4 * Copyright (C) 2000-2010 Axis Communications AB
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/wait.h>
11 #include <asm/uaccess.h>
12 #include <arch/system.h>
14 extern int find_fixup_code(struct pt_regs *);
15 extern void die_if_kernel(const char *, struct pt_regs *, long);
16 extern void show_registers(struct pt_regs *regs);
18 /* debug of low-level TLB reload */
27 /* debug of higher-level faults */
30 /* current active page directory */
32 DEFINE_PER_CPU(pgd_t *, current_pgd);
33 unsigned long cris_signal_return_page;
36 * This routine handles page faults. It determines the address,
37 * and the problem, and then passes it off to one of the appropriate
40 * Notice that the address we're given is aligned to the page the fault
41 * occurred in, since we only get the PFN in R_MMU_CAUSE not the complete
45 * bit 0 == 0 means no page found, 1 means protection fault
46 * bit 1 == 0 means read, 1 means write
48 * If this routine detects a bad access, it returns 1, otherwise it
53 do_page_fault(unsigned long address, struct pt_regs *regs,
54 int protection, int writeaccess)
56 struct task_struct *tsk;
58 struct vm_area_struct * vma;
61 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
62 ((writeaccess & 1) ? FAULT_FLAG_WRITE : 0);
65 "Page fault for %lX on %X at %lX, prot %d write %d\n",
66 address, smp_processor_id(), instruction_pointer(regs),
67 protection, writeaccess));
72 * We fault-in kernel-space virtual memory on-demand. The
73 * 'reference' page table is init_mm.pgd.
75 * NOTE! We MUST NOT take any locks for this case. We may
76 * be in an interrupt or a critical region, and should
77 * only copy the information from the master page table,
80 * NOTE2: This is done so that, when updating the vmalloc
81 * mappings we don't have to walk all processes pgdirs and
82 * add the high mappings all at once. Instead we do it as they
83 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
84 * bit set so sometimes the TLB can use a lingering entry.
86 * This verifies that the fault happens in kernel space
87 * and that the fault was not a protection error (error_code & 1).
90 if (address >= VMALLOC_START &&
95 /* When stack execution is not allowed we store the signal
96 * trampolines in the reserved cris_signal_return_page.
97 * Handle this in the exact same way as vmalloc (we know
98 * that the mapping is there and is valid so no need to
99 * call handle_mm_fault).
101 if (cris_signal_return_page &&
102 address == cris_signal_return_page &&
103 !protection && user_mode(regs))
106 /* we can and should enable interrupts at this point */
110 info.si_code = SEGV_MAPERR;
113 * If we're in an interrupt or "atomic" operation or have no
114 * user context, we must not take the fault.
117 if (in_atomic() || !mm)
121 down_read(&mm->mmap_sem);
122 vma = find_vma(mm, address);
125 if (vma->vm_start <= address)
127 if (!(vma->vm_flags & VM_GROWSDOWN))
129 if (user_mode(regs)) {
131 * accessing the stack below usp is always a bug.
132 * we get page-aligned addresses so we can only check
133 * if we're within a page from usp, but that might be
134 * enough to catch brutal errors at least.
136 if (address + PAGE_SIZE < rdusp())
139 if (expand_stack(vma, address))
143 * Ok, we have a good vm_area for this memory access, so
148 info.si_code = SEGV_ACCERR;
150 /* first do some preliminary protection checks */
152 if (writeaccess == 2){
153 if (!(vma->vm_flags & VM_EXEC))
155 } else if (writeaccess == 1) {
156 if (!(vma->vm_flags & VM_WRITE))
159 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
164 * If for any reason at all we couldn't handle the fault,
165 * make sure we exit gracefully rather than endlessly redo
169 fault = handle_mm_fault(mm, vma, address, flags);
171 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
174 if (unlikely(fault & VM_FAULT_ERROR)) {
175 if (fault & VM_FAULT_OOM)
177 else if (fault & VM_FAULT_SIGBUS)
182 if (flags & FAULT_FLAG_ALLOW_RETRY) {
183 if (fault & VM_FAULT_MAJOR)
187 if (fault & VM_FAULT_RETRY) {
188 flags &= ~FAULT_FLAG_ALLOW_RETRY;
189 flags |= FAULT_FLAG_TRIED;
192 * No need to up_read(&mm->mmap_sem) as we would
193 * have already released it in __lock_page_or_retry
201 up_read(&mm->mmap_sem);
205 * Something tried to access memory that isn't in our memory map..
206 * Fix it, but check if it's kernel or user first..
210 up_read(&mm->mmap_sem);
212 bad_area_nosemaphore:
213 DPG(show_registers(regs));
215 /* User mode accesses just cause a SIGSEGV */
217 if (user_mode(regs)) {
218 printk(KERN_NOTICE "%s (pid %d) segfaults for page "
219 "address %08lx at pc %08lx\n",
221 address, instruction_pointer(regs));
223 /* With DPG on, we've already dumped registers above. */
225 show_registers(regs);
227 #ifdef CONFIG_NO_SEGFAULT_TERMINATION
228 DECLARE_WAIT_QUEUE_HEAD(wq);
229 wait_event_interruptible(wq, 0 == 1);
231 info.si_signo = SIGSEGV;
233 /* info.si_code has been set above */
234 info.si_addr = (void *)address;
235 force_sig_info(SIGSEGV, &info, tsk);
242 /* Are we prepared to handle this kernel fault?
244 * (The kernel has valid exception-points in the source
245 * when it accesses user-memory. When it fails in one
246 * of those points, we find it in a table and do a jump
247 * to some fixup code that loads an appropriate error
251 if (find_fixup_code(regs))
255 * Oops. The kernel tried to access some bad page. We'll have to
256 * terminate things with extreme prejudice.
259 if (!oops_in_progress) {
260 oops_in_progress = 1;
261 if ((unsigned long) (address) < PAGE_SIZE)
262 printk(KERN_ALERT "Unable to handle kernel NULL "
263 "pointer dereference");
265 printk(KERN_ALERT "Unable to handle kernel access"
266 " at virtual address %08lx\n", address);
268 die_if_kernel("Oops", regs, (writeaccess << 1) | protection);
269 oops_in_progress = 0;
275 * We ran out of memory, or some other thing happened to us that made
276 * us unable to handle the page fault gracefully.
280 up_read(&mm->mmap_sem);
281 if (!user_mode(regs))
283 pagefault_out_of_memory();
287 up_read(&mm->mmap_sem);
290 * Send a sigbus, regardless of whether we were in kernel
293 info.si_signo = SIGBUS;
295 info.si_code = BUS_ADRERR;
296 info.si_addr = (void *)address;
297 force_sig_info(SIGBUS, &info, tsk);
299 /* Kernel mode? Handle exceptions or die */
300 if (!user_mode(regs))
307 * Synchronize this task's top level page-table
308 * with the 'reference' page table.
310 * Use current_pgd instead of tsk->active_mm->pgd
311 * since the latter might be unavailable if this
312 * code is executed in a misfortunately run irq
313 * (like inside schedule() between switch_mm and
317 int offset = pgd_index(address);
323 pgd = (pgd_t *)per_cpu(current_pgd, smp_processor_id()) + offset;
324 pgd_k = init_mm.pgd + offset;
326 /* Since we're two-level, we don't need to do both
327 * set_pgd and set_pmd (they do the same thing). If
328 * we go three-level at some point, do the right thing
329 * with pgd_present and set_pgd here.
331 * Also, since the vmalloc area is global, we don't
332 * need to copy individual PTE's, it is enough to
333 * copy the pgd pointer into the pte page of the
334 * root task. If that is there, we'll find our pte if
338 pud = pud_offset(pgd, address);
339 pud_k = pud_offset(pgd_k, address);
340 if (!pud_present(*pud_k))
343 pmd = pmd_offset(pud, address);
344 pmd_k = pmd_offset(pud_k, address);
346 if (!pmd_present(*pmd_k))
347 goto bad_area_nosemaphore;
349 set_pmd(pmd, *pmd_k);
351 /* Make sure the actual PTE exists as well to
352 * catch kernel vmalloc-area accesses to non-mapped
353 * addresses. If we don't do this, this will just
354 * silently loop forever.
357 pte_k = pte_offset_kernel(pmd_k, address);
358 if (!pte_present(*pte_k))
365 /* Find fixup code. */
367 find_fixup_code(struct pt_regs *regs)
369 const struct exception_table_entry *fixup;
370 /* in case of delay slot fault (v32) */
371 unsigned long ip = (instruction_pointer(regs) & ~0x1);
373 fixup = search_exception_tables(ip);
375 /* Adjust the instruction pointer in the stackframe. */
376 instruction_pointer(regs) = fixup->fixup;