1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
35 #include <asm/kprobes.h>
36 #include <asm/processor.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/tlbflush.h>
40 #include <asm/traps.h>
43 int (*fn)(unsigned long addr, unsigned int esr,
44 struct pt_regs *regs);
50 static const struct fault_info fault_info[];
51 static struct fault_info debug_fault_info[];
53 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
55 return fault_info + (esr & ESR_ELx_FSC);
58 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
60 return debug_fault_info + DBG_ESR_EVT(esr);
63 static void data_abort_decode(unsigned int esr)
65 pr_alert("Data abort info:\n");
67 if (esr & ESR_ELx_ISV) {
68 pr_alert(" Access size = %u byte(s)\n",
69 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
70 pr_alert(" SSE = %lu, SRT = %lu\n",
71 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
72 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
73 pr_alert(" SF = %lu, AR = %lu\n",
74 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
75 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
77 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
80 pr_alert(" CM = %lu, WnR = %lu\n",
81 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
82 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
85 static void mem_abort_decode(unsigned int esr)
87 pr_alert("Mem abort info:\n");
89 pr_alert(" ESR = 0x%08x\n", esr);
90 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
91 ESR_ELx_EC(esr), esr_get_class_string(esr),
92 (esr & ESR_ELx_IL) ? 32 : 16);
93 pr_alert(" SET = %lu, FnV = %lu\n",
94 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
95 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
96 pr_alert(" EA = %lu, S1PTW = %lu\n",
97 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
98 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
100 if (esr_is_data_abort(esr))
101 data_abort_decode(esr);
104 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
106 /* Either init_pg_dir or swapper_pg_dir */
108 return __pa_symbol(mm->pgd);
110 return (unsigned long)virt_to_phys(mm->pgd);
114 * Dump out the page tables associated with 'addr' in the currently active mm.
116 static void show_pte(unsigned long addr)
118 struct mm_struct *mm;
122 if (is_ttbr0_addr(addr)) {
124 mm = current->active_mm;
125 if (mm == &init_mm) {
126 pr_alert("[%016lx] user address but active_mm is swapper\n",
130 } else if (is_ttbr1_addr(addr)) {
134 pr_alert("[%016lx] address between user and kernel address ranges\n",
139 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
140 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
141 vabits_actual, mm_to_pgd_phys(mm));
142 pgdp = pgd_offset(mm, addr);
143 pgd = READ_ONCE(*pgdp);
144 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
152 if (pgd_none(pgd) || pgd_bad(pgd))
155 p4dp = p4d_offset(pgdp, addr);
156 p4d = READ_ONCE(*p4dp);
157 pr_cont(", p4d=%016llx", p4d_val(p4d));
158 if (p4d_none(p4d) || p4d_bad(p4d))
161 pudp = pud_offset(p4dp, addr);
162 pud = READ_ONCE(*pudp);
163 pr_cont(", pud=%016llx", pud_val(pud));
164 if (pud_none(pud) || pud_bad(pud))
167 pmdp = pmd_offset(pudp, addr);
168 pmd = READ_ONCE(*pmdp);
169 pr_cont(", pmd=%016llx", pmd_val(pmd));
170 if (pmd_none(pmd) || pmd_bad(pmd))
173 ptep = pte_offset_map(pmdp, addr);
174 pte = READ_ONCE(*ptep);
175 pr_cont(", pte=%016llx", pte_val(pte));
183 * This function sets the access flags (dirty, accessed), as well as write
184 * permission, and only to a more permissive setting.
186 * It needs to cope with hardware update of the accessed/dirty state by other
187 * agents in the system and can safely skip the __sync_icache_dcache() call as,
188 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
190 * Returns whether or not the PTE actually changed.
192 int ptep_set_access_flags(struct vm_area_struct *vma,
193 unsigned long address, pte_t *ptep,
194 pte_t entry, int dirty)
196 pteval_t old_pteval, pteval;
197 pte_t pte = READ_ONCE(*ptep);
199 if (pte_same(pte, entry))
202 /* only preserve the access flags and write permission */
203 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
206 * Setting the flags must be done atomically to avoid racing with the
207 * hardware update of the access/dirty state. The PTE_RDONLY bit must
208 * be set to the most permissive (lowest value) of *ptep and entry
209 * (calculated as: a & b == ~(~a | ~b)).
211 pte_val(entry) ^= PTE_RDONLY;
212 pteval = pte_val(pte);
215 pteval ^= PTE_RDONLY;
216 pteval |= pte_val(entry);
217 pteval ^= PTE_RDONLY;
218 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
219 } while (pteval != old_pteval);
221 /* Invalidate a stale read-only entry */
223 flush_tlb_page(vma, address);
227 static bool is_el1_instruction_abort(unsigned int esr)
229 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
232 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
233 struct pt_regs *regs)
235 unsigned int ec = ESR_ELx_EC(esr);
236 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
238 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
241 if (fsc_type == ESR_ELx_FSC_PERM)
244 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
245 return fsc_type == ESR_ELx_FSC_FAULT &&
246 (regs->pstate & PSR_PAN_BIT);
251 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
253 struct pt_regs *regs)
258 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
259 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
262 local_irq_save(flags);
263 asm volatile("at s1e1r, %0" :: "r" (addr));
265 par = read_sysreg_par();
266 local_irq_restore(flags);
269 * If we now have a valid translation, treat the translation fault as
272 if (!(par & SYS_PAR_EL1_F))
276 * If we got a different type of fault from the AT instruction,
277 * treat the translation fault as spurious.
279 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
280 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
283 static void die_kernel_fault(const char *msg, unsigned long addr,
284 unsigned int esr, struct pt_regs *regs)
288 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
291 mem_abort_decode(esr);
294 die("Oops", regs, esr);
299 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
300 struct pt_regs *regs)
305 * Are we prepared to handle this kernel fault?
306 * We are almost certainly not prepared to handle instruction faults.
308 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
311 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
312 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
315 if (is_el1_permission_fault(addr, esr, regs)) {
316 if (esr & ESR_ELx_WNR)
317 msg = "write to read-only memory";
318 else if (is_el1_instruction_abort(esr))
319 msg = "execute from non-executable memory";
321 msg = "read from unreadable memory";
322 } else if (addr < PAGE_SIZE) {
323 msg = "NULL pointer dereference";
325 msg = "paging request";
328 die_kernel_fault(msg, addr, esr, regs);
331 static void set_thread_esr(unsigned long address, unsigned int esr)
333 current->thread.fault_address = address;
336 * If the faulting address is in the kernel, we must sanitize the ESR.
337 * From userspace's point of view, kernel-only mappings don't exist
338 * at all, so we report them as level 0 translation faults.
339 * (This is not quite the way that "no mapping there at all" behaves:
340 * an alignment fault not caused by the memory type would take
341 * precedence over translation fault for a real access to empty
342 * space. Unfortunately we can't easily distinguish "alignment fault
343 * not caused by memory type" from "alignment fault caused by memory
344 * type", so we ignore this wrinkle and just return the translation
347 if (!is_ttbr0_addr(current->thread.fault_address)) {
348 switch (ESR_ELx_EC(esr)) {
349 case ESR_ELx_EC_DABT_LOW:
351 * These bits provide only information about the
352 * faulting instruction, which userspace knows already.
353 * We explicitly clear bits which are architecturally
354 * RES0 in case they are given meanings in future.
355 * We always report the ESR as if the fault was taken
356 * to EL1 and so ISV and the bits in ISS[23:14] are
357 * clear. (In fact it always will be a fault to EL1.)
359 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
360 ESR_ELx_CM | ESR_ELx_WNR;
361 esr |= ESR_ELx_FSC_FAULT;
363 case ESR_ELx_EC_IABT_LOW:
365 * Claim a level 0 translation fault.
366 * All other bits are architecturally RES0 for faults
367 * reported with that DFSC value, so we clear them.
369 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
370 esr |= ESR_ELx_FSC_FAULT;
374 * This should never happen (entry.S only brings us
375 * into this code for insn and data aborts from a lower
376 * exception level). Fail safe by not providing an ESR
377 * context record at all.
379 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
385 current->thread.fault_code = esr;
388 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
391 * If we are in kernel mode at this point, we have no context to
392 * handle this fault with.
394 if (user_mode(regs)) {
395 const struct fault_info *inf = esr_to_fault_info(esr);
397 set_thread_esr(addr, esr);
398 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
401 __do_kernel_fault(addr, esr, regs);
405 #define VM_FAULT_BADMAP 0x010000
406 #define VM_FAULT_BADACCESS 0x020000
408 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
409 unsigned int mm_flags, unsigned long vm_flags,
410 struct pt_regs *regs)
412 struct vm_area_struct *vma = find_vma(mm, addr);
415 return VM_FAULT_BADMAP;
418 * Ok, we have a good vm_area for this memory access, so we can handle
421 if (unlikely(vma->vm_start > addr)) {
422 if (!(vma->vm_flags & VM_GROWSDOWN))
423 return VM_FAULT_BADMAP;
424 if (expand_stack(vma, addr))
425 return VM_FAULT_BADMAP;
429 * Check that the permissions on the VMA allow for the fault which
432 if (!(vma->vm_flags & vm_flags))
433 return VM_FAULT_BADACCESS;
434 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
437 static bool is_el0_instruction_abort(unsigned int esr)
439 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
443 * Note: not valid for EL1 DC IVAC, but we never use that such that it
444 * should fault. EL0 cannot issue DC IVAC (undef).
446 static bool is_write_abort(unsigned int esr)
448 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
451 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
452 struct pt_regs *regs)
454 const struct fault_info *inf;
455 struct mm_struct *mm = current->mm;
457 unsigned long vm_flags = VM_ACCESS_FLAGS;
458 unsigned int mm_flags = FAULT_FLAG_DEFAULT;
460 if (kprobe_page_fault(regs, esr))
464 * If we're in an interrupt or have no user context, we must not take
467 if (faulthandler_disabled() || !mm)
471 mm_flags |= FAULT_FLAG_USER;
473 if (is_el0_instruction_abort(esr)) {
475 mm_flags |= FAULT_FLAG_INSTRUCTION;
476 } else if (is_write_abort(esr)) {
478 mm_flags |= FAULT_FLAG_WRITE;
481 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
482 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
483 if (regs->orig_addr_limit == KERNEL_DS)
484 die_kernel_fault("access to user memory with fs=KERNEL_DS",
487 if (is_el1_instruction_abort(esr))
488 die_kernel_fault("execution of user memory",
491 if (!search_exception_tables(regs->pc))
492 die_kernel_fault("access to user memory outside uaccess routines",
496 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
499 * As per x86, we may deadlock here. However, since the kernel only
500 * validly references user space from well defined areas of the code,
501 * we can bug out early if this is from code which shouldn't.
503 if (!mmap_read_trylock(mm)) {
504 if (!user_mode(regs) && !search_exception_tables(regs->pc))
510 * The above down_read_trylock() might have succeeded in which
511 * case, we'll have missed the might_sleep() from down_read().
514 #ifdef CONFIG_DEBUG_VM
515 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
516 mmap_read_unlock(mm);
522 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
524 /* Quick path to respond to signals */
525 if (fault_signal_pending(fault, regs)) {
526 if (!user_mode(regs))
531 if (fault & VM_FAULT_RETRY) {
532 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
533 mm_flags |= FAULT_FLAG_TRIED;
537 mmap_read_unlock(mm);
540 * Handle the "normal" (no error) case first.
542 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
543 VM_FAULT_BADACCESS))))
547 * If we are in kernel mode at this point, we have no context to
548 * handle this fault with.
550 if (!user_mode(regs))
553 if (fault & VM_FAULT_OOM) {
555 * We ran out of memory, call the OOM killer, and return to
556 * userspace (which will retry the fault, or kill us if we got
559 pagefault_out_of_memory();
563 inf = esr_to_fault_info(esr);
564 set_thread_esr(addr, esr);
565 if (fault & VM_FAULT_SIGBUS) {
567 * We had some memory, but were unable to successfully fix up
570 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
572 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
576 if (fault & VM_FAULT_HWPOISON_LARGE)
577 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
579 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
583 * Something tried to access memory that isn't in our memory
586 arm64_force_sig_fault(SIGSEGV,
587 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
595 __do_kernel_fault(addr, esr, regs);
599 static int __kprobes do_translation_fault(unsigned long addr,
601 struct pt_regs *regs)
603 if (is_ttbr0_addr(addr))
604 return do_page_fault(addr, esr, regs);
606 do_bad_area(addr, esr, regs);
610 static int do_alignment_fault(unsigned long addr, unsigned int esr,
611 struct pt_regs *regs)
613 do_bad_area(addr, esr, regs);
617 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
619 return 1; /* "fault" */
622 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
624 const struct fault_info *inf;
627 inf = esr_to_fault_info(esr);
629 if (user_mode(regs) && apei_claim_sea(regs) == 0) {
631 * APEI claimed this as a firmware-first notification.
632 * Some processing deferred to task_work before ret_to_user().
637 if (esr & ESR_ELx_FnV)
640 siaddr = (void __user *)addr;
641 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
646 static int do_tag_check_fault(unsigned long addr, unsigned int esr,
647 struct pt_regs *regs)
649 do_bad_area(addr, esr, regs);
653 static const struct fault_info fault_info[] = {
654 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
655 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
656 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
657 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
658 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
659 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
660 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
661 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
662 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
663 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
664 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
665 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
666 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
667 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
668 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
669 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
670 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
671 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
672 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
673 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
674 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
675 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
676 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
677 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
678 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
679 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
680 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
681 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
682 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
683 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
684 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
685 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
686 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
687 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
688 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
689 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
690 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
691 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
693 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
698 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
699 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
702 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
703 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
706 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
707 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
708 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
709 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
710 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
711 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
712 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
713 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
714 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
715 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
716 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
717 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
720 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
722 const struct fault_info *inf = esr_to_fault_info(esr);
724 if (!inf->fn(addr, esr, regs))
727 if (!user_mode(regs)) {
728 pr_alert("Unhandled fault at 0x%016lx\n", addr);
729 mem_abort_decode(esr);
733 arm64_notify_die(inf->name, regs,
734 inf->sig, inf->code, (void __user *)addr, esr);
736 NOKPROBE_SYMBOL(do_mem_abort);
738 void do_el0_irq_bp_hardening(void)
740 /* PC has already been checked in entry.S */
741 arm64_apply_bp_hardening();
743 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
745 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
747 arm64_notify_die("SP/PC alignment exception", regs,
748 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
750 NOKPROBE_SYMBOL(do_sp_pc_abort);
752 int __init early_brk64(unsigned long addr, unsigned int esr,
753 struct pt_regs *regs);
756 * __refdata because early_brk64 is __init, but the reference to it is
757 * clobbered at arch_initcall time.
758 * See traps.c and debug-monitors.c:debug_traps_init().
760 static struct fault_info __refdata debug_fault_info[] = {
761 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
762 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
763 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
764 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
765 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
766 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
767 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
768 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
771 void __init hook_debug_fault_code(int nr,
772 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
773 int sig, int code, const char *name)
775 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
777 debug_fault_info[nr].fn = fn;
778 debug_fault_info[nr].sig = sig;
779 debug_fault_info[nr].code = code;
780 debug_fault_info[nr].name = name;
784 * In debug exception context, we explicitly disable preemption despite
785 * having interrupts disabled.
786 * This serves two purposes: it makes it much less likely that we would
787 * accidentally schedule in exception context and it will force a warning
788 * if we somehow manage to schedule by accident.
790 static void debug_exception_enter(struct pt_regs *regs)
793 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
794 * already disabled to preserve the last enabled/disabled addresses.
796 if (interrupts_enabled(regs))
797 trace_hardirqs_off();
799 if (user_mode(regs)) {
800 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
803 * We might have interrupted pretty much anything. In
804 * fact, if we're a debug exception, we can even interrupt
805 * NMI processing. We don't want this code makes in_nmi()
806 * to return true, but we need to notify RCU.
813 /* This code is a bit fragile. Test it. */
814 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
816 NOKPROBE_SYMBOL(debug_exception_enter);
818 static void debug_exception_exit(struct pt_regs *regs)
820 preempt_enable_no_resched();
822 if (!user_mode(regs))
825 if (interrupts_enabled(regs))
828 NOKPROBE_SYMBOL(debug_exception_exit);
830 #ifdef CONFIG_ARM64_ERRATUM_1463225
831 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
833 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
838 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
842 * We've taken a dummy step exception from the kernel to ensure
843 * that interrupts are re-enabled on the syscall path. Return back
844 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
845 * masked so that we can safely restore the mdscr and get on with
846 * handling the syscall.
848 regs->pstate |= PSR_D_BIT;
852 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
856 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
857 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
859 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
860 struct pt_regs *regs)
862 const struct fault_info *inf = esr_to_debug_fault_info(esr);
863 unsigned long pc = instruction_pointer(regs);
865 if (cortex_a76_erratum_1463225_debug_handler(regs))
868 debug_exception_enter(regs);
870 if (user_mode(regs) && !is_ttbr0_addr(pc))
871 arm64_apply_bp_hardening();
873 if (inf->fn(addr_if_watchpoint, esr, regs)) {
874 arm64_notify_die(inf->name, regs,
875 inf->sig, inf->code, (void __user *)pc, esr);
878 debug_exception_exit(regs);
880 NOKPROBE_SYMBOL(do_debug_exception);