usb: typec: mux: fix static inline syntax error
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23                             unsigned int num)
24 {
25         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30                      unsigned long val)
31 {
32         int lower = (offset & 4) * 8;
33         int upper = lower + 8 * len - 1;
34
35         reg &= ~GENMASK_ULL(upper, lower);
36         val &= GENMASK_ULL(len * 8 - 1, 0);
37
38         return reg | ((u64)val << lower);
39 }
40
41 bool vgic_has_its(struct kvm *kvm)
42 {
43         struct vgic_dist *dist = &kvm->arch.vgic;
44
45         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46                 return false;
47
48         return dist->has_its;
49 }
50
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53         return (kvm_vgic_global_state.has_gicv4_1 ||
54                 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58  * The Revision field in the IIDR have the following meanings:
59  *
60  * Revision 2: Interrupt groups are guest-configurable and signaled using
61  *             their configured groups.
62  */
63
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65                                             gpa_t addr, unsigned int len)
66 {
67         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68         u32 value = 0;
69
70         switch (addr & 0x0c) {
71         case GICD_CTLR:
72                 if (vgic->enabled)
73                         value |= GICD_CTLR_ENABLE_SS_G1;
74                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75                 if (vgic->nassgireq)
76                         value |= GICD_CTLR_nASSGIreq;
77                 break;
78         case GICD_TYPER:
79                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80                 value = (value >> 5) - 1;
81                 if (vgic_has_its(vcpu->kvm)) {
82                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83                         value |= GICD_TYPER_LPIS;
84                 } else {
85                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86                 }
87                 break;
88         case GICD_TYPER2:
89                 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90                         value = GICD_TYPER2_nASSGIcap;
91                 break;
92         case GICD_IIDR:
93                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96                 break;
97         default:
98                 return 0;
99         }
100
101         return value;
102 }
103
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105                                     gpa_t addr, unsigned int len,
106                                     unsigned long val)
107 {
108         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110         switch (addr & 0x0c) {
111         case GICD_CTLR: {
112                 bool was_enabled, is_hwsgi;
113
114                 mutex_lock(&vcpu->kvm->arch.config_lock);
115
116                 was_enabled = dist->enabled;
117                 is_hwsgi = dist->nassgireq;
118
119                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121                 /* Not a GICv4.1? No HW SGIs */
122                 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123                         val &= ~GICD_CTLR_nASSGIreq;
124
125                 /* Dist stays enabled? nASSGIreq is RO */
126                 if (was_enabled && dist->enabled) {
127                         val &= ~GICD_CTLR_nASSGIreq;
128                         val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129                 }
130
131                 /* Switching HW SGIs? */
132                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133                 if (is_hwsgi != dist->nassgireq)
134                         vgic_v4_configure_vsgis(vcpu->kvm);
135
136                 if (kvm_vgic_global_state.has_gicv4_1 &&
137                     was_enabled != dist->enabled)
138                         kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139                 else if (!was_enabled && dist->enabled)
140                         vgic_kick_vcpus(vcpu->kvm);
141
142                 mutex_unlock(&vcpu->kvm->arch.config_lock);
143                 break;
144         }
145         case GICD_TYPER:
146         case GICD_TYPER2:
147         case GICD_IIDR:
148                 /* This is at best for documentation purposes... */
149                 return;
150         }
151 }
152
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154                                            gpa_t addr, unsigned int len,
155                                            unsigned long val)
156 {
157         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158         u32 reg;
159
160         switch (addr & 0x0c) {
161         case GICD_TYPER2:
162                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163                         return -EINVAL;
164                 return 0;
165         case GICD_IIDR:
166                 reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167                 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168                         return -EINVAL;
169
170                 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171                 switch (reg) {
172                 case KVM_VGIC_IMP_REV_2:
173                 case KVM_VGIC_IMP_REV_3:
174                         dist->implementation_rev = reg;
175                         return 0;
176                 default:
177                         return -EINVAL;
178                 }
179         case GICD_CTLR:
180                 /* Not a GICv4.1? No HW SGIs */
181                 if (!kvm_vgic_global_state.has_gicv4_1)
182                         val &= ~GICD_CTLR_nASSGIreq;
183
184                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185                 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186                 return 0;
187         }
188
189         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190         return 0;
191 }
192
193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194                                             gpa_t addr, unsigned int len)
195 {
196         int intid = VGIC_ADDR_TO_INTID(addr, 64);
197         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198         unsigned long ret = 0;
199
200         if (!irq)
201                 return 0;
202
203         /* The upper word is RAZ for us. */
204         if (!(addr & 4))
205                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207         vgic_put_irq(vcpu->kvm, irq);
208         return ret;
209 }
210
211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212                                     gpa_t addr, unsigned int len,
213                                     unsigned long val)
214 {
215         int intid = VGIC_ADDR_TO_INTID(addr, 64);
216         struct vgic_irq *irq;
217         unsigned long flags;
218
219         /* The upper word is WI for us since we don't implement Aff3. */
220         if (addr & 4)
221                 return;
222
223         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225         if (!irq)
226                 return;
227
228         raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230         /* We only care about and preserve Aff0, Aff1 and Aff2. */
231         irq->mpidr = val & GENMASK(23, 0);
232         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235         vgic_put_irq(vcpu->kvm, irq);
236 }
237
238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242         return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244
245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246                                              gpa_t addr, unsigned int len)
247 {
248         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249         unsigned long val;
250
251         val = atomic_read(&vgic_cpu->ctlr);
252         if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253                 val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255         return val;
256 }
257
258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259                                      gpa_t addr, unsigned int len,
260                                      unsigned long val)
261 {
262         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263         u32 ctlr;
264
265         if (!vgic_has_its(vcpu->kvm))
266                 return;
267
268         if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269                 /*
270                  * Don't disable if RWP is set, as there already an
271                  * ongoing disable. Funky guest...
272                  */
273                 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274                                               GICR_CTLR_ENABLE_LPIS,
275                                               GICR_CTLR_RWP);
276                 if (ctlr != GICR_CTLR_ENABLE_LPIS)
277                         return;
278
279                 vgic_flush_pending_lpis(vcpu);
280                 vgic_its_invalidate_cache(vcpu->kvm);
281                 atomic_set_release(&vgic_cpu->ctlr, 0);
282         } else {
283                 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284                                               GICR_CTLR_ENABLE_LPIS);
285                 if (ctlr != 0)
286                         return;
287
288                 vgic_enable_lpis(vcpu);
289         }
290 }
291
292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296         struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298         if (!rdreg)
299                 return false;
300
301         if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302                 return false;
303         } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304                 struct list_head *rd_regions = &vgic->rd_regions;
305                 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307                 /*
308                  * the rdist is the last one of the redist region,
309                  * check whether there is no other contiguous rdist region
310                  */
311                 list_for_each_entry(iter, rd_regions, list) {
312                         if (iter->base == end && iter->free_index > 0)
313                                 return false;
314                 }
315         }
316         return true;
317 }
318
319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320                                               gpa_t addr, unsigned int len)
321 {
322         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323         int target_vcpu_id = vcpu->vcpu_id;
324         u64 value;
325
326         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327         value |= ((target_vcpu_id & 0xffff) << 8);
328
329         if (vgic_has_its(vcpu->kvm))
330                 value |= GICR_TYPER_PLPIS;
331
332         if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333                 value |= GICR_TYPER_LAST;
334
335         return extract_bytes(value, addr & 7, len);
336 }
337
338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339                                              gpa_t addr, unsigned int len)
340 {
341         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343
344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345                                               gpa_t addr, unsigned int len)
346 {
347         switch (addr & 0xffff) {
348         case GICD_PIDR2:
349                 /* report a GICv3 compliant implementation */
350                 return 0x3b;
351         }
352
353         return 0;
354 }
355
356 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357                                          gpa_t addr, unsigned int len,
358                                          unsigned long val)
359 {
360         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
361         int i;
362         unsigned long flags;
363
364         for (i = 0; i < len * 8; i++) {
365                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
366
367                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
368                 if (test_bit(i, &val)) {
369                         /*
370                          * pending_latch is set irrespective of irq type
371                          * (level or edge) to avoid dependency that VM should
372                          * restore irq config before pending info.
373                          */
374                         irq->pending_latch = true;
375                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
376                 } else {
377                         irq->pending_latch = false;
378                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
379                 }
380
381                 vgic_put_irq(vcpu->kvm, irq);
382         }
383
384         return 0;
385 }
386
387 /* We want to avoid outer shareable. */
388 u64 vgic_sanitise_shareability(u64 field)
389 {
390         switch (field) {
391         case GIC_BASER_OuterShareable:
392                 return GIC_BASER_InnerShareable;
393         default:
394                 return field;
395         }
396 }
397
398 /* Avoid any inner non-cacheable mapping. */
399 u64 vgic_sanitise_inner_cacheability(u64 field)
400 {
401         switch (field) {
402         case GIC_BASER_CACHE_nCnB:
403         case GIC_BASER_CACHE_nC:
404                 return GIC_BASER_CACHE_RaWb;
405         default:
406                 return field;
407         }
408 }
409
410 /* Non-cacheable or same-as-inner are OK. */
411 u64 vgic_sanitise_outer_cacheability(u64 field)
412 {
413         switch (field) {
414         case GIC_BASER_CACHE_SameAsInner:
415         case GIC_BASER_CACHE_nC:
416                 return field;
417         default:
418                 return GIC_BASER_CACHE_SameAsInner;
419         }
420 }
421
422 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
423                         u64 (*sanitise_fn)(u64))
424 {
425         u64 field = (reg & field_mask) >> field_shift;
426
427         field = sanitise_fn(field) << field_shift;
428         return (reg & ~field_mask) | field;
429 }
430
431 #define PROPBASER_RES0_MASK                                             \
432         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
433 #define PENDBASER_RES0_MASK                                             \
434         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
435          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
436
437 static u64 vgic_sanitise_pendbaser(u64 reg)
438 {
439         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
440                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
441                                   vgic_sanitise_shareability);
442         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
443                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
444                                   vgic_sanitise_inner_cacheability);
445         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
446                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
447                                   vgic_sanitise_outer_cacheability);
448
449         reg &= ~PENDBASER_RES0_MASK;
450
451         return reg;
452 }
453
454 static u64 vgic_sanitise_propbaser(u64 reg)
455 {
456         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
457                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
458                                   vgic_sanitise_shareability);
459         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
460                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
461                                   vgic_sanitise_inner_cacheability);
462         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
463                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
464                                   vgic_sanitise_outer_cacheability);
465
466         reg &= ~PROPBASER_RES0_MASK;
467         return reg;
468 }
469
470 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
471                                              gpa_t addr, unsigned int len)
472 {
473         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
474
475         return extract_bytes(dist->propbaser, addr & 7, len);
476 }
477
478 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
479                                      gpa_t addr, unsigned int len,
480                                      unsigned long val)
481 {
482         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
483         u64 old_propbaser, propbaser;
484
485         /* Storing a value with LPIs already enabled is undefined */
486         if (vgic_lpis_enabled(vcpu))
487                 return;
488
489         do {
490                 old_propbaser = READ_ONCE(dist->propbaser);
491                 propbaser = old_propbaser;
492                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
493                 propbaser = vgic_sanitise_propbaser(propbaser);
494         } while (cmpxchg64(&dist->propbaser, old_propbaser,
495                            propbaser) != old_propbaser);
496 }
497
498 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
499                                              gpa_t addr, unsigned int len)
500 {
501         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
502         u64 value = vgic_cpu->pendbaser;
503
504         value &= ~GICR_PENDBASER_PTZ;
505
506         return extract_bytes(value, addr & 7, len);
507 }
508
509 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
510                                      gpa_t addr, unsigned int len,
511                                      unsigned long val)
512 {
513         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
514         u64 old_pendbaser, pendbaser;
515
516         /* Storing a value with LPIs already enabled is undefined */
517         if (vgic_lpis_enabled(vcpu))
518                 return;
519
520         do {
521                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
522                 pendbaser = old_pendbaser;
523                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
524                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
525         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
526                            pendbaser) != old_pendbaser);
527 }
528
529 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
530                                          gpa_t addr, unsigned int len)
531 {
532         return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
533 }
534
535 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
536 {
537         if (busy) {
538                 atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
539                 smp_mb__after_atomic();
540         } else {
541                 smp_mb__before_atomic();
542                 atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
543         }
544 }
545
546 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
547                                    gpa_t addr, unsigned int len,
548                                    unsigned long val)
549 {
550         struct vgic_irq *irq;
551
552         /*
553          * If the guest wrote only to the upper 32bit part of the
554          * register, drop the write on the floor, as it is only for
555          * vPEs (which we don't support for obvious reasons).
556          *
557          * Also discard the access if LPIs are not enabled.
558          */
559         if ((addr & 4) || !vgic_lpis_enabled(vcpu))
560                 return;
561
562         vgic_set_rdist_busy(vcpu, true);
563
564         irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
565         if (irq) {
566                 vgic_its_inv_lpi(vcpu->kvm, irq);
567                 vgic_put_irq(vcpu->kvm, irq);
568         }
569
570         vgic_set_rdist_busy(vcpu, false);
571 }
572
573 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
574                                    gpa_t addr, unsigned int len,
575                                    unsigned long val)
576 {
577         /* See vgic_mmio_write_invlpi() for the early return rationale */
578         if ((addr & 4) || !vgic_lpis_enabled(vcpu))
579                 return;
580
581         vgic_set_rdist_busy(vcpu, true);
582         vgic_its_invall(vcpu);
583         vgic_set_rdist_busy(vcpu, false);
584 }
585
586 /*
587  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
588  * redistributors, while SPIs are covered by registers in the distributor
589  * block. Trying to set private IRQs in this block gets ignored.
590  * We take some special care here to fix the calculation of the register
591  * offset.
592  */
593 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
594         {                                                               \
595                 .reg_offset = off,                                      \
596                 .bits_per_irq = bpi,                                    \
597                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
598                 .access_flags = acc,                                    \
599                 .read = vgic_mmio_read_raz,                             \
600                 .write = vgic_mmio_write_wi,                            \
601         }, {                                                            \
602                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
603                 .bits_per_irq = bpi,                                    \
604                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
605                 .access_flags = acc,                                    \
606                 .read = rd,                                             \
607                 .write = wr,                                            \
608                 .uaccess_read = ur,                                     \
609                 .uaccess_write = uw,                                    \
610         }
611
612 static const struct vgic_register_region vgic_v3_dist_registers[] = {
613         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
614                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
615                 NULL, vgic_mmio_uaccess_write_v3_misc,
616                 16, VGIC_ACCESS_32bit),
617         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
618                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
619                 VGIC_ACCESS_32bit),
620         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
621                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
622                 VGIC_ACCESS_32bit),
623         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
624                 vgic_mmio_read_enable, vgic_mmio_write_senable,
625                 NULL, vgic_uaccess_write_senable, 1,
626                 VGIC_ACCESS_32bit),
627         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
628                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
629                NULL, vgic_uaccess_write_cenable, 1,
630                 VGIC_ACCESS_32bit),
631         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
632                 vgic_mmio_read_pending, vgic_mmio_write_spending,
633                 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
634                 VGIC_ACCESS_32bit),
635         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
636                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
637                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
638                 VGIC_ACCESS_32bit),
639         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
640                 vgic_mmio_read_active, vgic_mmio_write_sactive,
641                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
642                 VGIC_ACCESS_32bit),
643         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
644                 vgic_mmio_read_active, vgic_mmio_write_cactive,
645                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
646                 1, VGIC_ACCESS_32bit),
647         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
648                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
649                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
650         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
651                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
652                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
653         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
654                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
655                 VGIC_ACCESS_32bit),
656         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
657                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
658                 VGIC_ACCESS_32bit),
659         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
660                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
661                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
662         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
663                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
664                 VGIC_ACCESS_32bit),
665 };
666
667 static const struct vgic_register_region vgic_v3_rd_registers[] = {
668         /* RD_base registers */
669         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
670                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
671                 VGIC_ACCESS_32bit),
672         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
673                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
674                 VGIC_ACCESS_32bit),
675         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
676                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
677                 VGIC_ACCESS_32bit),
678         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
679                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
680                 NULL, vgic_mmio_uaccess_write_wi, 8,
681                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
682         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
683                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
684                 VGIC_ACCESS_32bit),
685         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
686                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
687                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
688         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
689                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
690                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
691         REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
692                 vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
693                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
694         REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
695                 vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
696                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
697         REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
698                 vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
699                 VGIC_ACCESS_32bit),
700         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
701                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
702                 VGIC_ACCESS_32bit),
703         /* SGI_base registers */
704         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
705                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
706                 VGIC_ACCESS_32bit),
707         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
708                 vgic_mmio_read_enable, vgic_mmio_write_senable,
709                 NULL, vgic_uaccess_write_senable, 4,
710                 VGIC_ACCESS_32bit),
711         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
712                 vgic_mmio_read_enable, vgic_mmio_write_cenable,
713                 NULL, vgic_uaccess_write_cenable, 4,
714                 VGIC_ACCESS_32bit),
715         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
716                 vgic_mmio_read_pending, vgic_mmio_write_spending,
717                 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
718                 VGIC_ACCESS_32bit),
719         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
720                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
721                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
722                 VGIC_ACCESS_32bit),
723         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
724                 vgic_mmio_read_active, vgic_mmio_write_sactive,
725                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
726                 VGIC_ACCESS_32bit),
727         REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
728                 vgic_mmio_read_active, vgic_mmio_write_cactive,
729                 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
730                 VGIC_ACCESS_32bit),
731         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
732                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
733                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
734         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
735                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
736                 VGIC_ACCESS_32bit),
737         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
738                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
739                 VGIC_ACCESS_32bit),
740         REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
741                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
742                 VGIC_ACCESS_32bit),
743 };
744
745 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
746 {
747         dev->regions = vgic_v3_dist_registers;
748         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
749
750         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
751
752         return SZ_64K;
753 }
754
755 /**
756  * vgic_register_redist_iodev - register a single redist iodev
757  * @vcpu:    The VCPU to which the redistributor belongs
758  *
759  * Register a KVM iodev for this VCPU's redistributor using the address
760  * provided.
761  *
762  * Return 0 on success, -ERRNO otherwise.
763  */
764 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
765 {
766         struct kvm *kvm = vcpu->kvm;
767         struct vgic_dist *vgic = &kvm->arch.vgic;
768         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
769         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
770         struct vgic_redist_region *rdreg;
771         gpa_t rd_base;
772         int ret;
773
774         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
775                 return 0;
776
777         /*
778          * We may be creating VCPUs before having set the base address for the
779          * redistributor region, in which case we will come back to this
780          * function for all VCPUs when the base address is set.  Just return
781          * without doing any work for now.
782          */
783         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
784         if (!rdreg)
785                 return 0;
786
787         if (!vgic_v3_check_base(kvm))
788                 return -EINVAL;
789
790         vgic_cpu->rdreg = rdreg;
791         vgic_cpu->rdreg_index = rdreg->free_index;
792
793         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
794
795         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
796         rd_dev->base_addr = rd_base;
797         rd_dev->iodev_type = IODEV_REDIST;
798         rd_dev->regions = vgic_v3_rd_registers;
799         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
800         rd_dev->redist_vcpu = vcpu;
801
802         mutex_lock(&kvm->slots_lock);
803         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
804                                       2 * SZ_64K, &rd_dev->dev);
805         mutex_unlock(&kvm->slots_lock);
806
807         if (ret)
808                 return ret;
809
810         rdreg->free_index++;
811         return 0;
812 }
813
814 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
815 {
816         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
817
818         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
819 }
820
821 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
822 {
823         struct kvm_vcpu *vcpu;
824         unsigned long c;
825         int ret = 0;
826
827         kvm_for_each_vcpu(c, vcpu, kvm) {
828                 ret = vgic_register_redist_iodev(vcpu);
829                 if (ret)
830                         break;
831         }
832
833         if (ret) {
834                 /* The current c failed, so iterate over the previous ones. */
835                 int i;
836
837                 mutex_lock(&kvm->slots_lock);
838                 for (i = 0; i < c; i++) {
839                         vcpu = kvm_get_vcpu(kvm, i);
840                         vgic_unregister_redist_iodev(vcpu);
841                 }
842                 mutex_unlock(&kvm->slots_lock);
843         }
844
845         return ret;
846 }
847
848 /**
849  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
850  *
851  * Performs various checks before inserting the rdist region in the list.
852  * Those tests depend on whether the size of the rdist region is known
853  * (ie. count != 0). The list is sorted by rdist region index.
854  *
855  * @kvm: kvm handle
856  * @index: redist region index
857  * @base: base of the new rdist region
858  * @count: number of redistributors the region is made of (0 in the old style
859  * single region, whose size is induced from the number of vcpus)
860  *
861  * Return 0 on success, < 0 otherwise
862  */
863 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
864                                        gpa_t base, uint32_t count)
865 {
866         struct vgic_dist *d = &kvm->arch.vgic;
867         struct vgic_redist_region *rdreg;
868         struct list_head *rd_regions = &d->rd_regions;
869         int nr_vcpus = atomic_read(&kvm->online_vcpus);
870         size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
871                             : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
872         int ret;
873
874         /* cross the end of memory ? */
875         if (base + size < base)
876                 return -EINVAL;
877
878         if (list_empty(rd_regions)) {
879                 if (index != 0)
880                         return -EINVAL;
881         } else {
882                 rdreg = list_last_entry(rd_regions,
883                                         struct vgic_redist_region, list);
884
885                 /* Don't mix single region and discrete redist regions */
886                 if (!count && rdreg->count)
887                         return -EINVAL;
888
889                 if (!count)
890                         return -EEXIST;
891
892                 if (index != rdreg->index + 1)
893                         return -EINVAL;
894         }
895
896         /*
897          * For legacy single-region redistributor regions (!count),
898          * check that the redistributor region does not overlap with the
899          * distributor's address space.
900          */
901         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
902                 vgic_dist_overlap(kvm, base, size))
903                 return -EINVAL;
904
905         /* collision with any other rdist region? */
906         if (vgic_v3_rdist_overlap(kvm, base, size))
907                 return -EINVAL;
908
909         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
910         if (!rdreg)
911                 return -ENOMEM;
912
913         rdreg->base = VGIC_ADDR_UNDEF;
914
915         ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
916         if (ret)
917                 goto free;
918
919         rdreg->base = base;
920         rdreg->count = count;
921         rdreg->free_index = 0;
922         rdreg->index = index;
923
924         list_add_tail(&rdreg->list, rd_regions);
925         return 0;
926 free:
927         kfree(rdreg);
928         return ret;
929 }
930
931 void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
932 {
933         list_del(&rdreg->list);
934         kfree(rdreg);
935 }
936
937 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
938 {
939         int ret;
940
941         ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
942         if (ret)
943                 return ret;
944
945         /*
946          * Register iodevs for each existing VCPU.  Adding more VCPUs
947          * afterwards will register the iodevs when needed.
948          */
949         ret = vgic_register_all_redist_iodevs(kvm);
950         if (ret) {
951                 struct vgic_redist_region *rdreg;
952
953                 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
954                 vgic_v3_free_redist_region(rdreg);
955                 return ret;
956         }
957
958         return 0;
959 }
960
961 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
962 {
963         const struct vgic_register_region *region;
964         struct vgic_io_device iodev;
965         struct vgic_reg_attr reg_attr;
966         struct kvm_vcpu *vcpu;
967         gpa_t addr;
968         int ret;
969
970         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
971         if (ret)
972                 return ret;
973
974         vcpu = reg_attr.vcpu;
975         addr = reg_attr.addr;
976
977         switch (attr->group) {
978         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
979                 iodev.regions = vgic_v3_dist_registers;
980                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
981                 iodev.base_addr = 0;
982                 break;
983         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
984                 iodev.regions = vgic_v3_rd_registers;
985                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
986                 iodev.base_addr = 0;
987                 break;
988         }
989         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
990                 return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
991         default:
992                 return -ENXIO;
993         }
994
995         /* We only support aligned 32-bit accesses. */
996         if (addr & 3)
997                 return -ENXIO;
998
999         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1000         if (!region)
1001                 return -ENXIO;
1002
1003         return 0;
1004 }
1005 /*
1006  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
1007  * generation register ICC_SGI1R_EL1) with a given VCPU.
1008  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
1009  * return -1.
1010  */
1011 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
1012 {
1013         unsigned long affinity;
1014         int level0;
1015
1016         /*
1017          * Split the current VCPU's MPIDR into affinity level 0 and the
1018          * rest as this is what we have to compare against.
1019          */
1020         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
1021         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
1022         affinity &= ~MPIDR_LEVEL_MASK;
1023
1024         /* bail out if the upper three levels don't match */
1025         if (sgi_aff != affinity)
1026                 return -1;
1027
1028         /* Is this VCPU's bit set in the mask ? */
1029         if (!(sgi_cpu_mask & BIT(level0)))
1030                 return -1;
1031
1032         return level0;
1033 }
1034
1035 /*
1036  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1037  * so provide a wrapper to use the existing defines to isolate a certain
1038  * affinity level.
1039  */
1040 #define SGI_AFFINITY_LEVEL(reg, level) \
1041         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1042         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1043
1044 /**
1045  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1046  * @vcpu: The VCPU requesting a SGI
1047  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1048  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1049  *
1050  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1051  * This will trap in sys_regs.c and call this function.
1052  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1053  * target processors as well as a bitmask of 16 Aff0 CPUs.
1054  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
1055  * check for matching ones. If this bit is set, we signal all, but not the
1056  * calling VCPU.
1057  */
1058 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1059 {
1060         struct kvm *kvm = vcpu->kvm;
1061         struct kvm_vcpu *c_vcpu;
1062         u16 target_cpus;
1063         u64 mpidr;
1064         int sgi;
1065         int vcpu_id = vcpu->vcpu_id;
1066         bool broadcast;
1067         unsigned long c, flags;
1068
1069         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1070         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1071         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1072         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1073         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1074         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1075
1076         /*
1077          * We iterate over all VCPUs to find the MPIDRs matching the request.
1078          * If we have handled one CPU, we clear its bit to detect early
1079          * if we are already finished. This avoids iterating through all
1080          * VCPUs when most of the times we just signal a single VCPU.
1081          */
1082         kvm_for_each_vcpu(c, c_vcpu, kvm) {
1083                 struct vgic_irq *irq;
1084
1085                 /* Exit early if we have dealt with all requested CPUs */
1086                 if (!broadcast && target_cpus == 0)
1087                         break;
1088
1089                 /* Don't signal the calling VCPU */
1090                 if (broadcast && c == vcpu_id)
1091                         continue;
1092
1093                 if (!broadcast) {
1094                         int level0;
1095
1096                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1097                         if (level0 == -1)
1098                                 continue;
1099
1100                         /* remove this matching VCPU from the mask */
1101                         target_cpus &= ~BIT(level0);
1102                 }
1103
1104                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1105
1106                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1107
1108                 /*
1109                  * An access targeting Group0 SGIs can only generate
1110                  * those, while an access targeting Group1 SGIs can
1111                  * generate interrupts of either group.
1112                  */
1113                 if (!irq->group || allow_group1) {
1114                         if (!irq->hw) {
1115                                 irq->pending_latch = true;
1116                                 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1117                         } else {
1118                                 /* HW SGI? Ask the GIC to inject it */
1119                                 int err;
1120                                 err = irq_set_irqchip_state(irq->host_irq,
1121                                                             IRQCHIP_STATE_PENDING,
1122                                                             true);
1123                                 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1124                                 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1125                         }
1126                 } else {
1127                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1128                 }
1129
1130                 vgic_put_irq(vcpu->kvm, irq);
1131         }
1132 }
1133
1134 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1135                          int offset, u32 *val)
1136 {
1137         struct vgic_io_device dev = {
1138                 .regions = vgic_v3_dist_registers,
1139                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1140         };
1141
1142         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1143 }
1144
1145 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1146                            int offset, u32 *val)
1147 {
1148         struct vgic_io_device rd_dev = {
1149                 .regions = vgic_v3_rd_registers,
1150                 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1151         };
1152
1153         return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1154 }
1155
1156 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1157                                     u32 intid, u32 *val)
1158 {
1159         if (intid % 32)
1160                 return -EINVAL;
1161
1162         if (is_write)
1163                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1164         else
1165                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1166
1167         return 0;
1168 }