2 * arch/cris/arch-v32/drivers/nandflash.c
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/rawnand.h>
20 #include <linux/mtd/partitions.h>
21 #include <arch/memmap.h>
22 #include <hwregs/reg_map.h>
23 #include <hwregs/reg_rdwr.h>
24 #include <hwregs/pio_defs.h>
28 #define MANUAL_ALE_CLE_CONTROL 1
32 #define regf_NCE ce0_n
38 struct mtd_info_wrapper {
39 struct nand_chip chip;
42 /* Bitmask for control pins */
43 #define PIN_BITMASK ((1 << CE_BIT) | (1 << CLE_BIT) | (1 << ALE_BIT))
45 static struct mtd_info *crisv32_mtd;
47 * hardware specific access to control-lines
49 static void crisv32_hwcontrol(struct mtd_info *mtd, int cmd,
54 struct nand_chip *this = mtd_to_nand(mtd);
56 local_irq_save(flags);
58 /* control bits change */
59 if (ctrl & NAND_CTRL_CHANGE) {
60 dout = REG_RD(pio, regi_pio, rw_dout);
61 dout.regf_NCE = (ctrl & NAND_NCE) ? 0 : 1;
63 #if !MANUAL_ALE_CLE_CONTROL
64 if (ctrl & NAND_ALE) {
66 this->IO_ADDR_W = (void __iomem *)REG_ADDR(pio,
67 regi_pio, rw_io_access1);
68 } else if (ctrl & NAND_CLE) {
70 this->IO_ADDR_W = (void __iomem *)REG_ADDR(pio,
71 regi_pio, rw_io_access2);
73 /* A1 = CLE and A0 = ALE low */
74 this->IO_ADDR_W = (void __iomem *)REG_ADDR(pio,
75 regi_pio, rw_io_access0);
79 dout.regf_CLE = (ctrl & NAND_CLE) ? 1 : 0;
80 dout.regf_ALE = (ctrl & NAND_ALE) ? 1 : 0;
82 REG_WR(pio, regi_pio, rw_dout, dout);
86 if (cmd != NAND_CMD_NONE)
87 writeb(cmd, this->IO_ADDR_W);
89 local_irq_restore(flags);
93 * read device ready pin
95 static int crisv32_device_ready(struct mtd_info *mtd)
97 reg_pio_r_din din = REG_RD(pio, regi_pio, r_din);
102 * Main initialization routine
104 struct mtd_info *__init crisv32_nand_flash_probe(void)
106 void __iomem *read_cs;
107 void __iomem *write_cs;
109 struct mtd_info_wrapper *wrapper;
110 struct nand_chip *this;
113 reg_pio_rw_man_ctrl man_ctrl = {
114 .regf_NCE = regk_pio_yes,
115 #if MANUAL_ALE_CLE_CONTROL
116 .regf_ALE = regk_pio_yes,
117 .regf_CLE = regk_pio_yes
121 .regf_NCE = regk_pio_yes,
122 #if MANUAL_ALE_CLE_CONTROL
123 .regf_ALE = regk_pio_yes,
124 .regf_CLE = regk_pio_yes
127 reg_pio_rw_dout dout = { .regf_NCE = 1 };
129 /* Allocate pio pins to pio */
130 crisv32_pinmux_alloc_fixed(pinmux_pio);
131 /* Set up CE, ALE, CLE (ce0_n, a0, a1) for manual control and output */
132 REG_WR(pio, regi_pio, rw_man_ctrl, man_ctrl);
133 REG_WR(pio, regi_pio, rw_dout, dout);
134 REG_WR(pio, regi_pio, rw_oe, oe);
136 /* Allocate memory for MTD device structure and private data */
137 wrapper = kzalloc(sizeof(struct mtd_info_wrapper), GFP_KERNEL);
139 printk(KERN_ERR "Unable to allocate CRISv32 NAND MTD "
140 "device structure.\n");
145 read_cs = write_cs = (void __iomem *)REG_ADDR(pio, regi_pio,
148 /* Get pointer to private data */
149 this = &wrapper->chip;
150 crisv32_mtd = nand_to_mtd(this);
152 /* Set address of NAND IO lines */
153 this->IO_ADDR_R = read_cs;
154 this->IO_ADDR_W = write_cs;
155 this->cmd_ctrl = crisv32_hwcontrol;
156 this->dev_ready = crisv32_device_ready;
157 /* 20 us command delay time */
158 this->chip_delay = 20;
159 this->ecc.mode = NAND_ECC_SOFT;
160 this->ecc.algo = NAND_ECC_HAMMING;
162 /* Enable the following for a flash based bad block table */
163 /* this->bbt_options = NAND_BBT_USE_FLASH; */
165 /* Scan to find existence of the device */
166 if (nand_scan(crisv32_mtd, 1)) {