arm64/sysreg: Add _EL1 into ID_AA64PFR1_EL1 constant names
[platform/kernel/linux-starfive.git] / arch / arm64 / mm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/mmu.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memremap.h>
21 #include <linux/memory.h>
22 #include <linux/fs.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/set_memory.h>
27
28 #include <asm/barrier.h>
29 #include <asm/cputype.h>
30 #include <asm/fixmap.h>
31 #include <asm/kasan.h>
32 #include <asm/kernel-pgtable.h>
33 #include <asm/sections.h>
34 #include <asm/setup.h>
35 #include <linux/sizes.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38 #include <asm/ptdump.h>
39 #include <asm/tlbflush.h>
40 #include <asm/pgalloc.h>
41
42 #define NO_BLOCK_MAPPINGS       BIT(0)
43 #define NO_CONT_MAPPINGS        BIT(1)
44 #define NO_EXEC_MAPPINGS        BIT(2)  /* assumes FEAT_HPDS is not used */
45
46 int idmap_t0sz __ro_after_init;
47
48 #if VA_BITS > 48
49 u64 vabits_actual __ro_after_init = VA_BITS_MIN;
50 EXPORT_SYMBOL(vabits_actual);
51 #endif
52
53 u64 kimage_vaddr __ro_after_init = (u64)&_text;
54 EXPORT_SYMBOL(kimage_vaddr);
55
56 u64 kimage_voffset __ro_after_init;
57 EXPORT_SYMBOL(kimage_voffset);
58
59 u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
60
61 /*
62  * The booting CPU updates the failed status @__early_cpu_boot_status,
63  * with MMU turned off.
64  */
65 long __section(".mmuoff.data.write") __early_cpu_boot_status;
66
67 /*
68  * Empty_zero_page is a special page that is used for zero-initialized data
69  * and COW.
70  */
71 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
72 EXPORT_SYMBOL(empty_zero_page);
73
74 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
75 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
76 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
77
78 static DEFINE_SPINLOCK(swapper_pgdir_lock);
79 static DEFINE_MUTEX(fixmap_lock);
80
81 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
82 {
83         pgd_t *fixmap_pgdp;
84
85         spin_lock(&swapper_pgdir_lock);
86         fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
87         WRITE_ONCE(*fixmap_pgdp, pgd);
88         /*
89          * We need dsb(ishst) here to ensure the page-table-walker sees
90          * our new entry before set_p?d() returns. The fixmap's
91          * flush_tlb_kernel_range() via clear_fixmap() does this for us.
92          */
93         pgd_clear_fixmap();
94         spin_unlock(&swapper_pgdir_lock);
95 }
96
97 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
98                               unsigned long size, pgprot_t vma_prot)
99 {
100         if (!pfn_is_map_memory(pfn))
101                 return pgprot_noncached(vma_prot);
102         else if (file->f_flags & O_SYNC)
103                 return pgprot_writecombine(vma_prot);
104         return vma_prot;
105 }
106 EXPORT_SYMBOL(phys_mem_access_prot);
107
108 static phys_addr_t __init early_pgtable_alloc(int shift)
109 {
110         phys_addr_t phys;
111         void *ptr;
112
113         phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
114                                          MEMBLOCK_ALLOC_NOLEAKTRACE);
115         if (!phys)
116                 panic("Failed to allocate page table page\n");
117
118         /*
119          * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
120          * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
121          * any level of table.
122          */
123         ptr = pte_set_fixmap(phys);
124
125         memset(ptr, 0, PAGE_SIZE);
126
127         /*
128          * Implicit barriers also ensure the zeroed page is visible to the page
129          * table walker
130          */
131         pte_clear_fixmap();
132
133         return phys;
134 }
135
136 static bool pgattr_change_is_safe(u64 old, u64 new)
137 {
138         /*
139          * The following mapping attributes may be updated in live
140          * kernel mappings without the need for break-before-make.
141          */
142         pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
143
144         /* creating or taking down mappings is always safe */
145         if (old == 0 || new == 0)
146                 return true;
147
148         /* live contiguous mappings may not be manipulated at all */
149         if ((old | new) & PTE_CONT)
150                 return false;
151
152         /* Transitioning from Non-Global to Global is unsafe */
153         if (old & ~new & PTE_NG)
154                 return false;
155
156         /*
157          * Changing the memory type between Normal and Normal-Tagged is safe
158          * since Tagged is considered a permission attribute from the
159          * mismatched attribute aliases perspective.
160          */
161         if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
162              (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
163             ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
164              (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
165                 mask |= PTE_ATTRINDX_MASK;
166
167         return ((old ^ new) & ~mask) == 0;
168 }
169
170 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
171                      phys_addr_t phys, pgprot_t prot)
172 {
173         pte_t *ptep;
174
175         ptep = pte_set_fixmap_offset(pmdp, addr);
176         do {
177                 pte_t old_pte = READ_ONCE(*ptep);
178
179                 set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
180
181                 /*
182                  * After the PTE entry has been populated once, we
183                  * only allow updates to the permission attributes.
184                  */
185                 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
186                                               READ_ONCE(pte_val(*ptep))));
187
188                 phys += PAGE_SIZE;
189         } while (ptep++, addr += PAGE_SIZE, addr != end);
190
191         pte_clear_fixmap();
192 }
193
194 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
195                                 unsigned long end, phys_addr_t phys,
196                                 pgprot_t prot,
197                                 phys_addr_t (*pgtable_alloc)(int),
198                                 int flags)
199 {
200         unsigned long next;
201         pmd_t pmd = READ_ONCE(*pmdp);
202
203         BUG_ON(pmd_sect(pmd));
204         if (pmd_none(pmd)) {
205                 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
206                 phys_addr_t pte_phys;
207
208                 if (flags & NO_EXEC_MAPPINGS)
209                         pmdval |= PMD_TABLE_PXN;
210                 BUG_ON(!pgtable_alloc);
211                 pte_phys = pgtable_alloc(PAGE_SHIFT);
212                 __pmd_populate(pmdp, pte_phys, pmdval);
213                 pmd = READ_ONCE(*pmdp);
214         }
215         BUG_ON(pmd_bad(pmd));
216
217         do {
218                 pgprot_t __prot = prot;
219
220                 next = pte_cont_addr_end(addr, end);
221
222                 /* use a contiguous mapping if the range is suitably aligned */
223                 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
224                     (flags & NO_CONT_MAPPINGS) == 0)
225                         __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
226
227                 init_pte(pmdp, addr, next, phys, __prot);
228
229                 phys += next - addr;
230         } while (addr = next, addr != end);
231 }
232
233 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
234                      phys_addr_t phys, pgprot_t prot,
235                      phys_addr_t (*pgtable_alloc)(int), int flags)
236 {
237         unsigned long next;
238         pmd_t *pmdp;
239
240         pmdp = pmd_set_fixmap_offset(pudp, addr);
241         do {
242                 pmd_t old_pmd = READ_ONCE(*pmdp);
243
244                 next = pmd_addr_end(addr, end);
245
246                 /* try section mapping first */
247                 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
248                     (flags & NO_BLOCK_MAPPINGS) == 0) {
249                         pmd_set_huge(pmdp, phys, prot);
250
251                         /*
252                          * After the PMD entry has been populated once, we
253                          * only allow updates to the permission attributes.
254                          */
255                         BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
256                                                       READ_ONCE(pmd_val(*pmdp))));
257                 } else {
258                         alloc_init_cont_pte(pmdp, addr, next, phys, prot,
259                                             pgtable_alloc, flags);
260
261                         BUG_ON(pmd_val(old_pmd) != 0 &&
262                                pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
263                 }
264                 phys += next - addr;
265         } while (pmdp++, addr = next, addr != end);
266
267         pmd_clear_fixmap();
268 }
269
270 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
271                                 unsigned long end, phys_addr_t phys,
272                                 pgprot_t prot,
273                                 phys_addr_t (*pgtable_alloc)(int), int flags)
274 {
275         unsigned long next;
276         pud_t pud = READ_ONCE(*pudp);
277
278         /*
279          * Check for initial section mappings in the pgd/pud.
280          */
281         BUG_ON(pud_sect(pud));
282         if (pud_none(pud)) {
283                 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
284                 phys_addr_t pmd_phys;
285
286                 if (flags & NO_EXEC_MAPPINGS)
287                         pudval |= PUD_TABLE_PXN;
288                 BUG_ON(!pgtable_alloc);
289                 pmd_phys = pgtable_alloc(PMD_SHIFT);
290                 __pud_populate(pudp, pmd_phys, pudval);
291                 pud = READ_ONCE(*pudp);
292         }
293         BUG_ON(pud_bad(pud));
294
295         do {
296                 pgprot_t __prot = prot;
297
298                 next = pmd_cont_addr_end(addr, end);
299
300                 /* use a contiguous mapping if the range is suitably aligned */
301                 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
302                     (flags & NO_CONT_MAPPINGS) == 0)
303                         __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
304
305                 init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
306
307                 phys += next - addr;
308         } while (addr = next, addr != end);
309 }
310
311 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
312                            phys_addr_t phys, pgprot_t prot,
313                            phys_addr_t (*pgtable_alloc)(int),
314                            int flags)
315 {
316         unsigned long next;
317         pud_t *pudp;
318         p4d_t *p4dp = p4d_offset(pgdp, addr);
319         p4d_t p4d = READ_ONCE(*p4dp);
320
321         if (p4d_none(p4d)) {
322                 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
323                 phys_addr_t pud_phys;
324
325                 if (flags & NO_EXEC_MAPPINGS)
326                         p4dval |= P4D_TABLE_PXN;
327                 BUG_ON(!pgtable_alloc);
328                 pud_phys = pgtable_alloc(PUD_SHIFT);
329                 __p4d_populate(p4dp, pud_phys, p4dval);
330                 p4d = READ_ONCE(*p4dp);
331         }
332         BUG_ON(p4d_bad(p4d));
333
334         /*
335          * No need for locking during early boot. And it doesn't work as
336          * expected with KASLR enabled.
337          */
338         if (system_state != SYSTEM_BOOTING)
339                 mutex_lock(&fixmap_lock);
340         pudp = pud_set_fixmap_offset(p4dp, addr);
341         do {
342                 pud_t old_pud = READ_ONCE(*pudp);
343
344                 next = pud_addr_end(addr, end);
345
346                 /*
347                  * For 4K granule only, attempt to put down a 1GB block
348                  */
349                 if (pud_sect_supported() &&
350                    ((addr | next | phys) & ~PUD_MASK) == 0 &&
351                     (flags & NO_BLOCK_MAPPINGS) == 0) {
352                         pud_set_huge(pudp, phys, prot);
353
354                         /*
355                          * After the PUD entry has been populated once, we
356                          * only allow updates to the permission attributes.
357                          */
358                         BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
359                                                       READ_ONCE(pud_val(*pudp))));
360                 } else {
361                         alloc_init_cont_pmd(pudp, addr, next, phys, prot,
362                                             pgtable_alloc, flags);
363
364                         BUG_ON(pud_val(old_pud) != 0 &&
365                                pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
366                 }
367                 phys += next - addr;
368         } while (pudp++, addr = next, addr != end);
369
370         pud_clear_fixmap();
371         if (system_state != SYSTEM_BOOTING)
372                 mutex_unlock(&fixmap_lock);
373 }
374
375 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
376                                  unsigned long virt, phys_addr_t size,
377                                  pgprot_t prot,
378                                  phys_addr_t (*pgtable_alloc)(int),
379                                  int flags)
380 {
381         unsigned long addr, end, next;
382         pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
383
384         /*
385          * If the virtual and physical address don't have the same offset
386          * within a page, we cannot map the region as the caller expects.
387          */
388         if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
389                 return;
390
391         phys &= PAGE_MASK;
392         addr = virt & PAGE_MASK;
393         end = PAGE_ALIGN(virt + size);
394
395         do {
396                 next = pgd_addr_end(addr, end);
397                 alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
398                                flags);
399                 phys += next - addr;
400         } while (pgdp++, addr = next, addr != end);
401 }
402
403 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
404 extern __alias(__create_pgd_mapping)
405 void create_kpti_ng_temp_pgd(pgd_t *pgdir, phys_addr_t phys, unsigned long virt,
406                              phys_addr_t size, pgprot_t prot,
407                              phys_addr_t (*pgtable_alloc)(int), int flags);
408 #endif
409
410 static phys_addr_t __pgd_pgtable_alloc(int shift)
411 {
412         void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
413         BUG_ON(!ptr);
414
415         /* Ensure the zeroed page is visible to the page table walker */
416         dsb(ishst);
417         return __pa(ptr);
418 }
419
420 static phys_addr_t pgd_pgtable_alloc(int shift)
421 {
422         phys_addr_t pa = __pgd_pgtable_alloc(shift);
423
424         /*
425          * Call proper page table ctor in case later we need to
426          * call core mm functions like apply_to_page_range() on
427          * this pre-allocated page table.
428          *
429          * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
430          * folded, and if so pgtable_pmd_page_ctor() becomes nop.
431          */
432         if (shift == PAGE_SHIFT)
433                 BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
434         else if (shift == PMD_SHIFT)
435                 BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
436
437         return pa;
438 }
439
440 /*
441  * This function can only be used to modify existing table entries,
442  * without allocating new levels of table. Note that this permits the
443  * creation of new section or page entries.
444  */
445 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
446                                   phys_addr_t size, pgprot_t prot)
447 {
448         if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
449                 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
450                         &phys, virt);
451                 return;
452         }
453         __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
454                              NO_CONT_MAPPINGS);
455 }
456
457 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
458                                unsigned long virt, phys_addr_t size,
459                                pgprot_t prot, bool page_mappings_only)
460 {
461         int flags = 0;
462
463         BUG_ON(mm == &init_mm);
464
465         if (page_mappings_only)
466                 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
467
468         __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
469                              pgd_pgtable_alloc, flags);
470 }
471
472 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
473                                 phys_addr_t size, pgprot_t prot)
474 {
475         if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
476                 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
477                         &phys, virt);
478                 return;
479         }
480
481         __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
482                              NO_CONT_MAPPINGS);
483
484         /* flush the TLBs after updating live kernel mappings */
485         flush_tlb_kernel_range(virt, virt + size);
486 }
487
488 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
489                                   phys_addr_t end, pgprot_t prot, int flags)
490 {
491         __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
492                              prot, early_pgtable_alloc, flags);
493 }
494
495 void __init mark_linear_text_alias_ro(void)
496 {
497         /*
498          * Remove the write permissions from the linear alias of .text/.rodata
499          */
500         update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
501                             (unsigned long)__init_begin - (unsigned long)_stext,
502                             PAGE_KERNEL_RO);
503 }
504
505 static bool crash_mem_map __initdata;
506
507 static int __init enable_crash_mem_map(char *arg)
508 {
509         /*
510          * Proper parameter parsing is done by reserve_crashkernel(). We only
511          * need to know if the linear map has to avoid block mappings so that
512          * the crashkernel reservations can be unmapped later.
513          */
514         crash_mem_map = true;
515
516         return 0;
517 }
518 early_param("crashkernel", enable_crash_mem_map);
519
520 static void __init map_mem(pgd_t *pgdp)
521 {
522         static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
523         phys_addr_t kernel_start = __pa_symbol(_stext);
524         phys_addr_t kernel_end = __pa_symbol(__init_begin);
525         phys_addr_t start, end;
526         int flags = NO_EXEC_MAPPINGS;
527         u64 i;
528
529         /*
530          * Setting hierarchical PXNTable attributes on table entries covering
531          * the linear region is only possible if it is guaranteed that no table
532          * entries at any level are being shared between the linear region and
533          * the vmalloc region. Check whether this is true for the PGD level, in
534          * which case it is guaranteed to be true for all other levels as well.
535          */
536         BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
537
538         if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
539                 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
540
541         /*
542          * Take care not to create a writable alias for the
543          * read-only text and rodata sections of the kernel image.
544          * So temporarily mark them as NOMAP to skip mappings in
545          * the following for-loop
546          */
547         memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
548
549 #ifdef CONFIG_KEXEC_CORE
550         if (crash_mem_map) {
551                 if (defer_reserve_crashkernel())
552                         flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
553                 else if (crashk_res.end)
554                         memblock_mark_nomap(crashk_res.start,
555                             resource_size(&crashk_res));
556         }
557 #endif
558
559         /* map all the memory banks */
560         for_each_mem_range(i, &start, &end) {
561                 if (start >= end)
562                         break;
563                 /*
564                  * The linear map must allow allocation tags reading/writing
565                  * if MTE is present. Otherwise, it has the same attributes as
566                  * PAGE_KERNEL.
567                  */
568                 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
569                                flags);
570         }
571
572         /*
573          * Map the linear alias of the [_stext, __init_begin) interval
574          * as non-executable now, and remove the write permission in
575          * mark_linear_text_alias_ro() below (which will be called after
576          * alternative patching has completed). This makes the contents
577          * of the region accessible to subsystems such as hibernate,
578          * but protects it from inadvertent modification or execution.
579          * Note that contiguous mappings cannot be remapped in this way,
580          * so we should avoid them here.
581          */
582         __map_memblock(pgdp, kernel_start, kernel_end,
583                        PAGE_KERNEL, NO_CONT_MAPPINGS);
584         memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
585
586         /*
587          * Use page-level mappings here so that we can shrink the region
588          * in page granularity and put back unused memory to buddy system
589          * through /sys/kernel/kexec_crash_size interface.
590          */
591 #ifdef CONFIG_KEXEC_CORE
592         if (crash_mem_map && !defer_reserve_crashkernel()) {
593                 if (crashk_res.end) {
594                         __map_memblock(pgdp, crashk_res.start,
595                                        crashk_res.end + 1,
596                                        PAGE_KERNEL,
597                                        NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
598                         memblock_clear_nomap(crashk_res.start,
599                                              resource_size(&crashk_res));
600                 }
601         }
602 #endif
603 }
604
605 void mark_rodata_ro(void)
606 {
607         unsigned long section_size;
608
609         /*
610          * mark .rodata as read only. Use __init_begin rather than __end_rodata
611          * to cover NOTES and EXCEPTION_TABLE.
612          */
613         section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
614         update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
615                             section_size, PAGE_KERNEL_RO);
616
617         debug_checkwx();
618 }
619
620 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
621                                       pgprot_t prot, struct vm_struct *vma,
622                                       int flags, unsigned long vm_flags)
623 {
624         phys_addr_t pa_start = __pa_symbol(va_start);
625         unsigned long size = va_end - va_start;
626
627         BUG_ON(!PAGE_ALIGNED(pa_start));
628         BUG_ON(!PAGE_ALIGNED(size));
629
630         __create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
631                              early_pgtable_alloc, flags);
632
633         if (!(vm_flags & VM_NO_GUARD))
634                 size += PAGE_SIZE;
635
636         vma->addr       = va_start;
637         vma->phys_addr  = pa_start;
638         vma->size       = size;
639         vma->flags      = VM_MAP | vm_flags;
640         vma->caller     = __builtin_return_address(0);
641
642         vm_area_add_early(vma);
643 }
644
645 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
646 static int __init map_entry_trampoline(void)
647 {
648         int i;
649
650         pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
651         phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
652
653         /* The trampoline is always mapped and can therefore be global */
654         pgprot_val(prot) &= ~PTE_NG;
655
656         /* Map only the text into the trampoline page table */
657         memset(tramp_pg_dir, 0, PGD_SIZE);
658         __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
659                              entry_tramp_text_size(), prot,
660                              __pgd_pgtable_alloc, NO_BLOCK_MAPPINGS);
661
662         /* Map both the text and data into the kernel page table */
663         for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
664                 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
665                              pa_start + i * PAGE_SIZE, prot);
666
667         if (IS_ENABLED(CONFIG_RELOCATABLE))
668                 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
669                              pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
670
671         return 0;
672 }
673 core_initcall(map_entry_trampoline);
674 #endif
675
676 /*
677  * Open coded check for BTI, only for use to determine configuration
678  * for early mappings for before the cpufeature code has run.
679  */
680 static bool arm64_early_this_cpu_has_bti(void)
681 {
682         u64 pfr1;
683
684         if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
685                 return false;
686
687         pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
688         return cpuid_feature_extract_unsigned_field(pfr1,
689                                                     ID_AA64PFR1_EL1_BT_SHIFT);
690 }
691
692 /*
693  * Create fine-grained mappings for the kernel.
694  */
695 static void __init map_kernel(pgd_t *pgdp)
696 {
697         static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
698                                 vmlinux_initdata, vmlinux_data;
699
700         /*
701          * External debuggers may need to write directly to the text
702          * mapping to install SW breakpoints. Allow this (only) when
703          * explicitly requested with rodata=off.
704          */
705         pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
706
707         /*
708          * If we have a CPU that supports BTI and a kernel built for
709          * BTI then mark the kernel executable text as guarded pages
710          * now so we don't have to rewrite the page tables later.
711          */
712         if (arm64_early_this_cpu_has_bti())
713                 text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
714
715         /*
716          * Only rodata will be remapped with different permissions later on,
717          * all other segments are allowed to use contiguous mappings.
718          */
719         map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
720                            VM_NO_GUARD);
721         map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
722                            &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
723         map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
724                            &vmlinux_inittext, 0, VM_NO_GUARD);
725         map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
726                            &vmlinux_initdata, 0, VM_NO_GUARD);
727         map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
728
729         if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
730                 /*
731                  * The fixmap falls in a separate pgd to the kernel, and doesn't
732                  * live in the carveout for the swapper_pg_dir. We can simply
733                  * re-use the existing dir for the fixmap.
734                  */
735                 set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
736                         READ_ONCE(*pgd_offset_k(FIXADDR_START)));
737         } else if (CONFIG_PGTABLE_LEVELS > 3) {
738                 pgd_t *bm_pgdp;
739                 p4d_t *bm_p4dp;
740                 pud_t *bm_pudp;
741                 /*
742                  * The fixmap shares its top level pgd entry with the kernel
743                  * mapping. This can really only occur when we are running
744                  * with 16k/4 levels, so we can simply reuse the pud level
745                  * entry instead.
746                  */
747                 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
748                 bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
749                 bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
750                 bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
751                 pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
752                 pud_clear_fixmap();
753         } else {
754                 BUG();
755         }
756
757         kasan_copy_shadow(pgdp);
758 }
759
760 static void __init create_idmap(void)
761 {
762         u64 start = __pa_symbol(__idmap_text_start);
763         u64 size = __pa_symbol(__idmap_text_end) - start;
764         pgd_t *pgd = idmap_pg_dir;
765         u64 pgd_phys;
766
767         /* check if we need an additional level of translation */
768         if (VA_BITS < 48 && idmap_t0sz < (64 - VA_BITS_MIN)) {
769                 pgd_phys = early_pgtable_alloc(PAGE_SHIFT);
770                 set_pgd(&idmap_pg_dir[start >> VA_BITS],
771                         __pgd(pgd_phys | P4D_TYPE_TABLE));
772                 pgd = __va(pgd_phys);
773         }
774         __create_pgd_mapping(pgd, start, start, size, PAGE_KERNEL_ROX,
775                              early_pgtable_alloc, 0);
776
777         if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
778                 extern u32 __idmap_kpti_flag;
779                 u64 pa = __pa_symbol(&__idmap_kpti_flag);
780
781                 /*
782                  * The KPTI G-to-nG conversion code needs a read-write mapping
783                  * of its synchronization flag in the ID map.
784                  */
785                 __create_pgd_mapping(pgd, pa, pa, sizeof(u32), PAGE_KERNEL,
786                                      early_pgtable_alloc, 0);
787         }
788 }
789
790 void __init paging_init(void)
791 {
792         pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
793         extern pgd_t init_idmap_pg_dir[];
794
795         idmap_t0sz = 63UL - __fls(__pa_symbol(_end) | GENMASK(VA_BITS_MIN - 1, 0));
796
797         map_kernel(pgdp);
798         map_mem(pgdp);
799
800         pgd_clear_fixmap();
801
802         cpu_replace_ttbr1(lm_alias(swapper_pg_dir), init_idmap_pg_dir);
803         init_mm.pgd = swapper_pg_dir;
804
805         memblock_phys_free(__pa_symbol(init_pg_dir),
806                            __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
807
808         memblock_allow_resize();
809
810         create_idmap();
811 }
812
813 /*
814  * Check whether a kernel address is valid (derived from arch/x86/).
815  */
816 int kern_addr_valid(unsigned long addr)
817 {
818         pgd_t *pgdp;
819         p4d_t *p4dp;
820         pud_t *pudp, pud;
821         pmd_t *pmdp, pmd;
822         pte_t *ptep, pte;
823
824         addr = arch_kasan_reset_tag(addr);
825         if ((((long)addr) >> VA_BITS) != -1UL)
826                 return 0;
827
828         pgdp = pgd_offset_k(addr);
829         if (pgd_none(READ_ONCE(*pgdp)))
830                 return 0;
831
832         p4dp = p4d_offset(pgdp, addr);
833         if (p4d_none(READ_ONCE(*p4dp)))
834                 return 0;
835
836         pudp = pud_offset(p4dp, addr);
837         pud = READ_ONCE(*pudp);
838         if (pud_none(pud))
839                 return 0;
840
841         if (pud_sect(pud))
842                 return pfn_valid(pud_pfn(pud));
843
844         pmdp = pmd_offset(pudp, addr);
845         pmd = READ_ONCE(*pmdp);
846         if (pmd_none(pmd))
847                 return 0;
848
849         if (pmd_sect(pmd))
850                 return pfn_valid(pmd_pfn(pmd));
851
852         ptep = pte_offset_kernel(pmdp, addr);
853         pte = READ_ONCE(*ptep);
854         if (pte_none(pte))
855                 return 0;
856
857         return pfn_valid(pte_pfn(pte));
858 }
859
860 #ifdef CONFIG_MEMORY_HOTPLUG
861 static void free_hotplug_page_range(struct page *page, size_t size,
862                                     struct vmem_altmap *altmap)
863 {
864         if (altmap) {
865                 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
866         } else {
867                 WARN_ON(PageReserved(page));
868                 free_pages((unsigned long)page_address(page), get_order(size));
869         }
870 }
871
872 static void free_hotplug_pgtable_page(struct page *page)
873 {
874         free_hotplug_page_range(page, PAGE_SIZE, NULL);
875 }
876
877 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
878                                   unsigned long floor, unsigned long ceiling,
879                                   unsigned long mask)
880 {
881         start &= mask;
882         if (start < floor)
883                 return false;
884
885         if (ceiling) {
886                 ceiling &= mask;
887                 if (!ceiling)
888                         return false;
889         }
890
891         if (end - 1 > ceiling - 1)
892                 return false;
893         return true;
894 }
895
896 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
897                                     unsigned long end, bool free_mapped,
898                                     struct vmem_altmap *altmap)
899 {
900         pte_t *ptep, pte;
901
902         do {
903                 ptep = pte_offset_kernel(pmdp, addr);
904                 pte = READ_ONCE(*ptep);
905                 if (pte_none(pte))
906                         continue;
907
908                 WARN_ON(!pte_present(pte));
909                 pte_clear(&init_mm, addr, ptep);
910                 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
911                 if (free_mapped)
912                         free_hotplug_page_range(pte_page(pte),
913                                                 PAGE_SIZE, altmap);
914         } while (addr += PAGE_SIZE, addr < end);
915 }
916
917 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
918                                     unsigned long end, bool free_mapped,
919                                     struct vmem_altmap *altmap)
920 {
921         unsigned long next;
922         pmd_t *pmdp, pmd;
923
924         do {
925                 next = pmd_addr_end(addr, end);
926                 pmdp = pmd_offset(pudp, addr);
927                 pmd = READ_ONCE(*pmdp);
928                 if (pmd_none(pmd))
929                         continue;
930
931                 WARN_ON(!pmd_present(pmd));
932                 if (pmd_sect(pmd)) {
933                         pmd_clear(pmdp);
934
935                         /*
936                          * One TLBI should be sufficient here as the PMD_SIZE
937                          * range is mapped with a single block entry.
938                          */
939                         flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
940                         if (free_mapped)
941                                 free_hotplug_page_range(pmd_page(pmd),
942                                                         PMD_SIZE, altmap);
943                         continue;
944                 }
945                 WARN_ON(!pmd_table(pmd));
946                 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
947         } while (addr = next, addr < end);
948 }
949
950 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
951                                     unsigned long end, bool free_mapped,
952                                     struct vmem_altmap *altmap)
953 {
954         unsigned long next;
955         pud_t *pudp, pud;
956
957         do {
958                 next = pud_addr_end(addr, end);
959                 pudp = pud_offset(p4dp, addr);
960                 pud = READ_ONCE(*pudp);
961                 if (pud_none(pud))
962                         continue;
963
964                 WARN_ON(!pud_present(pud));
965                 if (pud_sect(pud)) {
966                         pud_clear(pudp);
967
968                         /*
969                          * One TLBI should be sufficient here as the PUD_SIZE
970                          * range is mapped with a single block entry.
971                          */
972                         flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
973                         if (free_mapped)
974                                 free_hotplug_page_range(pud_page(pud),
975                                                         PUD_SIZE, altmap);
976                         continue;
977                 }
978                 WARN_ON(!pud_table(pud));
979                 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
980         } while (addr = next, addr < end);
981 }
982
983 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
984                                     unsigned long end, bool free_mapped,
985                                     struct vmem_altmap *altmap)
986 {
987         unsigned long next;
988         p4d_t *p4dp, p4d;
989
990         do {
991                 next = p4d_addr_end(addr, end);
992                 p4dp = p4d_offset(pgdp, addr);
993                 p4d = READ_ONCE(*p4dp);
994                 if (p4d_none(p4d))
995                         continue;
996
997                 WARN_ON(!p4d_present(p4d));
998                 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
999         } while (addr = next, addr < end);
1000 }
1001
1002 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1003                                 bool free_mapped, struct vmem_altmap *altmap)
1004 {
1005         unsigned long next;
1006         pgd_t *pgdp, pgd;
1007
1008         /*
1009          * altmap can only be used as vmemmap mapping backing memory.
1010          * In case the backing memory itself is not being freed, then
1011          * altmap is irrelevant. Warn about this inconsistency when
1012          * encountered.
1013          */
1014         WARN_ON(!free_mapped && altmap);
1015
1016         do {
1017                 next = pgd_addr_end(addr, end);
1018                 pgdp = pgd_offset_k(addr);
1019                 pgd = READ_ONCE(*pgdp);
1020                 if (pgd_none(pgd))
1021                         continue;
1022
1023                 WARN_ON(!pgd_present(pgd));
1024                 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1025         } while (addr = next, addr < end);
1026 }
1027
1028 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1029                                  unsigned long end, unsigned long floor,
1030                                  unsigned long ceiling)
1031 {
1032         pte_t *ptep, pte;
1033         unsigned long i, start = addr;
1034
1035         do {
1036                 ptep = pte_offset_kernel(pmdp, addr);
1037                 pte = READ_ONCE(*ptep);
1038
1039                 /*
1040                  * This is just a sanity check here which verifies that
1041                  * pte clearing has been done by earlier unmap loops.
1042                  */
1043                 WARN_ON(!pte_none(pte));
1044         } while (addr += PAGE_SIZE, addr < end);
1045
1046         if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1047                 return;
1048
1049         /*
1050          * Check whether we can free the pte page if the rest of the
1051          * entries are empty. Overlap with other regions have been
1052          * handled by the floor/ceiling check.
1053          */
1054         ptep = pte_offset_kernel(pmdp, 0UL);
1055         for (i = 0; i < PTRS_PER_PTE; i++) {
1056                 if (!pte_none(READ_ONCE(ptep[i])))
1057                         return;
1058         }
1059
1060         pmd_clear(pmdp);
1061         __flush_tlb_kernel_pgtable(start);
1062         free_hotplug_pgtable_page(virt_to_page(ptep));
1063 }
1064
1065 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1066                                  unsigned long end, unsigned long floor,
1067                                  unsigned long ceiling)
1068 {
1069         pmd_t *pmdp, pmd;
1070         unsigned long i, next, start = addr;
1071
1072         do {
1073                 next = pmd_addr_end(addr, end);
1074                 pmdp = pmd_offset(pudp, addr);
1075                 pmd = READ_ONCE(*pmdp);
1076                 if (pmd_none(pmd))
1077                         continue;
1078
1079                 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1080                 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1081         } while (addr = next, addr < end);
1082
1083         if (CONFIG_PGTABLE_LEVELS <= 2)
1084                 return;
1085
1086         if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1087                 return;
1088
1089         /*
1090          * Check whether we can free the pmd page if the rest of the
1091          * entries are empty. Overlap with other regions have been
1092          * handled by the floor/ceiling check.
1093          */
1094         pmdp = pmd_offset(pudp, 0UL);
1095         for (i = 0; i < PTRS_PER_PMD; i++) {
1096                 if (!pmd_none(READ_ONCE(pmdp[i])))
1097                         return;
1098         }
1099
1100         pud_clear(pudp);
1101         __flush_tlb_kernel_pgtable(start);
1102         free_hotplug_pgtable_page(virt_to_page(pmdp));
1103 }
1104
1105 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1106                                  unsigned long end, unsigned long floor,
1107                                  unsigned long ceiling)
1108 {
1109         pud_t *pudp, pud;
1110         unsigned long i, next, start = addr;
1111
1112         do {
1113                 next = pud_addr_end(addr, end);
1114                 pudp = pud_offset(p4dp, addr);
1115                 pud = READ_ONCE(*pudp);
1116                 if (pud_none(pud))
1117                         continue;
1118
1119                 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1120                 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1121         } while (addr = next, addr < end);
1122
1123         if (CONFIG_PGTABLE_LEVELS <= 3)
1124                 return;
1125
1126         if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1127                 return;
1128
1129         /*
1130          * Check whether we can free the pud page if the rest of the
1131          * entries are empty. Overlap with other regions have been
1132          * handled by the floor/ceiling check.
1133          */
1134         pudp = pud_offset(p4dp, 0UL);
1135         for (i = 0; i < PTRS_PER_PUD; i++) {
1136                 if (!pud_none(READ_ONCE(pudp[i])))
1137                         return;
1138         }
1139
1140         p4d_clear(p4dp);
1141         __flush_tlb_kernel_pgtable(start);
1142         free_hotplug_pgtable_page(virt_to_page(pudp));
1143 }
1144
1145 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1146                                  unsigned long end, unsigned long floor,
1147                                  unsigned long ceiling)
1148 {
1149         unsigned long next;
1150         p4d_t *p4dp, p4d;
1151
1152         do {
1153                 next = p4d_addr_end(addr, end);
1154                 p4dp = p4d_offset(pgdp, addr);
1155                 p4d = READ_ONCE(*p4dp);
1156                 if (p4d_none(p4d))
1157                         continue;
1158
1159                 WARN_ON(!p4d_present(p4d));
1160                 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1161         } while (addr = next, addr < end);
1162 }
1163
1164 static void free_empty_tables(unsigned long addr, unsigned long end,
1165                               unsigned long floor, unsigned long ceiling)
1166 {
1167         unsigned long next;
1168         pgd_t *pgdp, pgd;
1169
1170         do {
1171                 next = pgd_addr_end(addr, end);
1172                 pgdp = pgd_offset_k(addr);
1173                 pgd = READ_ONCE(*pgdp);
1174                 if (pgd_none(pgd))
1175                         continue;
1176
1177                 WARN_ON(!pgd_present(pgd));
1178                 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1179         } while (addr = next, addr < end);
1180 }
1181 #endif
1182
1183 #if !ARM64_KERNEL_USES_PMD_MAPS
1184 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1185                 struct vmem_altmap *altmap)
1186 {
1187         WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1188         return vmemmap_populate_basepages(start, end, node, altmap);
1189 }
1190 #else   /* !ARM64_KERNEL_USES_PMD_MAPS */
1191 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1192                 struct vmem_altmap *altmap)
1193 {
1194         unsigned long addr = start;
1195         unsigned long next;
1196         pgd_t *pgdp;
1197         p4d_t *p4dp;
1198         pud_t *pudp;
1199         pmd_t *pmdp;
1200
1201         WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1202         do {
1203                 next = pmd_addr_end(addr, end);
1204
1205                 pgdp = vmemmap_pgd_populate(addr, node);
1206                 if (!pgdp)
1207                         return -ENOMEM;
1208
1209                 p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1210                 if (!p4dp)
1211                         return -ENOMEM;
1212
1213                 pudp = vmemmap_pud_populate(p4dp, addr, node);
1214                 if (!pudp)
1215                         return -ENOMEM;
1216
1217                 pmdp = pmd_offset(pudp, addr);
1218                 if (pmd_none(READ_ONCE(*pmdp))) {
1219                         void *p = NULL;
1220
1221                         p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1222                         if (!p) {
1223                                 if (vmemmap_populate_basepages(addr, next, node, altmap))
1224                                         return -ENOMEM;
1225                                 continue;
1226                         }
1227
1228                         pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1229                 } else
1230                         vmemmap_verify((pte_t *)pmdp, node, addr, next);
1231         } while (addr = next, addr != end);
1232
1233         return 0;
1234 }
1235 #endif  /* !ARM64_KERNEL_USES_PMD_MAPS */
1236
1237 #ifdef CONFIG_MEMORY_HOTPLUG
1238 void vmemmap_free(unsigned long start, unsigned long end,
1239                 struct vmem_altmap *altmap)
1240 {
1241         WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1242
1243         unmap_hotplug_range(start, end, true, altmap);
1244         free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1245 }
1246 #endif /* CONFIG_MEMORY_HOTPLUG */
1247
1248 static inline pud_t *fixmap_pud(unsigned long addr)
1249 {
1250         pgd_t *pgdp = pgd_offset_k(addr);
1251         p4d_t *p4dp = p4d_offset(pgdp, addr);
1252         p4d_t p4d = READ_ONCE(*p4dp);
1253
1254         BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1255
1256         return pud_offset_kimg(p4dp, addr);
1257 }
1258
1259 static inline pmd_t *fixmap_pmd(unsigned long addr)
1260 {
1261         pud_t *pudp = fixmap_pud(addr);
1262         pud_t pud = READ_ONCE(*pudp);
1263
1264         BUG_ON(pud_none(pud) || pud_bad(pud));
1265
1266         return pmd_offset_kimg(pudp, addr);
1267 }
1268
1269 static inline pte_t *fixmap_pte(unsigned long addr)
1270 {
1271         return &bm_pte[pte_index(addr)];
1272 }
1273
1274 /*
1275  * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1276  * directly on kernel symbols (bm_p*d). This function is called too early to use
1277  * lm_alias so __p*d_populate functions must be used to populate with the
1278  * physical address from __pa_symbol.
1279  */
1280 void __init early_fixmap_init(void)
1281 {
1282         pgd_t *pgdp;
1283         p4d_t *p4dp, p4d;
1284         pud_t *pudp;
1285         pmd_t *pmdp;
1286         unsigned long addr = FIXADDR_START;
1287
1288         pgdp = pgd_offset_k(addr);
1289         p4dp = p4d_offset(pgdp, addr);
1290         p4d = READ_ONCE(*p4dp);
1291         if (CONFIG_PGTABLE_LEVELS > 3 &&
1292             !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1293                 /*
1294                  * We only end up here if the kernel mapping and the fixmap
1295                  * share the top level pgd entry, which should only happen on
1296                  * 16k/4 levels configurations.
1297                  */
1298                 BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1299                 pudp = pud_offset_kimg(p4dp, addr);
1300         } else {
1301                 if (p4d_none(p4d))
1302                         __p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
1303                 pudp = fixmap_pud(addr);
1304         }
1305         if (pud_none(READ_ONCE(*pudp)))
1306                 __pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
1307         pmdp = fixmap_pmd(addr);
1308         __pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1309
1310         /*
1311          * The boot-ioremap range spans multiple pmds, for which
1312          * we are not prepared:
1313          */
1314         BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1315                      != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1316
1317         if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1318              || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1319                 WARN_ON(1);
1320                 pr_warn("pmdp %p != %p, %p\n",
1321                         pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1322                         fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1323                 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1324                         fix_to_virt(FIX_BTMAP_BEGIN));
1325                 pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1326                         fix_to_virt(FIX_BTMAP_END));
1327
1328                 pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1329                 pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1330         }
1331 }
1332
1333 /*
1334  * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1335  * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1336  */
1337 void __set_fixmap(enum fixed_addresses idx,
1338                                phys_addr_t phys, pgprot_t flags)
1339 {
1340         unsigned long addr = __fix_to_virt(idx);
1341         pte_t *ptep;
1342
1343         BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1344
1345         ptep = fixmap_pte(addr);
1346
1347         if (pgprot_val(flags)) {
1348                 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1349         } else {
1350                 pte_clear(&init_mm, addr, ptep);
1351                 flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1352         }
1353 }
1354
1355 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1356 {
1357         const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1358         int offset;
1359         void *dt_virt;
1360
1361         /*
1362          * Check whether the physical FDT address is set and meets the minimum
1363          * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1364          * at least 8 bytes so that we can always access the magic and size
1365          * fields of the FDT header after mapping the first chunk, double check
1366          * here if that is indeed the case.
1367          */
1368         BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1369         if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1370                 return NULL;
1371
1372         /*
1373          * Make sure that the FDT region can be mapped without the need to
1374          * allocate additional translation table pages, so that it is safe
1375          * to call create_mapping_noalloc() this early.
1376          *
1377          * On 64k pages, the FDT will be mapped using PTEs, so we need to
1378          * be in the same PMD as the rest of the fixmap.
1379          * On 4k pages, we'll use section mappings for the FDT so we only
1380          * have to be in the same PUD.
1381          */
1382         BUILD_BUG_ON(dt_virt_base % SZ_2M);
1383
1384         BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1385                      __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1386
1387         offset = dt_phys % SWAPPER_BLOCK_SIZE;
1388         dt_virt = (void *)dt_virt_base + offset;
1389
1390         /* map the first chunk so we can read the size from the header */
1391         create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1392                         dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1393
1394         if (fdt_magic(dt_virt) != FDT_MAGIC)
1395                 return NULL;
1396
1397         *size = fdt_totalsize(dt_virt);
1398         if (*size > MAX_FDT_SIZE)
1399                 return NULL;
1400
1401         if (offset + *size > SWAPPER_BLOCK_SIZE)
1402                 create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1403                                round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1404
1405         return dt_virt;
1406 }
1407
1408 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1409 {
1410         pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1411
1412         /* Only allow permission changes for now */
1413         if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1414                                    pud_val(new_pud)))
1415                 return 0;
1416
1417         VM_BUG_ON(phys & ~PUD_MASK);
1418         set_pud(pudp, new_pud);
1419         return 1;
1420 }
1421
1422 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1423 {
1424         pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1425
1426         /* Only allow permission changes for now */
1427         if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1428                                    pmd_val(new_pmd)))
1429                 return 0;
1430
1431         VM_BUG_ON(phys & ~PMD_MASK);
1432         set_pmd(pmdp, new_pmd);
1433         return 1;
1434 }
1435
1436 int pud_clear_huge(pud_t *pudp)
1437 {
1438         if (!pud_sect(READ_ONCE(*pudp)))
1439                 return 0;
1440         pud_clear(pudp);
1441         return 1;
1442 }
1443
1444 int pmd_clear_huge(pmd_t *pmdp)
1445 {
1446         if (!pmd_sect(READ_ONCE(*pmdp)))
1447                 return 0;
1448         pmd_clear(pmdp);
1449         return 1;
1450 }
1451
1452 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1453 {
1454         pte_t *table;
1455         pmd_t pmd;
1456
1457         pmd = READ_ONCE(*pmdp);
1458
1459         if (!pmd_table(pmd)) {
1460                 VM_WARN_ON(1);
1461                 return 1;
1462         }
1463
1464         table = pte_offset_kernel(pmdp, addr);
1465         pmd_clear(pmdp);
1466         __flush_tlb_kernel_pgtable(addr);
1467         pte_free_kernel(NULL, table);
1468         return 1;
1469 }
1470
1471 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1472 {
1473         pmd_t *table;
1474         pmd_t *pmdp;
1475         pud_t pud;
1476         unsigned long next, end;
1477
1478         pud = READ_ONCE(*pudp);
1479
1480         if (!pud_table(pud)) {
1481                 VM_WARN_ON(1);
1482                 return 1;
1483         }
1484
1485         table = pmd_offset(pudp, addr);
1486         pmdp = table;
1487         next = addr;
1488         end = addr + PUD_SIZE;
1489         do {
1490                 pmd_free_pte_page(pmdp, next);
1491         } while (pmdp++, next += PMD_SIZE, next != end);
1492
1493         pud_clear(pudp);
1494         __flush_tlb_kernel_pgtable(addr);
1495         pmd_free(NULL, table);
1496         return 1;
1497 }
1498
1499 #ifdef CONFIG_MEMORY_HOTPLUG
1500 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1501 {
1502         unsigned long end = start + size;
1503
1504         WARN_ON(pgdir != init_mm.pgd);
1505         WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1506
1507         unmap_hotplug_range(start, end, false, NULL);
1508         free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1509 }
1510
1511 struct range arch_get_mappable_range(void)
1512 {
1513         struct range mhp_range;
1514         u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1515         u64 end_linear_pa = __pa(PAGE_END - 1);
1516
1517         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1518                 /*
1519                  * Check for a wrap, it is possible because of randomized linear
1520                  * mapping the start physical address is actually bigger than
1521                  * the end physical address. In this case set start to zero
1522                  * because [0, end_linear_pa] range must still be able to cover
1523                  * all addressable physical addresses.
1524                  */
1525                 if (start_linear_pa > end_linear_pa)
1526                         start_linear_pa = 0;
1527         }
1528
1529         WARN_ON(start_linear_pa > end_linear_pa);
1530
1531         /*
1532          * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1533          * accommodating both its ends but excluding PAGE_END. Max physical
1534          * range which can be mapped inside this linear mapping range, must
1535          * also be derived from its end points.
1536          */
1537         mhp_range.start = start_linear_pa;
1538         mhp_range.end =  end_linear_pa;
1539
1540         return mhp_range;
1541 }
1542
1543 int arch_add_memory(int nid, u64 start, u64 size,
1544                     struct mhp_params *params)
1545 {
1546         int ret, flags = NO_EXEC_MAPPINGS;
1547
1548         VM_BUG_ON(!mhp_range_allowed(start, size, true));
1549
1550         /*
1551          * KFENCE requires linear map to be mapped at page granularity, so that
1552          * it is possible to protect/unprotect single pages in the KFENCE pool.
1553          */
1554         if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
1555                 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1556
1557         __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1558                              size, params->pgprot, __pgd_pgtable_alloc,
1559                              flags);
1560
1561         memblock_clear_nomap(start, size);
1562
1563         ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1564                            params);
1565         if (ret)
1566                 __remove_pgd_mapping(swapper_pg_dir,
1567                                      __phys_to_virt(start), size);
1568         else {
1569                 max_pfn = PFN_UP(start + size);
1570                 max_low_pfn = max_pfn;
1571         }
1572
1573         return ret;
1574 }
1575
1576 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1577 {
1578         unsigned long start_pfn = start >> PAGE_SHIFT;
1579         unsigned long nr_pages = size >> PAGE_SHIFT;
1580
1581         __remove_pages(start_pfn, nr_pages, altmap);
1582         __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1583 }
1584
1585 /*
1586  * This memory hotplug notifier helps prevent boot memory from being
1587  * inadvertently removed as it blocks pfn range offlining process in
1588  * __offline_pages(). Hence this prevents both offlining as well as
1589  * removal process for boot memory which is initially always online.
1590  * In future if and when boot memory could be removed, this notifier
1591  * should be dropped and free_hotplug_page_range() should handle any
1592  * reserved pages allocated during boot.
1593  */
1594 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1595                                            unsigned long action, void *data)
1596 {
1597         struct mem_section *ms;
1598         struct memory_notify *arg = data;
1599         unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1600         unsigned long pfn = arg->start_pfn;
1601
1602         if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1603                 return NOTIFY_OK;
1604
1605         for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1606                 unsigned long start = PFN_PHYS(pfn);
1607                 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1608
1609                 ms = __pfn_to_section(pfn);
1610                 if (!early_section(ms))
1611                         continue;
1612
1613                 if (action == MEM_GOING_OFFLINE) {
1614                         /*
1615                          * Boot memory removal is not supported. Prevent
1616                          * it via blocking any attempted offline request
1617                          * for the boot memory and just report it.
1618                          */
1619                         pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1620                         return NOTIFY_BAD;
1621                 } else if (action == MEM_OFFLINE) {
1622                         /*
1623                          * This should have never happened. Boot memory
1624                          * offlining should have been prevented by this
1625                          * very notifier. Probably some memory removal
1626                          * procedure might have changed which would then
1627                          * require further debug.
1628                          */
1629                         pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1630
1631                         /*
1632                          * Core memory hotplug does not process a return
1633                          * code from the notifier for MEM_OFFLINE events.
1634                          * The error condition has been reported. Return
1635                          * from here as if ignored.
1636                          */
1637                         return NOTIFY_DONE;
1638                 }
1639         }
1640         return NOTIFY_OK;
1641 }
1642
1643 static struct notifier_block prevent_bootmem_remove_nb = {
1644         .notifier_call = prevent_bootmem_remove_notifier,
1645 };
1646
1647 /*
1648  * This ensures that boot memory sections on the platform are online
1649  * from early boot. Memory sections could not be prevented from being
1650  * offlined, unless for some reason they are not online to begin with.
1651  * This helps validate the basic assumption on which the above memory
1652  * event notifier works to prevent boot memory section offlining and
1653  * its possible removal.
1654  */
1655 static void validate_bootmem_online(void)
1656 {
1657         phys_addr_t start, end, addr;
1658         struct mem_section *ms;
1659         u64 i;
1660
1661         /*
1662          * Scanning across all memblock might be expensive
1663          * on some big memory systems. Hence enable this
1664          * validation only with DEBUG_VM.
1665          */
1666         if (!IS_ENABLED(CONFIG_DEBUG_VM))
1667                 return;
1668
1669         for_each_mem_range(i, &start, &end) {
1670                 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1671                         ms = __pfn_to_section(PHYS_PFN(addr));
1672
1673                         /*
1674                          * All memory ranges in the system at this point
1675                          * should have been marked as early sections.
1676                          */
1677                         WARN_ON(!early_section(ms));
1678
1679                         /*
1680                          * Memory notifier mechanism here to prevent boot
1681                          * memory offlining depends on the fact that each
1682                          * early section memory on the system is initially
1683                          * online. Otherwise a given memory section which
1684                          * is already offline will be overlooked and can
1685                          * be removed completely. Call out such sections.
1686                          */
1687                         if (!online_section(ms))
1688                                 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1689                                         addr, addr + (1UL << PA_SECTION_SHIFT));
1690                 }
1691         }
1692 }
1693
1694 static int __init prevent_bootmem_remove_init(void)
1695 {
1696         int ret = 0;
1697
1698         if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1699                 return ret;
1700
1701         validate_bootmem_online();
1702         ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1703         if (ret)
1704                 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1705
1706         return ret;
1707 }
1708 early_initcall(prevent_bootmem_remove_init);
1709 #endif