xfs: preserve DIFLAG2_NREXT64 when setting other inode attributes
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23                             unsigned int num)
24 {
25         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30                      unsigned long val)
31 {
32         int lower = (offset & 4) * 8;
33         int upper = lower + 8 * len - 1;
34
35         reg &= ~GENMASK_ULL(upper, lower);
36         val &= GENMASK_ULL(len * 8 - 1, 0);
37
38         return reg | ((u64)val << lower);
39 }
40
41 bool vgic_has_its(struct kvm *kvm)
42 {
43         struct vgic_dist *dist = &kvm->arch.vgic;
44
45         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46                 return false;
47
48         return dist->has_its;
49 }
50
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53         return (kvm_vgic_global_state.has_gicv4_1 ||
54                 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58  * The Revision field in the IIDR have the following meanings:
59  *
60  * Revision 2: Interrupt groups are guest-configurable and signaled using
61  *             their configured groups.
62  */
63
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65                                             gpa_t addr, unsigned int len)
66 {
67         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68         u32 value = 0;
69
70         switch (addr & 0x0c) {
71         case GICD_CTLR:
72                 if (vgic->enabled)
73                         value |= GICD_CTLR_ENABLE_SS_G1;
74                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75                 if (vgic->nassgireq)
76                         value |= GICD_CTLR_nASSGIreq;
77                 break;
78         case GICD_TYPER:
79                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80                 value = (value >> 5) - 1;
81                 if (vgic_has_its(vcpu->kvm)) {
82                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83                         value |= GICD_TYPER_LPIS;
84                 } else {
85                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86                 }
87                 break;
88         case GICD_TYPER2:
89                 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90                         value = GICD_TYPER2_nASSGIcap;
91                 break;
92         case GICD_IIDR:
93                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96                 break;
97         default:
98                 return 0;
99         }
100
101         return value;
102 }
103
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105                                     gpa_t addr, unsigned int len,
106                                     unsigned long val)
107 {
108         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR: {
112                 bool was_enabled, is_hwsgi;
113
114                 mutex_lock(&vcpu->kvm->lock);
115
116                 was_enabled = dist->enabled;
117                 is_hwsgi = dist->nassgireq;
118
119                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121                 /* Not a GICv4.1? No HW SGIs */
122                 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123                         val &= ~GICD_CTLR_nASSGIreq;
124
125                 /* Dist stays enabled? nASSGIreq is RO */
126                 if (was_enabled && dist->enabled) {
127                         val &= ~GICD_CTLR_nASSGIreq;
128                         val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129                 }
130
131                 /* Switching HW SGIs? */
132                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133                 if (is_hwsgi != dist->nassgireq)
134                         vgic_v4_configure_vsgis(vcpu->kvm);
135
136                 if (kvm_vgic_global_state.has_gicv4_1 &&
137                     was_enabled != dist->enabled)
138                         kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139                 else if (!was_enabled && dist->enabled)
140                         vgic_kick_vcpus(vcpu->kvm);
141
142                 mutex_unlock(&vcpu->kvm->lock);
143                 break;
144         }
145         case GICD_TYPER:
146         case GICD_TYPER2:
147         case GICD_IIDR:
148                 /* This is at best for documentation purposes... */
149                 return;
150         }
151 }
152
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154                                            gpa_t addr, unsigned int len,
155                                            unsigned long val)
156 {
157         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158         u32 reg;
159
160         switch (addr & 0x0c) {
161         case GICD_TYPER2:
162                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163                         return -EINVAL;
164                 return 0;
165         case GICD_IIDR:
166                 reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167                 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168                         return -EINVAL;
169
170                 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171                 switch (reg) {
172                 case KVM_VGIC_IMP_REV_2:
173                 case KVM_VGIC_IMP_REV_3:
174                         dist->implementation_rev = reg;
175                         return 0;
176                 default:
177                         return -EINVAL;
178                 }
179         case GICD_CTLR:
180                 /* Not a GICv4.1? No HW SGIs */
181                 if (!kvm_vgic_global_state.has_gicv4_1)
182                         val &= ~GICD_CTLR_nASSGIreq;
183
184                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186                 return 0;
187         }
188
189         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190         return 0;
191 }
192
193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194                                             gpa_t addr, unsigned int len)
195 {
196         int intid = VGIC_ADDR_TO_INTID(addr, 64);
197         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198         unsigned long ret = 0;
199
200         if (!irq)
201                 return 0;
202
203         /* The upper word is RAZ for us. */
204         if (!(addr & 4))
205                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207         vgic_put_irq(vcpu->kvm, irq);
208         return ret;
209 }
210
211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212                                     gpa_t addr, unsigned int len,
213                                     unsigned long val)
214 {
215         int intid = VGIC_ADDR_TO_INTID(addr, 64);
216         struct vgic_irq *irq;
217         unsigned long flags;
218
219         /* The upper word is WI for us since we don't implement Aff3. */
220         if (addr & 4)
221                 return;
222
223         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225         if (!irq)
226                 return;
227
228         raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230         /* We only care about and preserve Aff0, Aff1 and Aff2. */
231         irq->mpidr = val & GENMASK(23, 0);
232         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235         vgic_put_irq(vcpu->kvm, irq);
236 }
237
238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242         return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244
245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246                                              gpa_t addr, unsigned int len)
247 {
248         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249         unsigned long val;
250
251         val = atomic_read(&vgic_cpu->ctlr);
252         if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253                 val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255         return val;
256 }
257
258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259                                      gpa_t addr, unsigned int len,
260                                      unsigned long val)
261 {
262         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263         u32 ctlr;
264
265         if (!vgic_has_its(vcpu->kvm))
266                 return;
267
268         if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269                 /*
270                  * Don't disable if RWP is set, as there already an
271                  * ongoing disable. Funky guest...
272                  */
273                 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274                                               GICR_CTLR_ENABLE_LPIS,
275                                               GICR_CTLR_RWP);
276                 if (ctlr != GICR_CTLR_ENABLE_LPIS)
277                         return;
278
279                 vgic_flush_pending_lpis(vcpu);
280                 vgic_its_invalidate_cache(vcpu->kvm);
281                 atomic_set_release(&vgic_cpu->ctlr, 0);
282         } else {
283                 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284                                               GICR_CTLR_ENABLE_LPIS);
285                 if (ctlr != 0)
286                         return;
287
288                 vgic_enable_lpis(vcpu);
289         }
290 }
291
292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296         struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298         if (!rdreg)
299                 return false;
300
301         if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302                 return false;
303         } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304                 struct list_head *rd_regions = &vgic->rd_regions;
305                 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307                 /*
308                  * the rdist is the last one of the redist region,
309                  * check whether there is no other contiguous rdist region
310                  */
311                 list_for_each_entry(iter, rd_regions, list) {
312                         if (iter->base == end && iter->free_index > 0)
313                                 return false;
314                 }
315         }
316         return true;
317 }
318
319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320                                               gpa_t addr, unsigned int len)
321 {
322         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323         int target_vcpu_id = vcpu->vcpu_id;
324         u64 value;
325
326         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327         value |= ((target_vcpu_id & 0xffff) << 8);
328
329         if (vgic_has_its(vcpu->kvm))
330                 value |= GICR_TYPER_PLPIS;
331
332         if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333                 value |= GICR_TYPER_LAST;
334
335         return extract_bytes(value, addr & 7, len);
336 }
337
338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339                                              gpa_t addr, unsigned int len)
340 {
341         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343
344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345                                               gpa_t addr, unsigned int len)
346 {
347         switch (addr & 0xffff) {
348         case GICD_PIDR2:
349                 /* report a GICv3 compliant implementation */
350                 return 0x3b;
351         }
352
353         return 0;
354 }
355
356 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
357                                                   gpa_t addr, unsigned int len)
358 {
359         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
360         u32 value = 0;
361         int i;
362
363         /*
364          * pending state of interrupt is latched in pending_latch variable.
365          * Userspace will save and restore pending state and line_level
366          * separately.
367          * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
368          * for handling of ISPENDR and ICPENDR.
369          */
370         for (i = 0; i < len * 8; i++) {
371                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
372                 bool state = irq->pending_latch;
373
374                 if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
375                         int err;
376
377                         err = irq_get_irqchip_state(irq->host_irq,
378                                                     IRQCHIP_STATE_PENDING,
379                                                     &state);
380                         WARN_ON(err);
381                 }
382
383                 if (state)
384                         value |= (1U << i);
385
386                 vgic_put_irq(vcpu->kvm, irq);
387         }
388
389         return value;
390 }
391
392 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
393                                          gpa_t addr, unsigned int len,
394                                          unsigned long val)
395 {
396         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
397         int i;
398         unsigned long flags;
399
400         for (i = 0; i < len * 8; i++) {
401                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
402
403                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
404                 if (test_bit(i, &val)) {
405                         /*
406                          * pending_latch is set irrespective of irq type
407                          * (level or edge) to avoid dependency that VM should
408                          * restore irq config before pending info.
409                          */
410                         irq->pending_latch = true;
411                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
412                 } else {
413                         irq->pending_latch = false;
414                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
415                 }
416
417                 vgic_put_irq(vcpu->kvm, irq);
418         }
419
420         return 0;
421 }
422
423 /* We want to avoid outer shareable. */
424 u64 vgic_sanitise_shareability(u64 field)
425 {
426         switch (field) {
427         case GIC_BASER_OuterShareable:
428                 return GIC_BASER_InnerShareable;
429         default:
430                 return field;
431         }
432 }
433
434 /* Avoid any inner non-cacheable mapping. */
435 u64 vgic_sanitise_inner_cacheability(u64 field)
436 {
437         switch (field) {
438         case GIC_BASER_CACHE_nCnB:
439         case GIC_BASER_CACHE_nC:
440                 return GIC_BASER_CACHE_RaWb;
441         default:
442                 return field;
443         }
444 }
445
446 /* Non-cacheable or same-as-inner are OK. */
447 u64 vgic_sanitise_outer_cacheability(u64 field)
448 {
449         switch (field) {
450         case GIC_BASER_CACHE_SameAsInner:
451         case GIC_BASER_CACHE_nC:
452                 return field;
453         default:
454                 return GIC_BASER_CACHE_SameAsInner;
455         }
456 }
457
458 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
459                         u64 (*sanitise_fn)(u64))
460 {
461         u64 field = (reg & field_mask) >> field_shift;
462
463         field = sanitise_fn(field) << field_shift;
464         return (reg & ~field_mask) | field;
465 }
466
467 #define PROPBASER_RES0_MASK                                             \
468         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
469 #define PENDBASER_RES0_MASK                                             \
470         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
471          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
472
473 static u64 vgic_sanitise_pendbaser(u64 reg)
474 {
475         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
476                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
477                                   vgic_sanitise_shareability);
478         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
479                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
480                                   vgic_sanitise_inner_cacheability);
481         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
482                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
483                                   vgic_sanitise_outer_cacheability);
484
485         reg &= ~PENDBASER_RES0_MASK;
486
487         return reg;
488 }
489
490 static u64 vgic_sanitise_propbaser(u64 reg)
491 {
492         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
493                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
494                                   vgic_sanitise_shareability);
495         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
496                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
497                                   vgic_sanitise_inner_cacheability);
498         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
499                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
500                                   vgic_sanitise_outer_cacheability);
501
502         reg &= ~PROPBASER_RES0_MASK;
503         return reg;
504 }
505
506 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
507                                              gpa_t addr, unsigned int len)
508 {
509         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
510
511         return extract_bytes(dist->propbaser, addr & 7, len);
512 }
513
514 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
515                                      gpa_t addr, unsigned int len,
516                                      unsigned long val)
517 {
518         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
519         u64 old_propbaser, propbaser;
520
521         /* Storing a value with LPIs already enabled is undefined */
522         if (vgic_lpis_enabled(vcpu))
523                 return;
524
525         do {
526                 old_propbaser = READ_ONCE(dist->propbaser);
527                 propbaser = old_propbaser;
528                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
529                 propbaser = vgic_sanitise_propbaser(propbaser);
530         } while (cmpxchg64(&dist->propbaser, old_propbaser,
531                            propbaser) != old_propbaser);
532 }
533
534 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
535                                              gpa_t addr, unsigned int len)
536 {
537         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
538         u64 value = vgic_cpu->pendbaser;
539
540         value &= ~GICR_PENDBASER_PTZ;
541
542         return extract_bytes(value, addr & 7, len);
543 }
544
545 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
546                                      gpa_t addr, unsigned int len,
547                                      unsigned long val)
548 {
549         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
550         u64 old_pendbaser, pendbaser;
551
552         /* Storing a value with LPIs already enabled is undefined */
553         if (vgic_lpis_enabled(vcpu))
554                 return;
555
556         do {
557                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
558                 pendbaser = old_pendbaser;
559                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
560                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
561         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
562                            pendbaser) != old_pendbaser);
563 }
564
565 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
566                                          gpa_t addr, unsigned int len)
567 {
568         return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
569 }
570
571 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
572 {
573         if (busy) {
574                 atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
575                 smp_mb__after_atomic();
576         } else {
577                 smp_mb__before_atomic();
578                 atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
579         }
580 }
581
582 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
583                                    gpa_t addr, unsigned int len,
584                                    unsigned long val)
585 {
586         struct vgic_irq *irq;
587
588         /*
589          * If the guest wrote only to the upper 32bit part of the
590          * register, drop the write on the floor, as it is only for
591          * vPEs (which we don't support for obvious reasons).
592          *
593          * Also discard the access if LPIs are not enabled.
594          */
595         if ((addr & 4) || !vgic_lpis_enabled(vcpu))
596                 return;
597
598         vgic_set_rdist_busy(vcpu, true);
599
600         irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
601         if (irq) {
602                 vgic_its_inv_lpi(vcpu->kvm, irq);
603                 vgic_put_irq(vcpu->kvm, irq);
604         }
605
606         vgic_set_rdist_busy(vcpu, false);
607 }
608
609 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
610                                    gpa_t addr, unsigned int len,
611                                    unsigned long val)
612 {
613         /* See vgic_mmio_write_invlpi() for the early return rationale */
614         if ((addr & 4) || !vgic_lpis_enabled(vcpu))
615                 return;
616
617         vgic_set_rdist_busy(vcpu, true);
618         vgic_its_invall(vcpu);
619         vgic_set_rdist_busy(vcpu, false);
620 }
621
622 /*
623  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
624  * redistributors, while SPIs are covered by registers in the distributor
625  * block. Trying to set private IRQs in this block gets ignored.
626  * We take some special care here to fix the calculation of the register
627  * offset.
628  */
629 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
630         {                                                               \
631                 .reg_offset = off,                                      \
632                 .bits_per_irq = bpi,                                    \
633                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
634                 .access_flags = acc,                                    \
635                 .read = vgic_mmio_read_raz,                             \
636                 .write = vgic_mmio_write_wi,                            \
637         }, {                                                            \
638                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
639                 .bits_per_irq = bpi,                                    \
640                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
641                 .access_flags = acc,                                    \
642                 .read = rd,                                             \
643                 .write = wr,                                            \
644                 .uaccess_read = ur,                                     \
645                 .uaccess_write = uw,                                    \
646         }
647
648 static const struct vgic_register_region vgic_v3_dist_registers[] = {
649         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
650                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
651                 NULL, vgic_mmio_uaccess_write_v3_misc,
652                 16, VGIC_ACCESS_32bit),
653         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
654                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
655                 VGIC_ACCESS_32bit),
656         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
657                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
658                 VGIC_ACCESS_32bit),
659         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
660                 vgic_mmio_read_enable, vgic_mmio_write_senable,
661                 NULL, vgic_uaccess_write_senable, 1,
662                 VGIC_ACCESS_32bit),
663         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
664                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
665                NULL, vgic_uaccess_write_cenable, 1,
666                 VGIC_ACCESS_32bit),
667         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
668                 vgic_mmio_read_pending, vgic_mmio_write_spending,
669                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
670                 VGIC_ACCESS_32bit),
671         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
672                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
673                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
674                 VGIC_ACCESS_32bit),
675         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
676                 vgic_mmio_read_active, vgic_mmio_write_sactive,
677                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
678                 VGIC_ACCESS_32bit),
679         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
680                 vgic_mmio_read_active, vgic_mmio_write_cactive,
681                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
682                 1, VGIC_ACCESS_32bit),
683         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
684                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
685                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
686         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
687                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
688                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
689         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
690                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
691                 VGIC_ACCESS_32bit),
692         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
693                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
694                 VGIC_ACCESS_32bit),
695         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
696                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
697                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
698         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
699                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
700                 VGIC_ACCESS_32bit),
701 };
702
703 static const struct vgic_register_region vgic_v3_rd_registers[] = {
704         /* RD_base registers */
705         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
706                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
707                 VGIC_ACCESS_32bit),
708         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
709                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
710                 VGIC_ACCESS_32bit),
711         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
712                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
713                 VGIC_ACCESS_32bit),
714         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
715                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
716                 NULL, vgic_mmio_uaccess_write_wi, 8,
717                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
718         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
719                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
720                 VGIC_ACCESS_32bit),
721         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
722                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
723                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
724         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
725                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
726                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
727         REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
728                 vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
729                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
730         REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
731                 vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
732                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
733         REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
734                 vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
735                 VGIC_ACCESS_32bit),
736         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
737                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
738                 VGIC_ACCESS_32bit),
739         /* SGI_base registers */
740         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
741                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
742                 VGIC_ACCESS_32bit),
743         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
744                 vgic_mmio_read_enable, vgic_mmio_write_senable,
745                 NULL, vgic_uaccess_write_senable, 4,
746                 VGIC_ACCESS_32bit),
747         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
748                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
749                 NULL, vgic_uaccess_write_cenable, 4,
750                 VGIC_ACCESS_32bit),
751         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
752                 vgic_mmio_read_pending, vgic_mmio_write_spending,
753                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
754                 VGIC_ACCESS_32bit),
755         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
756                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
757                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
758                 VGIC_ACCESS_32bit),
759         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
760                 vgic_mmio_read_active, vgic_mmio_write_sactive,
761                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
762                 VGIC_ACCESS_32bit),
763         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
764                 vgic_mmio_read_active, vgic_mmio_write_cactive,
765                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
766                 VGIC_ACCESS_32bit),
767         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
768                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
769                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
770         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
771                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
772                 VGIC_ACCESS_32bit),
773         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
774                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
775                 VGIC_ACCESS_32bit),
776         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
777                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
778                 VGIC_ACCESS_32bit),
779 };
780
781 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
782 {
783         dev->regions = vgic_v3_dist_registers;
784         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
785
786         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
787
788         return SZ_64K;
789 }
790
791 /**
792  * vgic_register_redist_iodev - register a single redist iodev
793  * @vcpu:    The VCPU to which the redistributor belongs
794  *
795  * Register a KVM iodev for this VCPU's redistributor using the address
796  * provided.
797  *
798  * Return 0 on success, -ERRNO otherwise.
799  */
800 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
801 {
802         struct kvm *kvm = vcpu->kvm;
803         struct vgic_dist *vgic = &kvm->arch.vgic;
804         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
805         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
806         struct vgic_redist_region *rdreg;
807         gpa_t rd_base;
808         int ret;
809
810         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
811                 return 0;
812
813         /*
814          * We may be creating VCPUs before having set the base address for the
815          * redistributor region, in which case we will come back to this
816          * function for all VCPUs when the base address is set.  Just return
817          * without doing any work for now.
818          */
819         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
820         if (!rdreg)
821                 return 0;
822
823         if (!vgic_v3_check_base(kvm))
824                 return -EINVAL;
825
826         vgic_cpu->rdreg = rdreg;
827         vgic_cpu->rdreg_index = rdreg->free_index;
828
829         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
830
831         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
832         rd_dev->base_addr = rd_base;
833         rd_dev->iodev_type = IODEV_REDIST;
834         rd_dev->regions = vgic_v3_rd_registers;
835         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
836         rd_dev->redist_vcpu = vcpu;
837
838         mutex_lock(&kvm->slots_lock);
839         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
840                                       2 * SZ_64K, &rd_dev->dev);
841         mutex_unlock(&kvm->slots_lock);
842
843         if (ret)
844                 return ret;
845
846         rdreg->free_index++;
847         return 0;
848 }
849
850 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
851 {
852         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
853
854         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
855 }
856
857 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
858 {
859         struct kvm_vcpu *vcpu;
860         unsigned long c;
861         int ret = 0;
862
863         kvm_for_each_vcpu(c, vcpu, kvm) {
864                 ret = vgic_register_redist_iodev(vcpu);
865                 if (ret)
866                         break;
867         }
868
869         if (ret) {
870                 /* The current c failed, so iterate over the previous ones. */
871                 int i;
872
873                 mutex_lock(&kvm->slots_lock);
874                 for (i = 0; i < c; i++) {
875                         vcpu = kvm_get_vcpu(kvm, i);
876                         vgic_unregister_redist_iodev(vcpu);
877                 }
878                 mutex_unlock(&kvm->slots_lock);
879         }
880
881         return ret;
882 }
883
884 /**
885  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
886  *
887  * Performs various checks before inserting the rdist region in the list.
888  * Those tests depend on whether the size of the rdist region is known
889  * (ie. count != 0). The list is sorted by rdist region index.
890  *
891  * @kvm: kvm handle
892  * @index: redist region index
893  * @base: base of the new rdist region
894  * @count: number of redistributors the region is made of (0 in the old style
895  * single region, whose size is induced from the number of vcpus)
896  *
897  * Return 0 on success, < 0 otherwise
898  */
899 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
900                                        gpa_t base, uint32_t count)
901 {
902         struct vgic_dist *d = &kvm->arch.vgic;
903         struct vgic_redist_region *rdreg;
904         struct list_head *rd_regions = &d->rd_regions;
905         int nr_vcpus = atomic_read(&kvm->online_vcpus);
906         size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
907                             : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
908         int ret;
909
910         /* cross the end of memory ? */
911         if (base + size < base)
912                 return -EINVAL;
913
914         if (list_empty(rd_regions)) {
915                 if (index != 0)
916                         return -EINVAL;
917         } else {
918                 rdreg = list_last_entry(rd_regions,
919                                         struct vgic_redist_region, list);
920
921                 /* Don't mix single region and discrete redist regions */
922                 if (!count && rdreg->count)
923                         return -EINVAL;
924
925                 if (!count)
926                         return -EEXIST;
927
928                 if (index != rdreg->index + 1)
929                         return -EINVAL;
930         }
931
932         /*
933          * For legacy single-region redistributor regions (!count),
934          * check that the redistributor region does not overlap with the
935          * distributor's address space.
936          */
937         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
938                 vgic_dist_overlap(kvm, base, size))
939                 return -EINVAL;
940
941         /* collision with any other rdist region? */
942         if (vgic_v3_rdist_overlap(kvm, base, size))
943                 return -EINVAL;
944
945         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
946         if (!rdreg)
947                 return -ENOMEM;
948
949         rdreg->base = VGIC_ADDR_UNDEF;
950
951         ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
952         if (ret)
953                 goto free;
954
955         rdreg->base = base;
956         rdreg->count = count;
957         rdreg->free_index = 0;
958         rdreg->index = index;
959
960         list_add_tail(&rdreg->list, rd_regions);
961         return 0;
962 free:
963         kfree(rdreg);
964         return ret;
965 }
966
967 void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
968 {
969         list_del(&rdreg->list);
970         kfree(rdreg);
971 }
972
973 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
974 {
975         int ret;
976
977         ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
978         if (ret)
979                 return ret;
980
981         /*
982          * Register iodevs for each existing VCPU.  Adding more VCPUs
983          * afterwards will register the iodevs when needed.
984          */
985         ret = vgic_register_all_redist_iodevs(kvm);
986         if (ret) {
987                 struct vgic_redist_region *rdreg;
988
989                 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
990                 vgic_v3_free_redist_region(rdreg);
991                 return ret;
992         }
993
994         return 0;
995 }
996
997 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
998 {
999         const struct vgic_register_region *region;
1000         struct vgic_io_device iodev;
1001         struct vgic_reg_attr reg_attr;
1002         struct kvm_vcpu *vcpu;
1003         gpa_t addr;
1004         int ret;
1005
1006         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
1007         if (ret)
1008                 return ret;
1009
1010         vcpu = reg_attr.vcpu;
1011         addr = reg_attr.addr;
1012
1013         switch (attr->group) {
1014         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1015                 iodev.regions = vgic_v3_dist_registers;
1016                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
1017                 iodev.base_addr = 0;
1018                 break;
1019         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
1020                 iodev.regions = vgic_v3_rd_registers;
1021                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
1022                 iodev.base_addr = 0;
1023                 break;
1024         }
1025         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
1026                 u64 reg, id;
1027
1028                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
1029                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
1030         }
1031         default:
1032                 return -ENXIO;
1033         }
1034
1035         /* We only support aligned 32-bit accesses. */
1036         if (addr & 3)
1037                 return -ENXIO;
1038
1039         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1040         if (!region)
1041                 return -ENXIO;
1042
1043         return 0;
1044 }
1045 /*
1046  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
1047  * generation register ICC_SGI1R_EL1) with a given VCPU.
1048  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
1049  * return -1.
1050  */
1051 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
1052 {
1053         unsigned long affinity;
1054         int level0;
1055
1056         /*
1057          * Split the current VCPU's MPIDR into affinity level 0 and the
1058          * rest as this is what we have to compare against.
1059          */
1060         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
1061         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
1062         affinity &= ~MPIDR_LEVEL_MASK;
1063
1064         /* bail out if the upper three levels don't match */
1065         if (sgi_aff != affinity)
1066                 return -1;
1067
1068         /* Is this VCPU's bit set in the mask ? */
1069         if (!(sgi_cpu_mask & BIT(level0)))
1070                 return -1;
1071
1072         return level0;
1073 }
1074
1075 /*
1076  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1077  * so provide a wrapper to use the existing defines to isolate a certain
1078  * affinity level.
1079  */
1080 #define SGI_AFFINITY_LEVEL(reg, level) \
1081         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1082         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1083
1084 /**
1085  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1086  * @vcpu: The VCPU requesting a SGI
1087  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1088  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1089  *
1090  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1091  * This will trap in sys_regs.c and call this function.
1092  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1093  * target processors as well as a bitmask of 16 Aff0 CPUs.
1094  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
1095  * check for matching ones. If this bit is set, we signal all, but not the
1096  * calling VCPU.
1097  */
1098 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1099 {
1100         struct kvm *kvm = vcpu->kvm;
1101         struct kvm_vcpu *c_vcpu;
1102         u16 target_cpus;
1103         u64 mpidr;
1104         int sgi;
1105         int vcpu_id = vcpu->vcpu_id;
1106         bool broadcast;
1107         unsigned long c, flags;
1108
1109         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1110         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1111         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1112         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1113         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1114         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1115
1116         /*
1117          * We iterate over all VCPUs to find the MPIDRs matching the request.
1118          * If we have handled one CPU, we clear its bit to detect early
1119          * if we are already finished. This avoids iterating through all
1120          * VCPUs when most of the times we just signal a single VCPU.
1121          */
1122         kvm_for_each_vcpu(c, c_vcpu, kvm) {
1123                 struct vgic_irq *irq;
1124
1125                 /* Exit early if we have dealt with all requested CPUs */
1126                 if (!broadcast && target_cpus == 0)
1127                         break;
1128
1129                 /* Don't signal the calling VCPU */
1130                 if (broadcast && c == vcpu_id)
1131                         continue;
1132
1133                 if (!broadcast) {
1134                         int level0;
1135
1136                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1137                         if (level0 == -1)
1138                                 continue;
1139
1140                         /* remove this matching VCPU from the mask */
1141                         target_cpus &= ~BIT(level0);
1142                 }
1143
1144                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1145
1146                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1147
1148                 /*
1149                  * An access targeting Group0 SGIs can only generate
1150                  * those, while an access targeting Group1 SGIs can
1151                  * generate interrupts of either group.
1152                  */
1153                 if (!irq->group || allow_group1) {
1154                         if (!irq->hw) {
1155                                 irq->pending_latch = true;
1156                                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1157                         } else {
1158                                 /* HW SGI? Ask the GIC to inject it */
1159                                 int err;
1160                                 err = irq_set_irqchip_state(irq->host_irq,
1161                                                             IRQCHIP_STATE_PENDING,
1162                                                             true);
1163                                 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1164                                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1165                         }
1166                 } else {
1167                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1168                 }
1169
1170                 vgic_put_irq(vcpu->kvm, irq);
1171         }
1172 }
1173
1174 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1175                          int offset, u32 *val)
1176 {
1177         struct vgic_io_device dev = {
1178                 .regions = vgic_v3_dist_registers,
1179                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1180         };
1181
1182         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1183 }
1184
1185 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1186                            int offset, u32 *val)
1187 {
1188         struct vgic_io_device rd_dev = {
1189                 .regions = vgic_v3_rd_registers,
1190                 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1191         };
1192
1193         return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1194 }
1195
1196 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1197                                     u32 intid, u64 *val)
1198 {
1199         if (intid % 32)
1200                 return -EINVAL;
1201
1202         if (is_write)
1203                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1204         else
1205                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1206
1207         return 0;
1208 }