1 // SPDX-License-Identifier: GPL-2.0-only
3 * VGIC MMIO handling functions
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
17 #include "vgic-mmio.h"
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20 gpa_t addr, unsigned int len)
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26 gpa_t addr, unsigned int len)
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32 unsigned int len, unsigned long val)
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 unsigned int len, unsigned long val)
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45 gpa_t addr, unsigned int len)
47 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
51 /* Loop over all IRQs affected by this read */
52 for (i = 0; i < len * 8; i++) {
53 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
58 vgic_put_irq(vcpu->kvm, irq);
64 static void vgic_update_vsgi(struct vgic_irq *irq)
66 WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70 unsigned int len, unsigned long val)
72 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
76 for (i = 0; i < len * 8; i++) {
77 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
79 raw_spin_lock_irqsave(&irq->irq_lock, flags);
80 irq->group = !!(val & BIT(i));
81 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82 vgic_update_vsgi(irq);
83 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
85 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
88 vgic_put_irq(vcpu->kvm, irq);
93 * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94 * of the enabled bit, so there is only one function for both here.
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97 gpa_t addr, unsigned int len)
99 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
103 /* Loop over all IRQs affected by this read */
104 for (i = 0; i < len * 8; i++) {
105 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
110 vgic_put_irq(vcpu->kvm, irq);
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117 gpa_t addr, unsigned int len,
120 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
124 for_each_set_bit(i, &val, len * 8) {
125 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
127 raw_spin_lock_irqsave(&irq->irq_lock, flags);
128 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
130 struct irq_data *data;
133 data = &irq_to_desc(irq->host_irq)->irq_data;
134 while (irqd_irq_disabled(data))
135 enable_irq(irq->host_irq);
138 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139 vgic_put_irq(vcpu->kvm, irq);
142 } else if (vgic_irq_is_mapped_level(irq)) {
143 bool was_high = irq->line_level;
146 * We need to update the state of the interrupt because
147 * the guest might have changed the state of the device
148 * while the interrupt was disabled at the VGIC level.
150 irq->line_level = vgic_get_phys_line_level(irq);
152 * Deactivate the physical interrupt so the GIC will let
153 * us know when it is asserted again.
155 if (!irq->active && was_high && !irq->line_level)
156 vgic_irq_set_phys_active(irq, false);
159 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
161 vgic_put_irq(vcpu->kvm, irq);
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166 gpa_t addr, unsigned int len,
169 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
173 for_each_set_bit(i, &val, len * 8) {
174 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
176 raw_spin_lock_irqsave(&irq->irq_lock, flags);
177 if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178 disable_irq_nosync(irq->host_irq);
180 irq->enabled = false;
182 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 vgic_put_irq(vcpu->kvm, irq);
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188 gpa_t addr, unsigned int len,
191 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
195 for_each_set_bit(i, &val, len * 8) {
196 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
198 raw_spin_lock_irqsave(&irq->irq_lock, flags);
200 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
202 vgic_put_irq(vcpu->kvm, irq);
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209 gpa_t addr, unsigned int len,
212 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
216 for_each_set_bit(i, &val, len * 8) {
217 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
219 raw_spin_lock_irqsave(&irq->irq_lock, flags);
220 irq->enabled = false;
221 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
223 vgic_put_irq(vcpu->kvm, irq);
229 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
230 gpa_t addr, unsigned int len)
232 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
236 /* Loop over all IRQs affected by this read */
237 for (i = 0; i < len * 8; i++) {
238 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
242 raw_spin_lock_irqsave(&irq->irq_lock, flags);
243 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
247 err = irq_get_irqchip_state(irq->host_irq,
248 IRQCHIP_STATE_PENDING,
250 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
251 } else if (vgic_irq_is_mapped_level(irq)) {
252 val = vgic_get_phys_line_level(irq);
254 val = irq_is_pending(irq);
257 value |= ((u32)val << i);
258 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
260 vgic_put_irq(vcpu->kvm, irq);
266 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
268 return (vgic_irq_is_sgi(irq->intid) &&
269 vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
272 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
273 gpa_t addr, unsigned int len,
276 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
280 for_each_set_bit(i, &val, len * 8) {
281 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
283 /* GICD_ISPENDR0 SGI bits are WI */
284 if (is_vgic_v2_sgi(vcpu, irq)) {
285 vgic_put_irq(vcpu->kvm, irq);
289 raw_spin_lock_irqsave(&irq->irq_lock, flags);
291 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
292 /* HW SGI? Ask the GIC to inject it */
294 err = irq_set_irqchip_state(irq->host_irq,
295 IRQCHIP_STATE_PENDING,
297 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
299 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
300 vgic_put_irq(vcpu->kvm, irq);
305 irq->pending_latch = true;
307 vgic_irq_set_phys_active(irq, true);
309 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
310 vgic_put_irq(vcpu->kvm, irq);
314 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
315 gpa_t addr, unsigned int len,
318 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
322 for_each_set_bit(i, &val, len * 8) {
323 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
325 raw_spin_lock_irqsave(&irq->irq_lock, flags);
326 irq->pending_latch = true;
329 * GICv2 SGIs are terribly broken. We can't restore
330 * the source of the interrupt, so just pick the vcpu
331 * itself as the source...
333 if (is_vgic_v2_sgi(vcpu, irq))
334 irq->source |= BIT(vcpu->vcpu_id);
336 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
338 vgic_put_irq(vcpu->kvm, irq);
344 /* Must be called with irq->irq_lock held */
345 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
347 irq->pending_latch = false;
350 * We don't want the guest to effectively mask the physical
351 * interrupt by doing a write to SPENDR followed by a write to
352 * CPENDR for HW interrupts, so we clear the active state on
353 * the physical side if the virtual interrupt is not active.
354 * This may lead to taking an additional interrupt on the
355 * host, but that should not be a problem as the worst that
356 * can happen is an additional vgic injection. We also clear
357 * the pending state to maintain proper semantics for edge HW
360 vgic_irq_set_phys_pending(irq, false);
362 vgic_irq_set_phys_active(irq, false);
365 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
366 gpa_t addr, unsigned int len,
369 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
373 for_each_set_bit(i, &val, len * 8) {
374 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
376 /* GICD_ICPENDR0 SGI bits are WI */
377 if (is_vgic_v2_sgi(vcpu, irq)) {
378 vgic_put_irq(vcpu->kvm, irq);
382 raw_spin_lock_irqsave(&irq->irq_lock, flags);
384 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
385 /* HW SGI? Ask the GIC to clear its pending bit */
387 err = irq_set_irqchip_state(irq->host_irq,
388 IRQCHIP_STATE_PENDING,
390 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
392 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
393 vgic_put_irq(vcpu->kvm, irq);
399 vgic_hw_irq_cpending(vcpu, irq);
401 irq->pending_latch = false;
403 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
404 vgic_put_irq(vcpu->kvm, irq);
408 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
409 gpa_t addr, unsigned int len,
412 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
416 for_each_set_bit(i, &val, len * 8) {
417 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
419 raw_spin_lock_irqsave(&irq->irq_lock, flags);
421 * More fun with GICv2 SGIs! If we're clearing one of them
422 * from userspace, which source vcpu to clear? Let's not
423 * even think of it, and blow the whole set.
425 if (is_vgic_v2_sgi(vcpu, irq))
428 irq->pending_latch = false;
430 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
432 vgic_put_irq(vcpu->kvm, irq);
439 * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
440 * is not queued on some running VCPU's LRs, because then the change to the
441 * active state can be overwritten when the VCPU's state is synced coming back
444 * For shared interrupts as well as GICv3 private interrupts, we have to
445 * stop all the VCPUs because interrupts can be migrated while we don't hold
446 * the IRQ locks and we don't want to be chasing moving targets.
448 * For GICv2 private interrupts we don't have to do anything because
449 * userspace accesses to the VGIC state already require all VCPUs to be
450 * stopped, and only the VCPU itself can modify its private interrupts
451 * active state, which guarantees that the VCPU is not running.
453 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
455 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
456 intid >= VGIC_NR_PRIVATE_IRQS)
457 kvm_arm_halt_guest(vcpu->kvm);
460 /* See vgic_access_active_prepare */
461 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
463 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
464 intid >= VGIC_NR_PRIVATE_IRQS)
465 kvm_arm_resume_guest(vcpu->kvm);
468 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
469 gpa_t addr, unsigned int len)
471 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
475 /* Loop over all IRQs affected by this read */
476 for (i = 0; i < len * 8; i++) {
477 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
480 * Even for HW interrupts, don't evaluate the HW state as
481 * all the guest is interested in is the virtual state.
486 vgic_put_irq(vcpu->kvm, irq);
492 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
493 gpa_t addr, unsigned int len)
495 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
498 mutex_lock(&vcpu->kvm->lock);
499 vgic_access_active_prepare(vcpu, intid);
501 val = __vgic_mmio_read_active(vcpu, addr, len);
503 vgic_access_active_finish(vcpu, intid);
504 mutex_unlock(&vcpu->kvm->lock);
509 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
510 gpa_t addr, unsigned int len)
512 return __vgic_mmio_read_active(vcpu, addr, len);
515 /* Must be called with irq->irq_lock held */
516 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
517 bool active, bool is_uaccess)
522 irq->active = active;
523 vgic_irq_set_phys_active(irq, active);
526 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
530 struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
532 raw_spin_lock_irqsave(&irq->irq_lock, flags);
534 if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
535 vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
536 } else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
538 * GICv4.1 VSGI feature doesn't track an active state,
539 * so let's not kid ourselves, there is nothing we can
544 u32 model = vcpu->kvm->arch.vgic.vgic_model;
547 irq->active = active;
550 * The GICv2 architecture indicates that the source CPUID for
551 * an SGI should be provided during an EOI which implies that
552 * the active state is stored somewhere, but at the same time
553 * this state is not architecturally exposed anywhere and we
554 * have no way of knowing the right source.
556 * This may lead to a VCPU not being able to receive
557 * additional instances of a particular SGI after migration
558 * for a GICv2 VM on some GIC implementations. Oh well.
560 active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
562 if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
563 active && vgic_irq_is_sgi(irq->intid))
564 irq->active_source = active_source;
568 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
570 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
573 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
574 gpa_t addr, unsigned int len,
577 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
580 for_each_set_bit(i, &val, len * 8) {
581 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
582 vgic_mmio_change_active(vcpu, irq, false);
583 vgic_put_irq(vcpu->kvm, irq);
587 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
588 gpa_t addr, unsigned int len,
591 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
593 mutex_lock(&vcpu->kvm->lock);
594 vgic_access_active_prepare(vcpu, intid);
596 __vgic_mmio_write_cactive(vcpu, addr, len, val);
598 vgic_access_active_finish(vcpu, intid);
599 mutex_unlock(&vcpu->kvm->lock);
602 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
603 gpa_t addr, unsigned int len,
606 __vgic_mmio_write_cactive(vcpu, addr, len, val);
610 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
611 gpa_t addr, unsigned int len,
614 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
617 for_each_set_bit(i, &val, len * 8) {
618 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
619 vgic_mmio_change_active(vcpu, irq, true);
620 vgic_put_irq(vcpu->kvm, irq);
624 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
625 gpa_t addr, unsigned int len,
628 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
630 mutex_lock(&vcpu->kvm->lock);
631 vgic_access_active_prepare(vcpu, intid);
633 __vgic_mmio_write_sactive(vcpu, addr, len, val);
635 vgic_access_active_finish(vcpu, intid);
636 mutex_unlock(&vcpu->kvm->lock);
639 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
640 gpa_t addr, unsigned int len,
643 __vgic_mmio_write_sactive(vcpu, addr, len, val);
647 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
648 gpa_t addr, unsigned int len)
650 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
654 for (i = 0; i < len; i++) {
655 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
657 val |= (u64)irq->priority << (i * 8);
659 vgic_put_irq(vcpu->kvm, irq);
666 * We currently don't handle changing the priority of an interrupt that
667 * is already pending on a VCPU. If there is a need for this, we would
668 * need to make this VCPU exit and re-evaluate the priorities, potentially
669 * leading to this interrupt getting presented now to the guest (if it has
670 * been masked by the priority mask before).
672 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
673 gpa_t addr, unsigned int len,
676 u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
680 for (i = 0; i < len; i++) {
681 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
683 raw_spin_lock_irqsave(&irq->irq_lock, flags);
684 /* Narrow the priority range to what we actually support */
685 irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
686 if (irq->hw && vgic_irq_is_sgi(irq->intid))
687 vgic_update_vsgi(irq);
688 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
690 vgic_put_irq(vcpu->kvm, irq);
694 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
695 gpa_t addr, unsigned int len)
697 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
701 for (i = 0; i < len * 4; i++) {
702 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
704 if (irq->config == VGIC_CONFIG_EDGE)
705 value |= (2U << (i * 2));
707 vgic_put_irq(vcpu->kvm, irq);
713 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
714 gpa_t addr, unsigned int len,
717 u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
721 for (i = 0; i < len * 4; i++) {
722 struct vgic_irq *irq;
725 * The configuration cannot be changed for SGIs in general,
726 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
727 * code relies on PPIs being level triggered, so we also
728 * make them read-only here.
730 if (intid + i < VGIC_NR_PRIVATE_IRQS)
733 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
734 raw_spin_lock_irqsave(&irq->irq_lock, flags);
736 if (test_bit(i * 2 + 1, &val))
737 irq->config = VGIC_CONFIG_EDGE;
739 irq->config = VGIC_CONFIG_LEVEL;
741 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
742 vgic_put_irq(vcpu->kvm, irq);
746 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
750 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
752 for (i = 0; i < 32; i++) {
753 struct vgic_irq *irq;
755 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
758 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
759 if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
762 vgic_put_irq(vcpu->kvm, irq);
768 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
772 int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
775 for (i = 0; i < 32; i++) {
776 struct vgic_irq *irq;
779 if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
782 irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
785 * Line level is set irrespective of irq type
786 * (level or edge) to avoid dependency that VM should
787 * restore irq config before line level.
789 new_level = !!(val & (1U << i));
790 raw_spin_lock_irqsave(&irq->irq_lock, flags);
791 irq->line_level = new_level;
793 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
795 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
797 vgic_put_irq(vcpu->kvm, irq);
801 static int match_region(const void *key, const void *elt)
803 const unsigned int offset = (unsigned long)key;
804 const struct vgic_register_region *region = elt;
806 if (offset < region->reg_offset)
809 if (offset >= region->reg_offset + region->len)
815 const struct vgic_register_region *
816 vgic_find_mmio_region(const struct vgic_register_region *regions,
817 int nr_regions, unsigned int offset)
819 return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
820 sizeof(regions[0]), match_region);
823 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
825 if (kvm_vgic_global_state.type == VGIC_V2)
826 vgic_v2_set_vmcr(vcpu, vmcr);
828 vgic_v3_set_vmcr(vcpu, vmcr);
831 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
833 if (kvm_vgic_global_state.type == VGIC_V2)
834 vgic_v2_get_vmcr(vcpu, vmcr);
836 vgic_v3_get_vmcr(vcpu, vmcr);
840 * kvm_mmio_read_buf() returns a value in a format where it can be converted
841 * to a byte array and be directly observed as the guest wanted it to appear
842 * in memory if it had done the store itself, which is LE for the GIC, as the
843 * guest knows the GIC is always LE.
845 * We convert this value to the CPUs native format to deal with it as a data
848 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
850 unsigned long data = kvm_mmio_read_buf(val, len);
856 return le16_to_cpu(data);
858 return le32_to_cpu(data);
860 return le64_to_cpu(data);
865 * kvm_mmio_write_buf() expects a value in a format such that if converted to
866 * a byte array it is observed as the guest would see it if it could perform
867 * the load directly. Since the GIC is LE, and the guest knows this, the
868 * guest expects a value in little endian format.
870 * We convert the data value from the CPUs native format to LE so that the
871 * value is returned in the proper format.
873 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
880 data = cpu_to_le16(data);
883 data = cpu_to_le32(data);
886 data = cpu_to_le64(data);
889 kvm_mmio_write_buf(buf, len, data);
893 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
895 return container_of(dev, struct vgic_io_device, dev);
898 static bool check_region(const struct kvm *kvm,
899 const struct vgic_register_region *region,
902 int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
906 flags = VGIC_ACCESS_8bit;
909 flags = VGIC_ACCESS_32bit;
912 flags = VGIC_ACCESS_64bit;
918 if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
919 if (!region->bits_per_irq)
922 /* Do we access a non-allocated IRQ? */
923 return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
929 const struct vgic_register_region *
930 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
933 const struct vgic_register_region *region;
935 region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
936 addr - iodev->base_addr);
937 if (!region || !check_region(vcpu->kvm, region, addr, len))
943 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
944 gpa_t addr, u32 *val)
946 const struct vgic_register_region *region;
947 struct kvm_vcpu *r_vcpu;
949 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
955 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
956 if (region->uaccess_read)
957 *val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
959 *val = region->read(r_vcpu, addr, sizeof(u32));
964 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
965 gpa_t addr, const u32 *val)
967 const struct vgic_register_region *region;
968 struct kvm_vcpu *r_vcpu;
970 region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
974 r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
975 if (region->uaccess_write)
976 return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
978 region->write(r_vcpu, addr, sizeof(u32), *val);
983 * Userland access to VGIC registers.
985 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
986 bool is_write, int offset, u32 *val)
989 return vgic_uaccess_write(vcpu, dev, offset, val);
991 return vgic_uaccess_read(vcpu, dev, offset, val);
994 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
995 gpa_t addr, int len, void *val)
997 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
998 const struct vgic_register_region *region;
999 unsigned long data = 0;
1001 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1003 memset(val, 0, len);
1007 switch (iodev->iodev_type) {
1009 data = region->read(vcpu, addr, len);
1012 data = region->read(vcpu, addr, len);
1015 data = region->read(iodev->redist_vcpu, addr, len);
1018 data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1022 vgic_data_host_to_mmio_bus(val, len, data);
1026 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1027 gpa_t addr, int len, const void *val)
1029 struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1030 const struct vgic_register_region *region;
1031 unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1033 region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1037 switch (iodev->iodev_type) {
1039 region->write(vcpu, addr, len, data);
1042 region->write(vcpu, addr, len, data);
1045 region->write(iodev->redist_vcpu, addr, len, data);
1048 region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1055 const struct kvm_io_device_ops kvm_io_gic_ops = {
1056 .read = dispatch_mmio_read,
1057 .write = dispatch_mmio_write,
1060 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1061 enum vgic_type type)
1063 struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1069 len = vgic_v2_init_dist_iodev(io_device);
1072 len = vgic_v3_init_dist_iodev(io_device);
1078 io_device->base_addr = dist_base_address;
1079 io_device->iodev_type = IODEV_DIST;
1080 io_device->redist_vcpu = NULL;
1082 mutex_lock(&kvm->slots_lock);
1083 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1084 len, &io_device->dev);
1085 mutex_unlock(&kvm->slots_lock);