaries
970 * Give trimmings to uncached allocator
972 if (md->phys_addr < contig_low) {
973 lim = min(efi_md_end(md), contig_low);
975 if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
976 kmd_end(k-1) == md->phys_addr) {
977 (k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
979 k->attribute = EFI_MEMORY_UC;
980 k->start = md->phys_addr;
981 k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
989 if (efi_md_end(md) > contig_high) {
990 lim = max(md->phys_addr, contig_high);
992 if (lim == md->phys_addr && k > kern_memmap &&
993 (k-1)->attribute == EFI_MEMORY_UC &&
994 kmd_end(k-1) == md->phys_addr) {
995 (k-1)->num_pages += md->num_pages;
997 k->attribute = EFI_MEMORY_UC;
999 k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1005 ae = efi_md_end(md);
1007 /* keep within max_addr= command line arg */
1008 ae = min(ae, max_addr);
1012 /* avoid going over mem= command line arg */
1013 if (total_mem + (ae - as) > mem_limit)
1014 ae -= total_mem + (ae - as) - mem_limit;
1018 if (prev && kmd_end(prev) == md->phys_addr) {
1019 prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1020 total_mem += ae - as;
1023 k->attribute = EFI_MEMORY_WB;
1025 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1026 total_mem += ae - as;
1029 k->start = ~0L; /* end-marker */
1031 /* reserve the memory we are using for kern_memmap */
1032 *s = (u64)kern_memmap;
1037 efi_initialize_iomem_resources(struct resource *code_resource,
1038 struct resource *data_resource)
1040 struct resource *res;
1041 void *efi_map_start, *efi_map_end, *p;
1042 efi_memory_desc_t *md;
1045 unsigned long flags;
1047 efi_map_start = __va(ia64_boot_param->efi_memmap);
1048 efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
1049 efi_desc_size = ia64_boot_param->efi_memdesc_size;
1053 for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1056 if (md->num_pages == 0) /* should not happen */
1059 flags = IORESOURCE_MEM;
1062 case EFI_MEMORY_MAPPED_IO:
1063 case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1066 case EFI_LOADER_CODE:
1067 case EFI_LOADER_DATA:
1068 case EFI_BOOT_SERVICES_DATA:
1069 case EFI_BOOT_SERVICES_CODE:
1070 case EFI_CONVENTIONAL_MEMORY:
1071 if (md->attribute & EFI_MEMORY_WP) {
1072 name = "System ROM";
1073 flags |= IORESOURCE_READONLY;
1075 name = "System RAM";
1079 case EFI_ACPI_MEMORY_NVS:
1080 name = "ACPI Non-volatile Storage";
1081 flags |= IORESOURCE_BUSY;
1084 case EFI_UNUSABLE_MEMORY:
1086 flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1089 case EFI_RESERVED_TYPE:
1090 case EFI_RUNTIME_SERVICES_CODE:
1091 case EFI_RUNTIME_SERVICES_DATA:
1092 case EFI_ACPI_RECLAIM_MEMORY:
1095 flags |= IORESOURCE_BUSY;
1099 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1100 printk(KERN_ERR "failed to alocate resource for iomem\n");
1105 res->start = md->phys_addr;
1106 res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1109 if (insert_resource(&iomem_resource, res) < 0)
1113 * We don't know which region contains
1114 * kernel data so we try it repeatedly and
1115 * let the resource manager test it.
1117 insert_resource(res, code_resource);
1118 insert_resource(res, data_resource);