1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
35 #include <asm/kprobes.h>
37 #include <asm/processor.h>
38 #include <asm/sysreg.h>
39 #include <asm/system_misc.h>
40 #include <asm/tlbflush.h>
41 #include <asm/traps.h>
44 int (*fn)(unsigned long far, unsigned int esr,
45 struct pt_regs *regs);
51 static const struct fault_info fault_info[];
52 static struct fault_info debug_fault_info[];
54 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
56 return fault_info + (esr & ESR_ELx_FSC);
59 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
61 return debug_fault_info + DBG_ESR_EVT(esr);
64 static void data_abort_decode(unsigned int esr)
66 pr_alert("Data abort info:\n");
68 if (esr & ESR_ELx_ISV) {
69 pr_alert(" Access size = %u byte(s)\n",
70 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
71 pr_alert(" SSE = %lu, SRT = %lu\n",
72 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
73 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
74 pr_alert(" SF = %lu, AR = %lu\n",
75 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
76 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
78 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
81 pr_alert(" CM = %lu, WnR = %lu\n",
82 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
83 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
86 static void mem_abort_decode(unsigned int esr)
88 pr_alert("Mem abort info:\n");
90 pr_alert(" ESR = 0x%08x\n", esr);
91 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
92 ESR_ELx_EC(esr), esr_get_class_string(esr),
93 (esr & ESR_ELx_IL) ? 32 : 16);
94 pr_alert(" SET = %lu, FnV = %lu\n",
95 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
96 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
97 pr_alert(" EA = %lu, S1PTW = %lu\n",
98 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
99 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
101 if (esr_is_data_abort(esr))
102 data_abort_decode(esr);
105 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
107 /* Either init_pg_dir or swapper_pg_dir */
109 return __pa_symbol(mm->pgd);
111 return (unsigned long)virt_to_phys(mm->pgd);
115 * Dump out the page tables associated with 'addr' in the currently active mm.
117 static void show_pte(unsigned long addr)
119 struct mm_struct *mm;
123 if (is_ttbr0_addr(addr)) {
125 mm = current->active_mm;
126 if (mm == &init_mm) {
127 pr_alert("[%016lx] user address but active_mm is swapper\n",
131 } else if (is_ttbr1_addr(addr)) {
135 pr_alert("[%016lx] address between user and kernel address ranges\n",
140 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
141 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
142 vabits_actual, mm_to_pgd_phys(mm));
143 pgdp = pgd_offset(mm, addr);
144 pgd = READ_ONCE(*pgdp);
145 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
153 if (pgd_none(pgd) || pgd_bad(pgd))
156 p4dp = p4d_offset(pgdp, addr);
157 p4d = READ_ONCE(*p4dp);
158 pr_cont(", p4d=%016llx", p4d_val(p4d));
159 if (p4d_none(p4d) || p4d_bad(p4d))
162 pudp = pud_offset(p4dp, addr);
163 pud = READ_ONCE(*pudp);
164 pr_cont(", pud=%016llx", pud_val(pud));
165 if (pud_none(pud) || pud_bad(pud))
168 pmdp = pmd_offset(pudp, addr);
169 pmd = READ_ONCE(*pmdp);
170 pr_cont(", pmd=%016llx", pmd_val(pmd));
171 if (pmd_none(pmd) || pmd_bad(pmd))
174 ptep = pte_offset_map(pmdp, addr);
175 pte = READ_ONCE(*ptep);
176 pr_cont(", pte=%016llx", pte_val(pte));
184 * This function sets the access flags (dirty, accessed), as well as write
185 * permission, and only to a more permissive setting.
187 * It needs to cope with hardware update of the accessed/dirty state by other
188 * agents in the system and can safely skip the __sync_icache_dcache() call as,
189 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
191 * Returns whether or not the PTE actually changed.
193 int ptep_set_access_flags(struct vm_area_struct *vma,
194 unsigned long address, pte_t *ptep,
195 pte_t entry, int dirty)
197 pteval_t old_pteval, pteval;
198 pte_t pte = READ_ONCE(*ptep);
200 if (pte_same(pte, entry))
203 /* only preserve the access flags and write permission */
204 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
207 * Setting the flags must be done atomically to avoid racing with the
208 * hardware update of the access/dirty state. The PTE_RDONLY bit must
209 * be set to the most permissive (lowest value) of *ptep and entry
210 * (calculated as: a & b == ~(~a | ~b)).
212 pte_val(entry) ^= PTE_RDONLY;
213 pteval = pte_val(pte);
216 pteval ^= PTE_RDONLY;
217 pteval |= pte_val(entry);
218 pteval ^= PTE_RDONLY;
219 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
220 } while (pteval != old_pteval);
222 /* Invalidate a stale read-only entry */
224 flush_tlb_page(vma, address);
228 static bool is_el1_instruction_abort(unsigned int esr)
230 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
233 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
234 struct pt_regs *regs)
236 unsigned int ec = ESR_ELx_EC(esr);
237 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
239 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
242 if (fsc_type == ESR_ELx_FSC_PERM)
245 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
246 return fsc_type == ESR_ELx_FSC_FAULT &&
247 (regs->pstate & PSR_PAN_BIT);
252 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
254 struct pt_regs *regs)
259 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
260 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
263 local_irq_save(flags);
264 asm volatile("at s1e1r, %0" :: "r" (addr));
266 par = read_sysreg_par();
267 local_irq_restore(flags);
270 * If we now have a valid translation, treat the translation fault as
273 if (!(par & SYS_PAR_EL1_F))
277 * If we got a different type of fault from the AT instruction,
278 * treat the translation fault as spurious.
280 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
281 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
284 static void die_kernel_fault(const char *msg, unsigned long addr,
285 unsigned int esr, struct pt_regs *regs)
289 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
292 mem_abort_decode(esr);
295 die("Oops", regs, esr);
300 static void report_tag_fault(unsigned long addr, unsigned int esr,
301 struct pt_regs *regs)
305 static void do_tag_recovery(unsigned long addr, unsigned int esr,
306 struct pt_regs *regs)
308 static bool reported;
310 if (!READ_ONCE(reported)) {
311 report_tag_fault(addr, esr, regs);
312 WRITE_ONCE(reported, true);
316 * Disable MTE Tag Checking on the local CPU for the current EL.
317 * It will be done lazily on the other CPUs when they will hit a
320 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
324 static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
326 unsigned int ec = ESR_ELx_EC(esr);
327 unsigned int fsc = esr & ESR_ELx_FSC;
329 if (ec != ESR_ELx_EC_DABT_CUR)
332 if (fsc == ESR_ELx_FSC_MTE)
338 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
339 struct pt_regs *regs)
344 * Are we prepared to handle this kernel fault?
345 * We are almost certainly not prepared to handle instruction faults.
347 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
350 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
351 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
354 if (is_el1_mte_sync_tag_check_fault(esr)) {
355 do_tag_recovery(addr, esr, regs);
360 if (is_el1_permission_fault(addr, esr, regs)) {
361 if (esr & ESR_ELx_WNR)
362 msg = "write to read-only memory";
363 else if (is_el1_instruction_abort(esr))
364 msg = "execute from non-executable memory";
366 msg = "read from unreadable memory";
367 } else if (addr < PAGE_SIZE) {
368 msg = "NULL pointer dereference";
370 msg = "paging request";
373 die_kernel_fault(msg, addr, esr, regs);
376 static void set_thread_esr(unsigned long address, unsigned int esr)
378 current->thread.fault_address = address;
381 * If the faulting address is in the kernel, we must sanitize the ESR.
382 * From userspace's point of view, kernel-only mappings don't exist
383 * at all, so we report them as level 0 translation faults.
384 * (This is not quite the way that "no mapping there at all" behaves:
385 * an alignment fault not caused by the memory type would take
386 * precedence over translation fault for a real access to empty
387 * space. Unfortunately we can't easily distinguish "alignment fault
388 * not caused by memory type" from "alignment fault caused by memory
389 * type", so we ignore this wrinkle and just return the translation
392 if (!is_ttbr0_addr(current->thread.fault_address)) {
393 switch (ESR_ELx_EC(esr)) {
394 case ESR_ELx_EC_DABT_LOW:
396 * These bits provide only information about the
397 * faulting instruction, which userspace knows already.
398 * We explicitly clear bits which are architecturally
399 * RES0 in case they are given meanings in future.
400 * We always report the ESR as if the fault was taken
401 * to EL1 and so ISV and the bits in ISS[23:14] are
402 * clear. (In fact it always will be a fault to EL1.)
404 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
405 ESR_ELx_CM | ESR_ELx_WNR;
406 esr |= ESR_ELx_FSC_FAULT;
408 case ESR_ELx_EC_IABT_LOW:
410 * Claim a level 0 translation fault.
411 * All other bits are architecturally RES0 for faults
412 * reported with that DFSC value, so we clear them.
414 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
415 esr |= ESR_ELx_FSC_FAULT;
419 * This should never happen (entry.S only brings us
420 * into this code for insn and data aborts from a lower
421 * exception level). Fail safe by not providing an ESR
422 * context record at all.
424 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
430 current->thread.fault_code = esr;
433 static void do_bad_area(unsigned long far, unsigned int esr,
434 struct pt_regs *regs)
436 unsigned long addr = untagged_addr(far);
439 * If we are in kernel mode at this point, we have no context to
440 * handle this fault with.
442 if (user_mode(regs)) {
443 const struct fault_info *inf = esr_to_fault_info(esr);
445 set_thread_esr(addr, esr);
446 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
448 __do_kernel_fault(addr, esr, regs);
452 #define VM_FAULT_BADMAP 0x010000
453 #define VM_FAULT_BADACCESS 0x020000
455 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
456 unsigned int mm_flags, unsigned long vm_flags,
457 struct pt_regs *regs)
459 struct vm_area_struct *vma = find_vma(mm, addr);
462 return VM_FAULT_BADMAP;
465 * Ok, we have a good vm_area for this memory access, so we can handle
468 if (unlikely(vma->vm_start > addr)) {
469 if (!(vma->vm_flags & VM_GROWSDOWN))
470 return VM_FAULT_BADMAP;
471 if (expand_stack(vma, addr))
472 return VM_FAULT_BADMAP;
476 * Check that the permissions on the VMA allow for the fault which
479 if (!(vma->vm_flags & vm_flags))
480 return VM_FAULT_BADACCESS;
481 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
484 static bool is_el0_instruction_abort(unsigned int esr)
486 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
490 * Note: not valid for EL1 DC IVAC, but we never use that such that it
491 * should fault. EL0 cannot issue DC IVAC (undef).
493 static bool is_write_abort(unsigned int esr)
495 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
498 static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
499 struct pt_regs *regs)
501 const struct fault_info *inf;
502 struct mm_struct *mm = current->mm;
504 unsigned long vm_flags = VM_ACCESS_FLAGS;
505 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
506 unsigned long addr = untagged_addr(far);
508 if (kprobe_page_fault(regs, esr))
512 * If we're in an interrupt or have no user context, we must not take
515 if (faulthandler_disabled() || !mm)
519 mm_flags |= FAULT_FLAG_USER;
521 if (is_el0_instruction_abort(esr)) {
523 mm_flags |= FAULT_FLAG_INSTRUCTION;
524 } else if (is_write_abort(esr)) {
526 mm_flags |= FAULT_FLAG_WRITE;
529 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
530 if (is_el1_instruction_abort(esr))
531 die_kernel_fault("execution of user memory",
534 if (!search_exception_tables(regs->pc))
535 die_kernel_fault("access to user memory outside uaccess routines",
539 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
542 * As per x86, we may deadlock here. However, since the kernel only
543 * validly references user space from well defined areas of the code,
544 * we can bug out early if this is from code which shouldn't.
546 if (!mmap_read_trylock(mm)) {
547 if (!user_mode(regs) && !search_exception_tables(regs->pc))
553 * The above down_read_trylock() might have succeeded in which
554 * case, we'll have missed the might_sleep() from down_read().
557 #ifdef CONFIG_DEBUG_VM
558 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
559 mmap_read_unlock(mm);
565 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
567 /* Quick path to respond to signals */
568 if (fault_signal_pending(fault, regs)) {
569 if (!user_mode(regs))
574 if (fault & VM_FAULT_RETRY) {
575 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
576 mm_flags |= FAULT_FLAG_TRIED;
580 mmap_read_unlock(mm);
583 * Handle the "normal" (no error) case first.
585 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
586 VM_FAULT_BADACCESS))))
590 * If we are in kernel mode at this point, we have no context to
591 * handle this fault with.
593 if (!user_mode(regs))
596 if (fault & VM_FAULT_OOM) {
598 * We ran out of memory, call the OOM killer, and return to
599 * userspace (which will retry the fault, or kill us if we got
602 pagefault_out_of_memory();
606 inf = esr_to_fault_info(esr);
607 set_thread_esr(addr, esr);
608 if (fault & VM_FAULT_SIGBUS) {
610 * We had some memory, but were unable to successfully fix up
613 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
614 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
618 if (fault & VM_FAULT_HWPOISON_LARGE)
619 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
621 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
624 * Something tried to access memory that isn't in our memory
627 arm64_force_sig_fault(SIGSEGV,
628 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
635 __do_kernel_fault(addr, esr, regs);
639 static int __kprobes do_translation_fault(unsigned long far,
641 struct pt_regs *regs)
643 unsigned long addr = untagged_addr(far);
645 if (is_ttbr0_addr(addr))
646 return do_page_fault(far, esr, regs);
648 do_bad_area(far, esr, regs);
652 static int do_alignment_fault(unsigned long far, unsigned int esr,
653 struct pt_regs *regs)
655 do_bad_area(far, esr, regs);
659 static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
661 return 1; /* "fault" */
664 static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
666 const struct fault_info *inf;
667 unsigned long siaddr;
669 inf = esr_to_fault_info(esr);
671 if (user_mode(regs) && apei_claim_sea(regs) == 0) {
673 * APEI claimed this as a firmware-first notification.
674 * Some processing deferred to task_work before ret_to_user().
679 if (esr & ESR_ELx_FnV) {
683 * The architecture specifies that the tag bits of FAR_EL1 are
684 * UNKNOWN for synchronous external aborts. Mask them out now
685 * so that userspace doesn't see them.
687 siaddr = untagged_addr(far);
689 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
694 static int do_tag_check_fault(unsigned long far, unsigned int esr,
695 struct pt_regs *regs)
698 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN for tag
699 * check faults. Mask them out now so that userspace doesn't see them.
701 far &= (1UL << 60) - 1;
702 do_bad_area(far, esr, regs);
706 static const struct fault_info fault_info[] = {
707 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
708 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
709 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
710 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
711 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
712 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
713 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
714 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
715 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
716 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
717 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
718 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
719 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
720 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
721 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
722 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
723 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
724 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
725 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
726 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
727 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
728 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
729 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
730 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
731 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
732 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
733 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
734 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
735 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
736 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
737 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
738 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
739 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
740 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
741 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
742 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
743 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
744 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
745 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
746 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
747 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
748 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
749 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
750 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
751 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
752 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
753 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
754 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
755 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
756 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
757 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
758 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
759 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
760 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
761 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
762 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
763 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
764 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
765 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
766 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
767 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
768 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
769 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
770 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
773 void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
775 const struct fault_info *inf = esr_to_fault_info(esr);
776 unsigned long addr = untagged_addr(far);
778 if (!inf->fn(far, esr, regs))
781 if (!user_mode(regs)) {
782 pr_alert("Unhandled fault at 0x%016lx\n", addr);
783 mem_abort_decode(esr);
788 * At this point we have an unrecognized fault type whose tag bits may
789 * have been defined as UNKNOWN. Therefore we only expose the untagged
790 * address to the signal handler.
792 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
794 NOKPROBE_SYMBOL(do_mem_abort);
796 void do_el0_irq_bp_hardening(void)
798 /* PC has already been checked in entry.S */
799 arm64_apply_bp_hardening();
801 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
803 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
805 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
808 NOKPROBE_SYMBOL(do_sp_pc_abort);
810 int __init early_brk64(unsigned long addr, unsigned int esr,
811 struct pt_regs *regs);
814 * __refdata because early_brk64 is __init, but the reference to it is
815 * clobbered at arch_initcall time.
816 * See traps.c and debug-monitors.c:debug_traps_init().
818 static struct fault_info __refdata debug_fault_info[] = {
819 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
820 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
821 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
822 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
823 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
824 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
825 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
826 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
829 void __init hook_debug_fault_code(int nr,
830 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
831 int sig, int code, const char *name)
833 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
835 debug_fault_info[nr].fn = fn;
836 debug_fault_info[nr].sig = sig;
837 debug_fault_info[nr].code = code;
838 debug_fault_info[nr].name = name;
842 * In debug exception context, we explicitly disable preemption despite
843 * having interrupts disabled.
844 * This serves two purposes: it makes it much less likely that we would
845 * accidentally schedule in exception context and it will force a warning
846 * if we somehow manage to schedule by accident.
848 static void debug_exception_enter(struct pt_regs *regs)
852 /* This code is a bit fragile. Test it. */
853 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
855 NOKPROBE_SYMBOL(debug_exception_enter);
857 static void debug_exception_exit(struct pt_regs *regs)
859 preempt_enable_no_resched();
861 NOKPROBE_SYMBOL(debug_exception_exit);
863 #ifdef CONFIG_ARM64_ERRATUM_1463225
864 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
866 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
871 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
875 * We've taken a dummy step exception from the kernel to ensure
876 * that interrupts are re-enabled on the syscall path. Return back
877 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
878 * masked so that we can safely restore the mdscr and get on with
879 * handling the syscall.
881 regs->pstate |= PSR_D_BIT;
885 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
889 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
890 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
892 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
893 struct pt_regs *regs)
895 const struct fault_info *inf = esr_to_debug_fault_info(esr);
896 unsigned long pc = instruction_pointer(regs);
898 if (cortex_a76_erratum_1463225_debug_handler(regs))
901 debug_exception_enter(regs);
903 if (user_mode(regs) && !is_ttbr0_addr(pc))
904 arm64_apply_bp_hardening();
906 if (inf->fn(addr_if_watchpoint, esr, regs)) {
907 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
910 debug_exception_exit(regs);
912 NOKPROBE_SYMBOL(do_debug_exception);