KVM: arm64: Replace vgic_v3_uaccess_read_pending with vgic_uaccess_read_pending
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / vgic / vgic-mmio.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC MMIO handling functions
4  */
5
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20                                  gpa_t addr, unsigned int len)
21 {
22         return 0;
23 }
24
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26                                  gpa_t addr, unsigned int len)
27 {
28         return -1UL;
29 }
30
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32                         unsigned int len, unsigned long val)
33 {
34         /* Ignore */
35 }
36
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38                                unsigned int len, unsigned long val)
39 {
40         /* Ignore */
41         return 0;
42 }
43
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45                                    gpa_t addr, unsigned int len)
46 {
47         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48         u32 value = 0;
49         int i;
50
51         /* Loop over all IRQs affected by this read */
52         for (i = 0; i < len * 8; i++) {
53                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
54
55                 if (irq->group)
56                         value |= BIT(i);
57
58                 vgic_put_irq(vcpu->kvm, irq);
59         }
60
61         return value;
62 }
63
64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66         WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70                            unsigned int len, unsigned long val)
71 {
72         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73         int i;
74         unsigned long flags;
75
76         for (i = 0; i < len * 8; i++) {
77                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78
79                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
80                 irq->group = !!(val & BIT(i));
81                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82                         vgic_update_vsgi(irq);
83                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84                 } else {
85                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86                 }
87
88                 vgic_put_irq(vcpu->kvm, irq);
89         }
90 }
91
92 /*
93  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94  * of the enabled bit, so there is only one function for both here.
95  */
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97                                     gpa_t addr, unsigned int len)
98 {
99         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100         u32 value = 0;
101         int i;
102
103         /* Loop over all IRQs affected by this read */
104         for (i = 0; i < len * 8; i++) {
105                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106
107                 if (irq->enabled)
108                         value |= (1U << i);
109
110                 vgic_put_irq(vcpu->kvm, irq);
111         }
112
113         return value;
114 }
115
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117                              gpa_t addr, unsigned int len,
118                              unsigned long val)
119 {
120         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121         int i;
122         unsigned long flags;
123
124         for_each_set_bit(i, &val, len * 8) {
125                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126
127                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
128                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129                         if (!irq->enabled) {
130                                 struct irq_data *data;
131
132                                 irq->enabled = true;
133                                 data = &irq_to_desc(irq->host_irq)->irq_data;
134                                 while (irqd_irq_disabled(data))
135                                         enable_irq(irq->host_irq);
136                         }
137
138                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139                         vgic_put_irq(vcpu->kvm, irq);
140
141                         continue;
142                 } else if (vgic_irq_is_mapped_level(irq)) {
143                         bool was_high = irq->line_level;
144
145                         /*
146                          * We need to update the state of the interrupt because
147                          * the guest might have changed the state of the device
148                          * while the interrupt was disabled at the VGIC level.
149                          */
150                         irq->line_level = vgic_get_phys_line_level(irq);
151                         /*
152                          * Deactivate the physical interrupt so the GIC will let
153                          * us know when it is asserted again.
154                          */
155                         if (!irq->active && was_high && !irq->line_level)
156                                 vgic_irq_set_phys_active(irq, false);
157                 }
158                 irq->enabled = true;
159                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160
161                 vgic_put_irq(vcpu->kvm, irq);
162         }
163 }
164
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166                              gpa_t addr, unsigned int len,
167                              unsigned long val)
168 {
169         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170         int i;
171         unsigned long flags;
172
173         for_each_set_bit(i, &val, len * 8) {
174                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175
176                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
177                 if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178                         disable_irq_nosync(irq->host_irq);
179
180                 irq->enabled = false;
181
182                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183                 vgic_put_irq(vcpu->kvm, irq);
184         }
185 }
186
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188                                gpa_t addr, unsigned int len,
189                                unsigned long val)
190 {
191         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192         int i;
193         unsigned long flags;
194
195         for_each_set_bit(i, &val, len * 8) {
196                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197
198                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
199                 irq->enabled = true;
200                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201
202                 vgic_put_irq(vcpu->kvm, irq);
203         }
204
205         return 0;
206 }
207
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209                                gpa_t addr, unsigned int len,
210                                unsigned long val)
211 {
212         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213         int i;
214         unsigned long flags;
215
216         for_each_set_bit(i, &val, len * 8) {
217                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218
219                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
220                 irq->enabled = false;
221                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222
223                 vgic_put_irq(vcpu->kvm, irq);
224         }
225
226         return 0;
227 }
228
229 static unsigned long __read_pending(struct kvm_vcpu *vcpu,
230                                     gpa_t addr, unsigned int len,
231                                     bool is_user)
232 {
233         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
234         u32 value = 0;
235         int i;
236
237         /* Loop over all IRQs affected by this read */
238         for (i = 0; i < len * 8; i++) {
239                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
240                 unsigned long flags;
241                 bool val;
242
243                 /*
244                  * When used from userspace with a GICv3 model:
245                  *
246                  * Pending state of interrupt is latched in pending_latch
247                  * variable.  Userspace will save and restore pending state
248                  * and line_level separately.
249                  * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
250                  * for handling of ISPENDR and ICPENDR.
251                  */
252                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
253                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
254                         int err;
255
256                         val = false;
257                         err = irq_get_irqchip_state(irq->host_irq,
258                                                     IRQCHIP_STATE_PENDING,
259                                                     &val);
260                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
261                 } else if (!is_user && vgic_irq_is_mapped_level(irq)) {
262                         val = vgic_get_phys_line_level(irq);
263                 } else {
264                         switch (vcpu->kvm->arch.vgic.vgic_model) {
265                         case KVM_DEV_TYPE_ARM_VGIC_V3:
266                                 if (is_user) {
267                                         val = irq->pending_latch;
268                                         break;
269                                 }
270                                 fallthrough;
271                         default:
272                                 val = irq_is_pending(irq);
273                                 break;
274                         }
275                 }
276
277                 value |= ((u32)val << i);
278                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
279
280                 vgic_put_irq(vcpu->kvm, irq);
281         }
282
283         return value;
284 }
285
286 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
287                                      gpa_t addr, unsigned int len)
288 {
289         return __read_pending(vcpu, addr, len, false);
290 }
291
292 unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
293                                         gpa_t addr, unsigned int len)
294 {
295         return __read_pending(vcpu, addr, len, true);
296 }
297
298 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
299 {
300         return (vgic_irq_is_sgi(irq->intid) &&
301                 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
302 }
303
304 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
305                               gpa_t addr, unsigned int len,
306                               unsigned long val)
307 {
308         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
309         int i;
310         unsigned long flags;
311
312         for_each_set_bit(i, &val, len * 8) {
313                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
314
315                 /* GICD_ISPENDR0 SGI bits are WI */
316                 if (is_vgic_v2_sgi(vcpu, irq)) {
317                         vgic_put_irq(vcpu->kvm, irq);
318                         continue;
319                 }
320
321                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
322
323                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
324                         /* HW SGI? Ask the GIC to inject it */
325                         int err;
326                         err = irq_set_irqchip_state(irq->host_irq,
327                                                     IRQCHIP_STATE_PENDING,
328                                                     true);
329                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
330
331                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
332                         vgic_put_irq(vcpu->kvm, irq);
333
334                         continue;
335                 }
336
337                 irq->pending_latch = true;
338                 if (irq->hw)
339                         vgic_irq_set_phys_active(irq, true);
340
341                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
342                 vgic_put_irq(vcpu->kvm, irq);
343         }
344 }
345
346 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
347                                 gpa_t addr, unsigned int len,
348                                 unsigned long val)
349 {
350         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
351         int i;
352         unsigned long flags;
353
354         for_each_set_bit(i, &val, len * 8) {
355                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
356
357                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
358                 irq->pending_latch = true;
359
360                 /*
361                  * GICv2 SGIs are terribly broken. We can't restore
362                  * the source of the interrupt, so just pick the vcpu
363                  * itself as the source...
364                  */
365                 if (is_vgic_v2_sgi(vcpu, irq))
366                         irq->source |= BIT(vcpu->vcpu_id);
367
368                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
369
370                 vgic_put_irq(vcpu->kvm, irq);
371         }
372
373         return 0;
374 }
375
376 /* Must be called with irq->irq_lock held */
377 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
378 {
379         irq->pending_latch = false;
380
381         /*
382          * We don't want the guest to effectively mask the physical
383          * interrupt by doing a write to SPENDR followed by a write to
384          * CPENDR for HW interrupts, so we clear the active state on
385          * the physical side if the virtual interrupt is not active.
386          * This may lead to taking an additional interrupt on the
387          * host, but that should not be a problem as the worst that
388          * can happen is an additional vgic injection.  We also clear
389          * the pending state to maintain proper semantics for edge HW
390          * interrupts.
391          */
392         vgic_irq_set_phys_pending(irq, false);
393         if (!irq->active)
394                 vgic_irq_set_phys_active(irq, false);
395 }
396
397 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
398                               gpa_t addr, unsigned int len,
399                               unsigned long val)
400 {
401         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
402         int i;
403         unsigned long flags;
404
405         for_each_set_bit(i, &val, len * 8) {
406                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
407
408                 /* GICD_ICPENDR0 SGI bits are WI */
409                 if (is_vgic_v2_sgi(vcpu, irq)) {
410                         vgic_put_irq(vcpu->kvm, irq);
411                         continue;
412                 }
413
414                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
415
416                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
417                         /* HW SGI? Ask the GIC to clear its pending bit */
418                         int err;
419                         err = irq_set_irqchip_state(irq->host_irq,
420                                                     IRQCHIP_STATE_PENDING,
421                                                     false);
422                         WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
423
424                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
425                         vgic_put_irq(vcpu->kvm, irq);
426
427                         continue;
428                 }
429
430                 if (irq->hw)
431                         vgic_hw_irq_cpending(vcpu, irq);
432                 else
433                         irq->pending_latch = false;
434
435                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
436                 vgic_put_irq(vcpu->kvm, irq);
437         }
438 }
439
440 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
441                                 gpa_t addr, unsigned int len,
442                                 unsigned long val)
443 {
444         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
445         int i;
446         unsigned long flags;
447
448         for_each_set_bit(i, &val, len * 8) {
449                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
450
451                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
452                 /*
453                  * More fun with GICv2 SGIs! If we're clearing one of them
454                  * from userspace, which source vcpu to clear? Let's not
455                  * even think of it, and blow the whole set.
456                  */
457                 if (is_vgic_v2_sgi(vcpu, irq))
458                         irq->source = 0;
459
460                 irq->pending_latch = false;
461
462                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
463
464                 vgic_put_irq(vcpu->kvm, irq);
465         }
466
467         return 0;
468 }
469
470 /*
471  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
472  * is not queued on some running VCPU's LRs, because then the change to the
473  * active state can be overwritten when the VCPU's state is synced coming back
474  * from the guest.
475  *
476  * For shared interrupts as well as GICv3 private interrupts, we have to
477  * stop all the VCPUs because interrupts can be migrated while we don't hold
478  * the IRQ locks and we don't want to be chasing moving targets.
479  *
480  * For GICv2 private interrupts we don't have to do anything because
481  * userspace accesses to the VGIC state already require all VCPUs to be
482  * stopped, and only the VCPU itself can modify its private interrupts
483  * active state, which guarantees that the VCPU is not running.
484  */
485 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
486 {
487         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
488             intid >= VGIC_NR_PRIVATE_IRQS)
489                 kvm_arm_halt_guest(vcpu->kvm);
490 }
491
492 /* See vgic_access_active_prepare */
493 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
494 {
495         if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
496             intid >= VGIC_NR_PRIVATE_IRQS)
497                 kvm_arm_resume_guest(vcpu->kvm);
498 }
499
500 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
501                                              gpa_t addr, unsigned int len)
502 {
503         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
504         u32 value = 0;
505         int i;
506
507         /* Loop over all IRQs affected by this read */
508         for (i = 0; i < len * 8; i++) {
509                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
510
511                 /*
512                  * Even for HW interrupts, don't evaluate the HW state as
513                  * all the guest is interested in is the virtual state.
514                  */
515                 if (irq->active)
516                         value |= (1U << i);
517
518                 vgic_put_irq(vcpu->kvm, irq);
519         }
520
521         return value;
522 }
523
524 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
525                                     gpa_t addr, unsigned int len)
526 {
527         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
528         u32 val;
529
530         mutex_lock(&vcpu->kvm->lock);
531         vgic_access_active_prepare(vcpu, intid);
532
533         val = __vgic_mmio_read_active(vcpu, addr, len);
534
535         vgic_access_active_finish(vcpu, intid);
536         mutex_unlock(&vcpu->kvm->lock);
537
538         return val;
539 }
540
541 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
542                                     gpa_t addr, unsigned int len)
543 {
544         return __vgic_mmio_read_active(vcpu, addr, len);
545 }
546
547 /* Must be called with irq->irq_lock held */
548 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
549                                       bool active, bool is_uaccess)
550 {
551         if (is_uaccess)
552                 return;
553
554         irq->active = active;
555         vgic_irq_set_phys_active(irq, active);
556 }
557
558 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
559                                     bool active)
560 {
561         unsigned long flags;
562         struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
563
564         raw_spin_lock_irqsave(&irq->irq_lock, flags);
565
566         if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
567                 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
568         } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
569                 /*
570                  * GICv4.1 VSGI feature doesn't track an active state,
571                  * so let's not kid ourselves, there is nothing we can
572                  * do here.
573                  */
574                 irq->active = false;
575         } else {
576                 u32 model = vcpu->kvm->arch.vgic.vgic_model;
577                 u8 active_source;
578
579                 irq->active = active;
580
581                 /*
582                  * The GICv2 architecture indicates that the source CPUID for
583                  * an SGI should be provided during an EOI which implies that
584                  * the active state is stored somewhere, but at the same time
585                  * this state is not architecturally exposed anywhere and we
586                  * have no way of knowing the right source.
587                  *
588                  * This may lead to a VCPU not being able to receive
589                  * additional instances of a particular SGI after migration
590                  * for a GICv2 VM on some GIC implementations.  Oh well.
591                  */
592                 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
593
594                 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
595                     active && vgic_irq_is_sgi(irq->intid))
596                         irq->active_source = active_source;
597         }
598
599         if (irq->active)
600                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
601         else
602                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
603 }
604
605 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
606                                       gpa_t addr, unsigned int len,
607                                       unsigned long val)
608 {
609         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
610         int i;
611
612         for_each_set_bit(i, &val, len * 8) {
613                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
614                 vgic_mmio_change_active(vcpu, irq, false);
615                 vgic_put_irq(vcpu->kvm, irq);
616         }
617 }
618
619 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
620                              gpa_t addr, unsigned int len,
621                              unsigned long val)
622 {
623         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
624
625         mutex_lock(&vcpu->kvm->lock);
626         vgic_access_active_prepare(vcpu, intid);
627
628         __vgic_mmio_write_cactive(vcpu, addr, len, val);
629
630         vgic_access_active_finish(vcpu, intid);
631         mutex_unlock(&vcpu->kvm->lock);
632 }
633
634 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
635                                      gpa_t addr, unsigned int len,
636                                      unsigned long val)
637 {
638         __vgic_mmio_write_cactive(vcpu, addr, len, val);
639         return 0;
640 }
641
642 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
643                                       gpa_t addr, unsigned int len,
644                                       unsigned long val)
645 {
646         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
647         int i;
648
649         for_each_set_bit(i, &val, len * 8) {
650                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
651                 vgic_mmio_change_active(vcpu, irq, true);
652                 vgic_put_irq(vcpu->kvm, irq);
653         }
654 }
655
656 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
657                              gpa_t addr, unsigned int len,
658                              unsigned long val)
659 {
660         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
661
662         mutex_lock(&vcpu->kvm->lock);
663         vgic_access_active_prepare(vcpu, intid);
664
665         __vgic_mmio_write_sactive(vcpu, addr, len, val);
666
667         vgic_access_active_finish(vcpu, intid);
668         mutex_unlock(&vcpu->kvm->lock);
669 }
670
671 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
672                                      gpa_t addr, unsigned int len,
673                                      unsigned long val)
674 {
675         __vgic_mmio_write_sactive(vcpu, addr, len, val);
676         return 0;
677 }
678
679 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
680                                       gpa_t addr, unsigned int len)
681 {
682         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
683         int i;
684         u64 val = 0;
685
686         for (i = 0; i < len; i++) {
687                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
688
689                 val |= (u64)irq->priority << (i * 8);
690
691                 vgic_put_irq(vcpu->kvm, irq);
692         }
693
694         return val;
695 }
696
697 /*
698  * We currently don't handle changing the priority of an interrupt that
699  * is already pending on a VCPU. If there is a need for this, we would
700  * need to make this VCPU exit and re-evaluate the priorities, potentially
701  * leading to this interrupt getting presented now to the guest (if it has
702  * been masked by the priority mask before).
703  */
704 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
705                               gpa_t addr, unsigned int len,
706                               unsigned long val)
707 {
708         u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
709         int i;
710         unsigned long flags;
711
712         for (i = 0; i < len; i++) {
713                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
714
715                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
716                 /* Narrow the priority range to what we actually support */
717                 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
718                 if (irq->hw && vgic_irq_is_sgi(irq->intid))
719                         vgic_update_vsgi(irq);
720                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
721
722                 vgic_put_irq(vcpu->kvm, irq);
723         }
724 }
725
726 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
727                                     gpa_t addr, unsigned int len)
728 {
729         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
730         u32 value = 0;
731         int i;
732
733         for (i = 0; i < len * 4; i++) {
734                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
735
736                 if (irq->config == VGIC_CONFIG_EDGE)
737                         value |= (2U << (i * 2));
738
739                 vgic_put_irq(vcpu->kvm, irq);
740         }
741
742         return value;
743 }
744
745 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
746                             gpa_t addr, unsigned int len,
747                             unsigned long val)
748 {
749         u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
750         int i;
751         unsigned long flags;
752
753         for (i = 0; i < len * 4; i++) {
754                 struct vgic_irq *irq;
755
756                 /*
757                  * The configuration cannot be changed for SGIs in general,
758                  * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
759                  * code relies on PPIs being level triggered, so we also
760                  * make them read-only here.
761                  */
762                 if (intid + i < VGIC_NR_PRIVATE_IRQS)
763                         continue;
764
765                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
766                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
767
768                 if (test_bit(i * 2 + 1, &val))
769                         irq->config = VGIC_CONFIG_EDGE;
770                 else
771                         irq->config = VGIC_CONFIG_LEVEL;
772
773                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
774                 vgic_put_irq(vcpu->kvm, irq);
775         }
776 }
777
778 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
779 {
780         int i;
781         u64 val = 0;
782         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
783
784         for (i = 0; i < 32; i++) {
785                 struct vgic_irq *irq;
786
787                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
788                         continue;
789
790                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
791                 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
792                         val |= (1U << i);
793
794                 vgic_put_irq(vcpu->kvm, irq);
795         }
796
797         return val;
798 }
799
800 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
801                                     const u64 val)
802 {
803         int i;
804         int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
805         unsigned long flags;
806
807         for (i = 0; i < 32; i++) {
808                 struct vgic_irq *irq;
809                 bool new_level;
810
811                 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
812                         continue;
813
814                 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
815
816                 /*
817                  * Line level is set irrespective of irq type
818                  * (level or edge) to avoid dependency that VM should
819                  * restore irq config before line level.
820                  */
821                 new_level = !!(val & (1U << i));
822                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
823                 irq->line_level = new_level;
824                 if (new_level)
825                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
826                 else
827                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
828
829                 vgic_put_irq(vcpu->kvm, irq);
830         }
831 }
832
833 static int match_region(const void *key, const void *elt)
834 {
835         const unsigned int offset = (unsigned long)key;
836         const struct vgic_register_region *region = elt;
837
838         if (offset < region->reg_offset)
839                 return -1;
840
841         if (offset >= region->reg_offset + region->len)
842                 return 1;
843
844         return 0;
845 }
846
847 const struct vgic_register_region *
848 vgic_find_mmio_region(const struct vgic_register_region *regions,
849                       int nr_regions, unsigned int offset)
850 {
851         return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
852                        sizeof(regions[0]), match_region);
853 }
854
855 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
856 {
857         if (kvm_vgic_global_state.type == VGIC_V2)
858                 vgic_v2_set_vmcr(vcpu, vmcr);
859         else
860                 vgic_v3_set_vmcr(vcpu, vmcr);
861 }
862
863 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
864 {
865         if (kvm_vgic_global_state.type == VGIC_V2)
866                 vgic_v2_get_vmcr(vcpu, vmcr);
867         else
868                 vgic_v3_get_vmcr(vcpu, vmcr);
869 }
870
871 /*
872  * kvm_mmio_read_buf() returns a value in a format where it can be converted
873  * to a byte array and be directly observed as the guest wanted it to appear
874  * in memory if it had done the store itself, which is LE for the GIC, as the
875  * guest knows the GIC is always LE.
876  *
877  * We convert this value to the CPUs native format to deal with it as a data
878  * value.
879  */
880 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
881 {
882         unsigned long data = kvm_mmio_read_buf(val, len);
883
884         switch (len) {
885         case 1:
886                 return data;
887         case 2:
888                 return le16_to_cpu(data);
889         case 4:
890                 return le32_to_cpu(data);
891         default:
892                 return le64_to_cpu(data);
893         }
894 }
895
896 /*
897  * kvm_mmio_write_buf() expects a value in a format such that if converted to
898  * a byte array it is observed as the guest would see it if it could perform
899  * the load directly.  Since the GIC is LE, and the guest knows this, the
900  * guest expects a value in little endian format.
901  *
902  * We convert the data value from the CPUs native format to LE so that the
903  * value is returned in the proper format.
904  */
905 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
906                                 unsigned long data)
907 {
908         switch (len) {
909         case 1:
910                 break;
911         case 2:
912                 data = cpu_to_le16(data);
913                 break;
914         case 4:
915                 data = cpu_to_le32(data);
916                 break;
917         default:
918                 data = cpu_to_le64(data);
919         }
920
921         kvm_mmio_write_buf(buf, len, data);
922 }
923
924 static
925 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
926 {
927         return container_of(dev, struct vgic_io_device, dev);
928 }
929
930 static bool check_region(const struct kvm *kvm,
931                          const struct vgic_register_region *region,
932                          gpa_t addr, int len)
933 {
934         int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
935
936         switch (len) {
937         case sizeof(u8):
938                 flags = VGIC_ACCESS_8bit;
939                 break;
940         case sizeof(u32):
941                 flags = VGIC_ACCESS_32bit;
942                 break;
943         case sizeof(u64):
944                 flags = VGIC_ACCESS_64bit;
945                 break;
946         default:
947                 return false;
948         }
949
950         if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
951                 if (!region->bits_per_irq)
952                         return true;
953
954                 /* Do we access a non-allocated IRQ? */
955                 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
956         }
957
958         return false;
959 }
960
961 const struct vgic_register_region *
962 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
963                      gpa_t addr, int len)
964 {
965         const struct vgic_register_region *region;
966
967         region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
968                                        addr - iodev->base_addr);
969         if (!region || !check_region(vcpu->kvm, region, addr, len))
970                 return NULL;
971
972         return region;
973 }
974
975 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
976                              gpa_t addr, u32 *val)
977 {
978         const struct vgic_register_region *region;
979         struct kvm_vcpu *r_vcpu;
980
981         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
982         if (!region) {
983                 *val = 0;
984                 return 0;
985         }
986
987         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
988         if (region->uaccess_read)
989                 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
990         else
991                 *val = region->read(r_vcpu, addr, sizeof(u32));
992
993         return 0;
994 }
995
996 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
997                               gpa_t addr, const u32 *val)
998 {
999         const struct vgic_register_region *region;
1000         struct kvm_vcpu *r_vcpu;
1001
1002         region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
1003         if (!region)
1004                 return 0;
1005
1006         r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
1007         if (region->uaccess_write)
1008                 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
1009
1010         region->write(r_vcpu, addr, sizeof(u32), *val);
1011         return 0;
1012 }
1013
1014 /*
1015  * Userland access to VGIC registers.
1016  */
1017 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
1018                  bool is_write, int offset, u32 *val)
1019 {
1020         if (is_write)
1021                 return vgic_uaccess_write(vcpu, dev, offset, val);
1022         else
1023                 return vgic_uaccess_read(vcpu, dev, offset, val);
1024 }
1025
1026 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1027                               gpa_t addr, int len, void *val)
1028 {
1029         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1030         const struct vgic_register_region *region;
1031         unsigned long data = 0;
1032
1033         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1034         if (!region) {
1035                 memset(val, 0, len);
1036                 return 0;
1037         }
1038
1039         switch (iodev->iodev_type) {
1040         case IODEV_CPUIF:
1041                 data = region->read(vcpu, addr, len);
1042                 break;
1043         case IODEV_DIST:
1044                 data = region->read(vcpu, addr, len);
1045                 break;
1046         case IODEV_REDIST:
1047                 data = region->read(iodev->redist_vcpu, addr, len);
1048                 break;
1049         case IODEV_ITS:
1050                 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1051                 break;
1052         }
1053
1054         vgic_data_host_to_mmio_bus(val, len, data);
1055         return 0;
1056 }
1057
1058 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1059                                gpa_t addr, int len, const void *val)
1060 {
1061         struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1062         const struct vgic_register_region *region;
1063         unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1064
1065         region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1066         if (!region)
1067                 return 0;
1068
1069         switch (iodev->iodev_type) {
1070         case IODEV_CPUIF:
1071                 region->write(vcpu, addr, len, data);
1072                 break;
1073         case IODEV_DIST:
1074                 region->write(vcpu, addr, len, data);
1075                 break;
1076         case IODEV_REDIST:
1077                 region->write(iodev->redist_vcpu, addr, len, data);
1078                 break;
1079         case IODEV_ITS:
1080                 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1081                 break;
1082         }
1083
1084         return 0;
1085 }
1086
1087 const struct kvm_io_device_ops kvm_io_gic_ops = {
1088         .read = dispatch_mmio_read,
1089         .write = dispatch_mmio_write,
1090 };
1091
1092 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1093                              enum vgic_type type)
1094 {
1095         struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1096         int ret = 0;
1097         unsigned int len;
1098
1099         switch (type) {
1100         case VGIC_V2:
1101                 len = vgic_v2_init_dist_iodev(io_device);
1102                 break;
1103         case VGIC_V3:
1104                 len = vgic_v3_init_dist_iodev(io_device);
1105                 break;
1106         default:
1107                 BUG_ON(1);
1108         }
1109
1110         io_device->base_addr = dist_base_address;
1111         io_device->iodev_type = IODEV_DIST;
1112         io_device->redist_vcpu = NULL;
1113
1114         mutex_lock(&kvm->slots_lock);
1115         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1116                                       len, &io_device->dev);
1117         mutex_unlock(&kvm->slots_lock);
1118
1119         return ret;
1120 }