usb: typec: mux: fix static inline syntax error
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / vgic / vgic-v4.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2017 ARM Ltd.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/irqdomain.h>
10 #include <linux/kvm_host.h>
11 #include <linux/irqchip/arm-gic-v3.h>
12
13 #include "vgic.h"
14
15 /*
16  * How KVM uses GICv4 (insert rude comments here):
17  *
18  * The vgic-v4 layer acts as a bridge between several entities:
19  * - The GICv4 ITS representation offered by the ITS driver
20  * - VFIO, which is in charge of the PCI endpoint
21  * - The virtual ITS, which is the only thing the guest sees
22  *
23  * The configuration of VLPIs is triggered by a callback from VFIO,
24  * instructing KVM that a PCI device has been configured to deliver
25  * MSIs to a vITS.
26  *
27  * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28  * and this is used to find the corresponding vITS data structures
29  * (ITS instance, device, event and irq) using a process that is
30  * extremely similar to the injection of an MSI.
31  *
32  * At this stage, we can link the guest's view of an LPI (uniquely
33  * identified by the routing entry) and the host irq, using the GICv4
34  * driver mapping operation. Should the mapping succeed, we've then
35  * successfully upgraded the guest's LPI to a VLPI. We can then start
36  * with updating GICv4's view of the property table and generating an
37  * INValidation in order to kickstart the delivery of this VLPI to the
38  * guest directly, without software intervention. Well, almost.
39  *
40  * When the PCI endpoint is deconfigured, this operation is reversed
41  * with VFIO calling kvm_vgic_v4_unset_forwarding().
42  *
43  * Once the VLPI has been mapped, it needs to follow any change the
44  * guest performs on its LPI through the vITS. For that, a number of
45  * command handlers have hooks to communicate these changes to the HW:
46  * - Any invalidation triggers a call to its_prop_update_vlpi()
47  * - The INT command results in a irq_set_irqchip_state(), which
48  *   generates an INT on the corresponding VLPI.
49  * - The CLEAR command results in a irq_set_irqchip_state(), which
50  *   generates an CLEAR on the corresponding VLPI.
51  * - DISCARD translates into an unmap, similar to a call to
52  *   kvm_vgic_v4_unset_forwarding().
53  * - MOVI is translated by an update of the existing mapping, changing
54  *   the target vcpu, resulting in a VMOVI being generated.
55  * - MOVALL is translated by a string of mapping updates (similar to
56  *   the handling of MOVI). MOVALL is horrible.
57  *
58  * Note that a DISCARD/MAPTI sequence emitted from the guest without
59  * reprogramming the PCI endpoint after MAPTI does not result in a
60  * VLPI being mapped, as there is no callback from VFIO (the guest
61  * will get the interrupt via the normal SW injection). Fixing this is
62  * not trivial, and requires some horrible messing with the VFIO
63  * internals. Not fun. Don't do that.
64  *
65  * Then there is the scheduling. Each time a vcpu is about to run on a
66  * physical CPU, KVM must tell the corresponding redistributor about
67  * it. And if we've migrated our vcpu from one CPU to another, we must
68  * tell the ITS (so that the messages reach the right redistributor).
69  * This is done in two steps: first issue a irq_set_affinity() on the
70  * irq corresponding to the vcpu, then call its_make_vpe_resident().
71  * You must be in a non-preemptible context. On exit, a call to
72  * its_make_vpe_non_resident() tells the redistributor that we're done
73  * with the vcpu.
74  *
75  * Finally, the doorbell handling: Each vcpu is allocated an interrupt
76  * which will fire each time a VLPI is made pending whilst the vcpu is
77  * not running. Each time the vcpu gets blocked, the doorbell
78  * interrupt gets enabled. When the vcpu is unblocked (for whatever
79  * reason), the doorbell interrupt is disabled.
80  */
81
82 #define DB_IRQ_FLAGS    (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83
84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85 {
86         struct kvm_vcpu *vcpu = info;
87
88         /* We got the message, no need to fire again */
89         if (!kvm_vgic_global_state.has_gicv4_1 &&
90             !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
91                 disable_irq_nosync(irq);
92
93         /*
94          * The v4.1 doorbell can fire concurrently with the vPE being
95          * made non-resident. Ensure we only update pending_last
96          * *after* the non-residency sequence has completed.
97          */
98         raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
99         vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
100         raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
101
102         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
103         kvm_vcpu_kick(vcpu);
104
105         return IRQ_HANDLED;
106 }
107
108 static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
109 {
110         vpe->sgi_config[irq->intid].enabled     = irq->enabled;
111         vpe->sgi_config[irq->intid].group       = irq->group;
112         vpe->sgi_config[irq->intid].priority    = irq->priority;
113 }
114
115 static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
116 {
117         struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
118         int i;
119
120         /*
121          * With GICv4.1, every virtual SGI can be directly injected. So
122          * let's pretend that they are HW interrupts, tied to a host
123          * IRQ. The SGI code will do its magic.
124          */
125         for (i = 0; i < VGIC_NR_SGIS; i++) {
126                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
127                 struct irq_desc *desc;
128                 unsigned long flags;
129                 int ret;
130
131                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
132
133                 if (irq->hw)
134                         goto unlock;
135
136                 irq->hw = true;
137                 irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
138
139                 /* Transfer the full irq state to the vPE */
140                 vgic_v4_sync_sgi_config(vpe, irq);
141                 desc = irq_to_desc(irq->host_irq);
142                 ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
143                                               false);
144                 if (!WARN_ON(ret)) {
145                         /* Transfer pending state */
146                         ret = irq_set_irqchip_state(irq->host_irq,
147                                                     IRQCHIP_STATE_PENDING,
148                                                     irq->pending_latch);
149                         WARN_ON(ret);
150                         irq->pending_latch = false;
151                 }
152         unlock:
153                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
154                 vgic_put_irq(vcpu->kvm, irq);
155         }
156 }
157
158 static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
159 {
160         int i;
161
162         for (i = 0; i < VGIC_NR_SGIS; i++) {
163                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
164                 struct irq_desc *desc;
165                 unsigned long flags;
166                 int ret;
167
168                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
169
170                 if (!irq->hw)
171                         goto unlock;
172
173                 irq->hw = false;
174                 ret = irq_get_irqchip_state(irq->host_irq,
175                                             IRQCHIP_STATE_PENDING,
176                                             &irq->pending_latch);
177                 WARN_ON(ret);
178
179                 desc = irq_to_desc(irq->host_irq);
180                 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
181         unlock:
182                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183                 vgic_put_irq(vcpu->kvm, irq);
184         }
185 }
186
187 /* Must be called with the kvm lock held */
188 void vgic_v4_configure_vsgis(struct kvm *kvm)
189 {
190         struct vgic_dist *dist = &kvm->arch.vgic;
191         struct kvm_vcpu *vcpu;
192         unsigned long i;
193
194         kvm_arm_halt_guest(kvm);
195
196         kvm_for_each_vcpu(i, vcpu, kvm) {
197                 if (dist->nassgireq)
198                         vgic_v4_enable_vsgis(vcpu);
199                 else
200                         vgic_v4_disable_vsgis(vcpu);
201         }
202
203         kvm_arm_resume_guest(kvm);
204 }
205
206 /*
207  * Must be called with GICv4.1 and the vPE unmapped, which
208  * indicates the invalidation of any VPT caches associated
209  * with the vPE, thus we can get the VLPI state by peeking
210  * at the VPT.
211  */
212 void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
213 {
214         struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
215         int mask = BIT(irq->intid % BITS_PER_BYTE);
216         void *va;
217         u8 *ptr;
218
219         va = page_address(vpe->vpt_page);
220         ptr = va + irq->intid / BITS_PER_BYTE;
221
222         *val = !!(*ptr & mask);
223 }
224
225 int vgic_v4_request_vpe_irq(struct kvm_vcpu *vcpu, int irq)
226 {
227         return request_irq(irq, vgic_v4_doorbell_handler, 0, "vcpu", vcpu);
228 }
229
230 /**
231  * vgic_v4_init - Initialize the GICv4 data structures
232  * @kvm:        Pointer to the VM being initialized
233  *
234  * We may be called each time a vITS is created, or when the
235  * vgic is initialized. In both cases, the number of vcpus
236  * should now be fixed.
237  */
238 int vgic_v4_init(struct kvm *kvm)
239 {
240         struct vgic_dist *dist = &kvm->arch.vgic;
241         struct kvm_vcpu *vcpu;
242         int nr_vcpus, ret;
243         unsigned long i;
244
245         lockdep_assert_held(&kvm->arch.config_lock);
246
247         if (!kvm_vgic_global_state.has_gicv4)
248                 return 0; /* Nothing to see here... move along. */
249
250         if (dist->its_vm.vpes)
251                 return 0;
252
253         nr_vcpus = atomic_read(&kvm->online_vcpus);
254
255         dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
256                                     GFP_KERNEL_ACCOUNT);
257         if (!dist->its_vm.vpes)
258                 return -ENOMEM;
259
260         dist->its_vm.nr_vpes = nr_vcpus;
261
262         kvm_for_each_vcpu(i, vcpu, kvm)
263                 dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
264
265         ret = its_alloc_vcpu_irqs(&dist->its_vm);
266         if (ret < 0) {
267                 kvm_err("VPE IRQ allocation failure\n");
268                 kfree(dist->its_vm.vpes);
269                 dist->its_vm.nr_vpes = 0;
270                 dist->its_vm.vpes = NULL;
271                 return ret;
272         }
273
274         kvm_for_each_vcpu(i, vcpu, kvm) {
275                 int irq = dist->its_vm.vpes[i]->irq;
276                 unsigned long irq_flags = DB_IRQ_FLAGS;
277
278                 /*
279                  * Don't automatically enable the doorbell, as we're
280                  * flipping it back and forth when the vcpu gets
281                  * blocked. Also disable the lazy disabling, as the
282                  * doorbell could kick us out of the guest too
283                  * early...
284                  *
285                  * On GICv4.1, the doorbell is managed in HW and must
286                  * be left enabled.
287                  */
288                 if (kvm_vgic_global_state.has_gicv4_1)
289                         irq_flags &= ~IRQ_NOAUTOEN;
290                 irq_set_status_flags(irq, irq_flags);
291
292                 ret = vgic_v4_request_vpe_irq(vcpu, irq);
293                 if (ret) {
294                         kvm_err("failed to allocate vcpu IRQ%d\n", irq);
295                         /*
296                          * Trick: adjust the number of vpes so we know
297                          * how many to nuke on teardown...
298                          */
299                         dist->its_vm.nr_vpes = i;
300                         break;
301                 }
302         }
303
304         if (ret)
305                 vgic_v4_teardown(kvm);
306
307         return ret;
308 }
309
310 /**
311  * vgic_v4_teardown - Free the GICv4 data structures
312  * @kvm:        Pointer to the VM being destroyed
313  */
314 void vgic_v4_teardown(struct kvm *kvm)
315 {
316         struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
317         int i;
318
319         lockdep_assert_held(&kvm->arch.config_lock);
320
321         if (!its_vm->vpes)
322                 return;
323
324         for (i = 0; i < its_vm->nr_vpes; i++) {
325                 struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
326                 int irq = its_vm->vpes[i]->irq;
327
328                 irq_clear_status_flags(irq, DB_IRQ_FLAGS);
329                 free_irq(irq, vcpu);
330         }
331
332         its_free_vcpu_irqs(its_vm);
333         kfree(its_vm->vpes);
334         its_vm->nr_vpes = 0;
335         its_vm->vpes = NULL;
336 }
337
338 int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db)
339 {
340         struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
341
342         if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
343                 return 0;
344
345         return its_make_vpe_non_resident(vpe, need_db);
346 }
347
348 int vgic_v4_load(struct kvm_vcpu *vcpu)
349 {
350         struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
351         int err;
352
353         if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
354                 return 0;
355
356         /*
357          * Before making the VPE resident, make sure the redistributor
358          * corresponding to our current CPU expects us here. See the
359          * doc in drivers/irqchip/irq-gic-v4.c to understand how this
360          * turns into a VMOVP command at the ITS level.
361          */
362         err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
363         if (err)
364                 return err;
365
366         err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
367         if (err)
368                 return err;
369
370         /*
371          * Now that the VPE is resident, let's get rid of a potential
372          * doorbell interrupt that would still be pending. This is a
373          * GICv4.0 only "feature"...
374          */
375         if (!kvm_vgic_global_state.has_gicv4_1)
376                 err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
377
378         return err;
379 }
380
381 void vgic_v4_commit(struct kvm_vcpu *vcpu)
382 {
383         struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
384
385         /*
386          * No need to wait for the vPE to be ready across a shallow guest
387          * exit, as only a vcpu_put will invalidate it.
388          */
389         if (!vpe->ready)
390                 its_commit_vpe(vpe);
391 }
392
393 static struct vgic_its *vgic_get_its(struct kvm *kvm,
394                                      struct kvm_kernel_irq_routing_entry *irq_entry)
395 {
396         struct kvm_msi msi  = (struct kvm_msi) {
397                 .address_lo     = irq_entry->msi.address_lo,
398                 .address_hi     = irq_entry->msi.address_hi,
399                 .data           = irq_entry->msi.data,
400                 .flags          = irq_entry->msi.flags,
401                 .devid          = irq_entry->msi.devid,
402         };
403
404         return vgic_msi_to_its(kvm, &msi);
405 }
406
407 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
408                                struct kvm_kernel_irq_routing_entry *irq_entry)
409 {
410         struct vgic_its *its;
411         struct vgic_irq *irq;
412         struct its_vlpi_map map;
413         unsigned long flags;
414         int ret;
415
416         if (!vgic_supports_direct_msis(kvm))
417                 return 0;
418
419         /*
420          * Get the ITS, and escape early on error (not a valid
421          * doorbell for any of our vITSs).
422          */
423         its = vgic_get_its(kvm, irq_entry);
424         if (IS_ERR(its))
425                 return 0;
426
427         mutex_lock(&its->its_lock);
428
429         /* Perform the actual DevID/EventID -> LPI translation. */
430         ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
431                                    irq_entry->msi.data, &irq);
432         if (ret)
433                 goto out;
434
435         /*
436          * Emit the mapping request. If it fails, the ITS probably
437          * isn't v4 compatible, so let's silently bail out. Holding
438          * the ITS lock should ensure that nothing can modify the
439          * target vcpu.
440          */
441         map = (struct its_vlpi_map) {
442                 .vm             = &kvm->arch.vgic.its_vm,
443                 .vpe            = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
444                 .vintid         = irq->intid,
445                 .properties     = ((irq->priority & 0xfc) |
446                                    (irq->enabled ? LPI_PROP_ENABLED : 0) |
447                                    LPI_PROP_GROUP1),
448                 .db_enabled     = true,
449         };
450
451         ret = its_map_vlpi(virq, &map);
452         if (ret)
453                 goto out;
454
455         irq->hw         = true;
456         irq->host_irq   = virq;
457         atomic_inc(&map.vpe->vlpi_count);
458
459         /* Transfer pending state */
460         raw_spin_lock_irqsave(&irq->irq_lock, flags);
461         if (irq->pending_latch) {
462                 ret = irq_set_irqchip_state(irq->host_irq,
463                                             IRQCHIP_STATE_PENDING,
464                                             irq->pending_latch);
465                 WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
466
467                 /*
468                  * Clear pending_latch and communicate this state
469                  * change via vgic_queue_irq_unlock.
470                  */
471                 irq->pending_latch = false;
472                 vgic_queue_irq_unlock(kvm, irq, flags);
473         } else {
474                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
475         }
476
477 out:
478         mutex_unlock(&its->its_lock);
479         return ret;
480 }
481
482 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
483                                  struct kvm_kernel_irq_routing_entry *irq_entry)
484 {
485         struct vgic_its *its;
486         struct vgic_irq *irq;
487         int ret;
488
489         if (!vgic_supports_direct_msis(kvm))
490                 return 0;
491
492         /*
493          * Get the ITS, and escape early on error (not a valid
494          * doorbell for any of our vITSs).
495          */
496         its = vgic_get_its(kvm, irq_entry);
497         if (IS_ERR(its))
498                 return 0;
499
500         mutex_lock(&its->its_lock);
501
502         ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
503                                    irq_entry->msi.data, &irq);
504         if (ret)
505                 goto out;
506
507         WARN_ON(!(irq->hw && irq->host_irq == virq));
508         if (irq->hw) {
509                 atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
510                 irq->hw = false;
511                 ret = its_unmap_vlpi(virq);
512         }
513
514 out:
515         mutex_unlock(&its->its_lock);
516         return ret;
517 }