2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
26 #include <linux/uaccess.h>
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
40 #include <trace/events/kvm.h>
47 * All of this file is extremly similar to the ARM coproc.c, but the
48 * types are different. My gut feeling is that it should be pretty
49 * easy to merge, but that would be an ABI breakage -- again. VFP
50 * would also need to be abstracted.
52 * For AArch32, we only take care of what is being trapped. Anything
53 * that has to do with init and userspace access has to go via the
57 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
58 static u32 cache_levels;
60 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
63 /* Which cache CCSIDR represents depends on CSSELR value. */
64 static u32 get_ccsidr(u32 csselr)
68 /* Make sure noone else changes CSSELR during this! */
70 /* Put value into CSSELR */
71 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
73 /* Read result out of CCSIDR */
74 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
81 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
83 static bool access_dcsw(struct kvm_vcpu *vcpu,
84 struct sys_reg_params *p,
85 const struct sys_reg_desc *r)
88 return read_from_write_only(vcpu, p);
90 kvm_set_way_flush(vcpu);
95 * Generic accessor for VM registers. Only called as long as HCR_TVM
96 * is set. If the guest enables the MMU, we stop trapping the VM
97 * sys_regs and leave it in complete control of the caches.
99 static bool access_vm_reg(struct kvm_vcpu *vcpu,
100 struct sys_reg_params *p,
101 const struct sys_reg_desc *r)
103 bool was_enabled = vcpu_has_cache_enabled(vcpu);
105 BUG_ON(!p->is_write);
107 if (!p->is_aarch32) {
108 vcpu_sys_reg(vcpu, r->reg) = p->regval;
111 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
112 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
115 kvm_toggle_cache(vcpu, was_enabled);
120 * Trap handler for the GICv3 SGI generation system register.
121 * Forward the request to the VGIC emulation.
122 * The cp15_64 code makes sure this automatically works
123 * for both AArch64 and AArch32 accesses.
125 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
126 struct sys_reg_params *p,
127 const struct sys_reg_desc *r)
130 return read_from_write_only(vcpu, p);
132 vgic_v3_dispatch_sgi(vcpu, p->regval);
137 static bool access_gic_sre(struct kvm_vcpu *vcpu,
138 struct sys_reg_params *p,
139 const struct sys_reg_desc *r)
142 return ignore_write(vcpu, p);
144 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
148 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
149 struct sys_reg_params *p,
150 const struct sys_reg_desc *r)
153 return ignore_write(vcpu, p);
155 return read_zero(vcpu, p);
158 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
159 struct sys_reg_params *p,
160 const struct sys_reg_desc *r)
163 return ignore_write(vcpu, p);
165 p->regval = (1 << 3);
170 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
171 struct sys_reg_params *p,
172 const struct sys_reg_desc *r)
175 return ignore_write(vcpu, p);
178 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
185 * We want to avoid world-switching all the DBG registers all the
188 * - If we've touched any debug register, it is likely that we're
189 * going to touch more of them. It then makes sense to disable the
190 * traps and start doing the save/restore dance
191 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
192 * then mandatory to save/restore the registers, as the guest
195 * For this, we use a DIRTY bit, indicating the guest has modified the
196 * debug registers, used as follow:
199 * - If the dirty bit is set (because we're coming back from trapping),
200 * disable the traps, save host registers, restore guest registers.
201 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
202 * set the dirty bit, disable the traps, save host registers,
203 * restore guest registers.
204 * - Otherwise, enable the traps
207 * - If the dirty bit is set, save guest registers, restore host
208 * registers and clear the dirty bit. This ensure that the host can
209 * now use the debug registers.
211 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
212 struct sys_reg_params *p,
213 const struct sys_reg_desc *r)
216 vcpu_sys_reg(vcpu, r->reg) = p->regval;
217 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
219 p->regval = vcpu_sys_reg(vcpu, r->reg);
222 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
228 * reg_to_dbg/dbg_to_reg
230 * A 32 bit write to a debug register leave top bits alone
231 * A 32 bit read from a debug register only returns the bottom bits
233 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
234 * hyp.S code switches between host and guest values in future.
236 static void reg_to_dbg(struct kvm_vcpu *vcpu,
237 struct sys_reg_params *p,
244 val |= ((*dbg_reg >> 32) << 32);
248 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
251 static void dbg_to_reg(struct kvm_vcpu *vcpu,
252 struct sys_reg_params *p,
255 p->regval = *dbg_reg;
257 p->regval &= 0xffffffffUL;
260 static bool trap_bvr(struct kvm_vcpu *vcpu,
261 struct sys_reg_params *p,
262 const struct sys_reg_desc *rd)
264 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
267 reg_to_dbg(vcpu, p, dbg_reg);
269 dbg_to_reg(vcpu, p, dbg_reg);
271 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
276 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
277 const struct kvm_one_reg *reg, void __user *uaddr)
279 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
281 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
286 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
287 const struct kvm_one_reg *reg, void __user *uaddr)
289 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
291 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
296 static void reset_bvr(struct kvm_vcpu *vcpu,
297 const struct sys_reg_desc *rd)
299 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
302 static bool trap_bcr(struct kvm_vcpu *vcpu,
303 struct sys_reg_params *p,
304 const struct sys_reg_desc *rd)
306 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
309 reg_to_dbg(vcpu, p, dbg_reg);
311 dbg_to_reg(vcpu, p, dbg_reg);
313 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
318 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
319 const struct kvm_one_reg *reg, void __user *uaddr)
321 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
323 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
329 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
330 const struct kvm_one_reg *reg, void __user *uaddr)
332 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
334 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
339 static void reset_bcr(struct kvm_vcpu *vcpu,
340 const struct sys_reg_desc *rd)
342 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
345 static bool trap_wvr(struct kvm_vcpu *vcpu,
346 struct sys_reg_params *p,
347 const struct sys_reg_desc *rd)
349 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
352 reg_to_dbg(vcpu, p, dbg_reg);
354 dbg_to_reg(vcpu, p, dbg_reg);
356 trace_trap_reg(__func__, rd->reg, p->is_write,
357 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
362 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
363 const struct kvm_one_reg *reg, void __user *uaddr)
365 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
367 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
372 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
373 const struct kvm_one_reg *reg, void __user *uaddr)
375 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
377 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
382 static void reset_wvr(struct kvm_vcpu *vcpu,
383 const struct sys_reg_desc *rd)
385 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
388 static bool trap_wcr(struct kvm_vcpu *vcpu,
389 struct sys_reg_params *p,
390 const struct sys_reg_desc *rd)
392 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
395 reg_to_dbg(vcpu, p, dbg_reg);
397 dbg_to_reg(vcpu, p, dbg_reg);
399 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
404 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
405 const struct kvm_one_reg *reg, void __user *uaddr)
407 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
409 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
414 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
415 const struct kvm_one_reg *reg, void __user *uaddr)
417 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
419 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
424 static void reset_wcr(struct kvm_vcpu *vcpu,
425 const struct sys_reg_desc *rd)
427 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
430 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
434 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
435 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
438 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
443 * Map the vcpu_id into the first three affinity level fields of
444 * the MPIDR. We limit the number of VCPUs in level 0 due to a
445 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
446 * of the GICv3 to be able to address each CPU directly when
449 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
450 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
451 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
452 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
455 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
459 asm volatile("mrs %0, pmcr_el0\n" : "=r" (pmcr));
460 /* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) is reset to UNKNOWN
461 * except PMCR.E resetting to zero.
463 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
464 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
465 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
468 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
470 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
472 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
475 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
477 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
479 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
480 || vcpu_mode_priv(vcpu));
483 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
485 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
487 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
488 || vcpu_mode_priv(vcpu));
491 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
493 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
495 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
496 || vcpu_mode_priv(vcpu));
499 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
500 const struct sys_reg_desc *r)
504 if (!kvm_arm_pmu_v3_ready(vcpu))
505 return trap_raz_wi(vcpu, p, r);
507 if (pmu_access_el0_disabled(vcpu))
511 /* Only update writeable bits of PMCR */
512 val = vcpu_sys_reg(vcpu, PMCR_EL0);
513 val &= ~ARMV8_PMU_PMCR_MASK;
514 val |= p->regval & ARMV8_PMU_PMCR_MASK;
515 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
516 kvm_pmu_handle_pmcr(vcpu, val);
518 /* PMCR.P & PMCR.C are RAZ */
519 val = vcpu_sys_reg(vcpu, PMCR_EL0)
520 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
527 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
528 const struct sys_reg_desc *r)
530 if (!kvm_arm_pmu_v3_ready(vcpu))
531 return trap_raz_wi(vcpu, p, r);
533 if (pmu_access_event_counter_el0_disabled(vcpu))
537 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
539 /* return PMSELR.SEL field */
540 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
541 & ARMV8_PMU_COUNTER_MASK;
546 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
547 const struct sys_reg_desc *r)
551 if (!kvm_arm_pmu_v3_ready(vcpu))
552 return trap_raz_wi(vcpu, p, r);
556 if (pmu_access_el0_disabled(vcpu))
560 asm volatile("mrs %0, pmceid0_el0\n" : "=r" (pmceid));
562 asm volatile("mrs %0, pmceid1_el0\n" : "=r" (pmceid));
569 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
573 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
574 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
575 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
581 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
582 struct sys_reg_params *p,
583 const struct sys_reg_desc *r)
587 if (!kvm_arm_pmu_v3_ready(vcpu))
588 return trap_raz_wi(vcpu, p, r);
590 if (r->CRn == 9 && r->CRm == 13) {
593 if (pmu_access_event_counter_el0_disabled(vcpu))
596 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
597 & ARMV8_PMU_COUNTER_MASK;
598 } else if (r->Op2 == 0) {
600 if (pmu_access_cycle_counter_el0_disabled(vcpu))
603 idx = ARMV8_PMU_CYCLE_IDX;
607 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
609 if (pmu_access_event_counter_el0_disabled(vcpu))
612 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
617 if (!pmu_counter_idx_valid(vcpu, idx))
621 if (pmu_access_el0_disabled(vcpu))
624 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
626 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
632 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
633 const struct sys_reg_desc *r)
637 if (!kvm_arm_pmu_v3_ready(vcpu))
638 return trap_raz_wi(vcpu, p, r);
640 if (pmu_access_el0_disabled(vcpu))
643 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
645 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
646 reg = PMEVTYPER0_EL0 + idx;
647 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
648 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
649 if (idx == ARMV8_PMU_CYCLE_IDX)
653 reg = PMEVTYPER0_EL0 + idx;
658 if (!pmu_counter_idx_valid(vcpu, idx))
662 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
663 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
665 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
671 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
672 const struct sys_reg_desc *r)
676 if (!kvm_arm_pmu_v3_ready(vcpu))
677 return trap_raz_wi(vcpu, p, r);
679 if (pmu_access_el0_disabled(vcpu))
682 mask = kvm_pmu_valid_counter_mask(vcpu);
684 val = p->regval & mask;
686 /* accessing PMCNTENSET_EL0 */
687 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
688 kvm_pmu_enable_counter(vcpu, val);
690 /* accessing PMCNTENCLR_EL0 */
691 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
692 kvm_pmu_disable_counter(vcpu, val);
695 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
701 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
702 const struct sys_reg_desc *r)
704 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
706 if (!kvm_arm_pmu_v3_ready(vcpu))
707 return trap_raz_wi(vcpu, p, r);
709 if (!vcpu_mode_priv(vcpu))
713 u64 val = p->regval & mask;
716 /* accessing PMINTENSET_EL1 */
717 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
719 /* accessing PMINTENCLR_EL1 */
720 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
722 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
728 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
729 const struct sys_reg_desc *r)
731 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
733 if (!kvm_arm_pmu_v3_ready(vcpu))
734 return trap_raz_wi(vcpu, p, r);
736 if (pmu_access_el0_disabled(vcpu))
741 /* accessing PMOVSSET_EL0 */
742 kvm_pmu_overflow_set(vcpu, p->regval & mask);
744 /* accessing PMOVSCLR_EL0 */
745 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
747 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
753 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
754 const struct sys_reg_desc *r)
758 if (!kvm_arm_pmu_v3_ready(vcpu))
759 return trap_raz_wi(vcpu, p, r);
761 if (pmu_write_swinc_el0_disabled(vcpu))
765 mask = kvm_pmu_valid_counter_mask(vcpu);
766 kvm_pmu_software_increment(vcpu, p->regval & mask);
773 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
774 const struct sys_reg_desc *r)
776 if (!kvm_arm_pmu_v3_ready(vcpu))
777 return trap_raz_wi(vcpu, p, r);
780 if (!vcpu_mode_priv(vcpu))
783 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
784 & ARMV8_PMU_USERENR_MASK;
786 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
787 & ARMV8_PMU_USERENR_MASK;
793 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
794 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
796 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
797 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
799 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
800 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
802 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
803 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
805 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
806 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
808 /* Macro to expand the PMEVCNTRn_EL0 register */
809 #define PMU_PMEVCNTR_EL0(n) \
810 /* PMEVCNTRn_EL0 */ \
811 { Op0(0b11), Op1(0b011), CRn(0b1110), \
812 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
813 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
815 /* Macro to expand the PMEVTYPERn_EL0 register */
816 #define PMU_PMEVTYPER_EL0(n) \
817 /* PMEVTYPERn_EL0 */ \
818 { Op0(0b11), Op1(0b011), CRn(0b1110), \
819 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
820 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
823 * Architected system registers.
824 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
826 * We could trap ID_DFR0 and tell the guest we don't support performance
827 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
828 * NAKed, so it will read the PMCR anyway.
830 * Therefore we tell the guest we have 0 counters. Unfortunately, we
831 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
832 * all PM registers, which doesn't crash the guest kernel at least.
834 * Debug handling: We do trap most, if not all debug related system
835 * registers. The implementation is good enough to ensure that a guest
836 * can use these with minimal performance degradation. The drawback is
837 * that we don't implement any of the external debug, none of the
838 * OSlock protocol. This should be revisited if we ever encounter a
839 * more demanding guest...
841 static const struct sys_reg_desc sys_reg_descs[] = {
843 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
846 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
849 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
852 DBG_BCR_BVR_WCR_WVR_EL1(0),
853 DBG_BCR_BVR_WCR_WVR_EL1(1),
855 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
856 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
858 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
859 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
860 DBG_BCR_BVR_WCR_WVR_EL1(2),
861 DBG_BCR_BVR_WCR_WVR_EL1(3),
862 DBG_BCR_BVR_WCR_WVR_EL1(4),
863 DBG_BCR_BVR_WCR_WVR_EL1(5),
864 DBG_BCR_BVR_WCR_WVR_EL1(6),
865 DBG_BCR_BVR_WCR_WVR_EL1(7),
866 DBG_BCR_BVR_WCR_WVR_EL1(8),
867 DBG_BCR_BVR_WCR_WVR_EL1(9),
868 DBG_BCR_BVR_WCR_WVR_EL1(10),
869 DBG_BCR_BVR_WCR_WVR_EL1(11),
870 DBG_BCR_BVR_WCR_WVR_EL1(12),
871 DBG_BCR_BVR_WCR_WVR_EL1(13),
872 DBG_BCR_BVR_WCR_WVR_EL1(14),
873 DBG_BCR_BVR_WCR_WVR_EL1(15),
876 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
879 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
882 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
885 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
888 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
890 /* DBGCLAIMSET_EL1 */
891 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
893 /* DBGCLAIMCLR_EL1 */
894 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
896 /* DBGAUTHSTATUS_EL1 */
897 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
898 trap_dbgauthstatus_el1 },
901 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
904 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
906 /* DBGDTR[TR]X_EL0 */
907 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
911 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
912 NULL, reset_val, DBGVCR32_EL2, 0 },
915 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
916 NULL, reset_mpidr, MPIDR_EL1 },
918 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
919 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
921 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
922 NULL, reset_val, CPACR_EL1, 0 },
924 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
925 access_vm_reg, reset_unknown, TTBR0_EL1 },
927 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
928 access_vm_reg, reset_unknown, TTBR1_EL1 },
930 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
931 access_vm_reg, reset_val, TCR_EL1, 0 },
934 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
935 access_vm_reg, reset_unknown, AFSR0_EL1 },
937 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
938 access_vm_reg, reset_unknown, AFSR1_EL1 },
940 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
941 access_vm_reg, reset_unknown, ESR_EL1 },
943 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
944 access_vm_reg, reset_unknown, FAR_EL1 },
946 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
947 NULL, reset_unknown, PAR_EL1 },
950 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
951 access_pminten, reset_unknown, PMINTENSET_EL1 },
953 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
954 access_pminten, NULL, PMINTENSET_EL1 },
957 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
958 access_vm_reg, reset_unknown, MAIR_EL1 },
960 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
961 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
964 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
965 NULL, reset_val, VBAR_EL1, 0 },
968 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
971 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
975 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
976 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
978 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
979 NULL, reset_unknown, TPIDR_EL1 },
982 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
983 NULL, reset_val, CNTKCTL_EL1, 0},
986 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
987 NULL, reset_unknown, CSSELR_EL1 },
990 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
991 access_pmcr, reset_pmcr, },
993 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
994 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
996 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
997 access_pmcnten, NULL, PMCNTENSET_EL0 },
999 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
1000 access_pmovs, NULL, PMOVSSET_EL0 },
1002 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
1003 access_pmswinc, reset_unknown, PMSWINC_EL0 },
1005 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
1006 access_pmselr, reset_unknown, PMSELR_EL0 },
1008 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
1011 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1014 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1015 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1016 /* PMXEVTYPER_EL0 */
1017 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1018 access_pmu_evtyper },
1020 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1021 access_pmu_evcntr },
1023 * This register resets as unknown in 64bit mode while it resets as zero
1024 * in 32bit mode. Here we choose to reset it as zero for consistency.
1026 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1027 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1029 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1030 access_pmovs, reset_unknown, PMOVSSET_EL0 },
1033 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1034 NULL, reset_unknown, TPIDR_EL0 },
1036 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1037 NULL, reset_unknown, TPIDRRO_EL0 },
1040 PMU_PMEVCNTR_EL0(0),
1041 PMU_PMEVCNTR_EL0(1),
1042 PMU_PMEVCNTR_EL0(2),
1043 PMU_PMEVCNTR_EL0(3),
1044 PMU_PMEVCNTR_EL0(4),
1045 PMU_PMEVCNTR_EL0(5),
1046 PMU_PMEVCNTR_EL0(6),
1047 PMU_PMEVCNTR_EL0(7),
1048 PMU_PMEVCNTR_EL0(8),
1049 PMU_PMEVCNTR_EL0(9),
1050 PMU_PMEVCNTR_EL0(10),
1051 PMU_PMEVCNTR_EL0(11),
1052 PMU_PMEVCNTR_EL0(12),
1053 PMU_PMEVCNTR_EL0(13),
1054 PMU_PMEVCNTR_EL0(14),
1055 PMU_PMEVCNTR_EL0(15),
1056 PMU_PMEVCNTR_EL0(16),
1057 PMU_PMEVCNTR_EL0(17),
1058 PMU_PMEVCNTR_EL0(18),
1059 PMU_PMEVCNTR_EL0(19),
1060 PMU_PMEVCNTR_EL0(20),
1061 PMU_PMEVCNTR_EL0(21),
1062 PMU_PMEVCNTR_EL0(22),
1063 PMU_PMEVCNTR_EL0(23),
1064 PMU_PMEVCNTR_EL0(24),
1065 PMU_PMEVCNTR_EL0(25),
1066 PMU_PMEVCNTR_EL0(26),
1067 PMU_PMEVCNTR_EL0(27),
1068 PMU_PMEVCNTR_EL0(28),
1069 PMU_PMEVCNTR_EL0(29),
1070 PMU_PMEVCNTR_EL0(30),
1071 /* PMEVTYPERn_EL0 */
1072 PMU_PMEVTYPER_EL0(0),
1073 PMU_PMEVTYPER_EL0(1),
1074 PMU_PMEVTYPER_EL0(2),
1075 PMU_PMEVTYPER_EL0(3),
1076 PMU_PMEVTYPER_EL0(4),
1077 PMU_PMEVTYPER_EL0(5),
1078 PMU_PMEVTYPER_EL0(6),
1079 PMU_PMEVTYPER_EL0(7),
1080 PMU_PMEVTYPER_EL0(8),
1081 PMU_PMEVTYPER_EL0(9),
1082 PMU_PMEVTYPER_EL0(10),
1083 PMU_PMEVTYPER_EL0(11),
1084 PMU_PMEVTYPER_EL0(12),
1085 PMU_PMEVTYPER_EL0(13),
1086 PMU_PMEVTYPER_EL0(14),
1087 PMU_PMEVTYPER_EL0(15),
1088 PMU_PMEVTYPER_EL0(16),
1089 PMU_PMEVTYPER_EL0(17),
1090 PMU_PMEVTYPER_EL0(18),
1091 PMU_PMEVTYPER_EL0(19),
1092 PMU_PMEVTYPER_EL0(20),
1093 PMU_PMEVTYPER_EL0(21),
1094 PMU_PMEVTYPER_EL0(22),
1095 PMU_PMEVTYPER_EL0(23),
1096 PMU_PMEVTYPER_EL0(24),
1097 PMU_PMEVTYPER_EL0(25),
1098 PMU_PMEVTYPER_EL0(26),
1099 PMU_PMEVTYPER_EL0(27),
1100 PMU_PMEVTYPER_EL0(28),
1101 PMU_PMEVTYPER_EL0(29),
1102 PMU_PMEVTYPER_EL0(30),
1104 * This register resets as unknown in 64bit mode while it resets as zero
1105 * in 32bit mode. Here we choose to reset it as zero for consistency.
1107 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1108 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1111 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1112 NULL, reset_unknown, DACR32_EL2 },
1114 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1115 NULL, reset_unknown, IFSR32_EL2 },
1117 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1118 NULL, reset_val, FPEXC32_EL2, 0x70 },
1121 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1122 struct sys_reg_params *p,
1123 const struct sys_reg_desc *r)
1126 return ignore_write(vcpu, p);
1128 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1129 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1130 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1132 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1133 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1134 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1135 | (6 << 16) | (el3 << 14) | (el3 << 12));
1140 static bool trap_debug32(struct kvm_vcpu *vcpu,
1141 struct sys_reg_params *p,
1142 const struct sys_reg_desc *r)
1145 vcpu_cp14(vcpu, r->reg) = p->regval;
1146 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1148 p->regval = vcpu_cp14(vcpu, r->reg);
1154 /* AArch32 debug register mappings
1156 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1157 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1159 * All control registers and watchpoint value registers are mapped to
1160 * the lower 32 bits of their AArch64 equivalents. We share the trap
1161 * handlers with the above AArch64 code which checks what mode the
1165 static bool trap_xvr(struct kvm_vcpu *vcpu,
1166 struct sys_reg_params *p,
1167 const struct sys_reg_desc *rd)
1169 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1174 val &= 0xffffffffUL;
1175 val |= p->regval << 32;
1178 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1180 p->regval = *dbg_reg >> 32;
1183 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1188 #define DBG_BCR_BVR_WCR_WVR(n) \
1190 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1192 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1194 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1196 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1198 #define DBGBXVR(n) \
1199 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1202 * Trapped cp14 registers. We generally ignore most of the external
1203 * debug, on the principle that they don't really make sense to a
1204 * guest. Revisit this one day, would this principle change.
1206 static const struct sys_reg_desc cp14_regs[] = {
1208 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1210 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1212 DBG_BCR_BVR_WCR_WVR(0),
1214 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1215 DBG_BCR_BVR_WCR_WVR(1),
1217 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1219 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1220 DBG_BCR_BVR_WCR_WVR(2),
1221 /* DBGDTR[RT]Xint */
1222 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1223 /* DBGDTR[RT]Xext */
1224 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1225 DBG_BCR_BVR_WCR_WVR(3),
1226 DBG_BCR_BVR_WCR_WVR(4),
1227 DBG_BCR_BVR_WCR_WVR(5),
1229 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1231 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1232 DBG_BCR_BVR_WCR_WVR(6),
1234 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1235 DBG_BCR_BVR_WCR_WVR(7),
1236 DBG_BCR_BVR_WCR_WVR(8),
1237 DBG_BCR_BVR_WCR_WVR(9),
1238 DBG_BCR_BVR_WCR_WVR(10),
1239 DBG_BCR_BVR_WCR_WVR(11),
1240 DBG_BCR_BVR_WCR_WVR(12),
1241 DBG_BCR_BVR_WCR_WVR(13),
1242 DBG_BCR_BVR_WCR_WVR(14),
1243 DBG_BCR_BVR_WCR_WVR(15),
1245 /* DBGDRAR (32bit) */
1246 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1250 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1253 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1257 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1260 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1273 /* DBGDSAR (32bit) */
1274 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1277 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1279 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1281 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1283 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1285 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1287 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1290 /* Trapped cp14 64bit registers */
1291 static const struct sys_reg_desc cp14_64_regs[] = {
1292 /* DBGDRAR (64bit) */
1293 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1295 /* DBGDSAR (64bit) */
1296 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1299 /* Macro to expand the PMEVCNTRn register */
1300 #define PMU_PMEVCNTR(n) \
1302 { Op1(0), CRn(0b1110), \
1303 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1306 /* Macro to expand the PMEVTYPERn register */
1307 #define PMU_PMEVTYPER(n) \
1309 { Op1(0), CRn(0b1110), \
1310 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1311 access_pmu_evtyper }
1314 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1315 * depending on the way they are accessed (as a 32bit or a 64bit
1318 static const struct sys_reg_desc cp15_regs[] = {
1319 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1321 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1322 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1323 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1324 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1325 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1326 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1327 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1328 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1329 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1330 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1331 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1334 * DC{C,I,CI}SW operations:
1336 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1337 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1338 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1341 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1342 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1343 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1344 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1345 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1346 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1347 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1348 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1349 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1350 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1351 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1352 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1353 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1354 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1355 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1357 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1358 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1359 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1360 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1363 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
1365 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1432 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1435 static const struct sys_reg_desc cp15_64_regs[] = {
1436 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1437 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1438 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1439 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1442 /* Target specific emulation tables */
1443 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1445 void kvm_register_target_sys_reg_table(unsigned int target,
1446 struct kvm_sys_reg_target_table *table)
1448 target_tables[target] = table;
1451 /* Get specific register table for this target. */
1452 static const struct sys_reg_desc *get_target_table(unsigned target,
1456 struct kvm_sys_reg_target_table *table;
1458 table = target_tables[target];
1460 *num = table->table64.num;
1461 return table->table64.table;
1463 *num = table->table32.num;
1464 return table->table32.table;
1468 #define reg_to_match_value(x) \
1470 unsigned long val; \
1471 val = (x)->Op0 << 14; \
1472 val |= (x)->Op1 << 11; \
1473 val |= (x)->CRn << 7; \
1474 val |= (x)->CRm << 3; \
1479 static int match_sys_reg(const void *key, const void *elt)
1481 const unsigned long pval = (unsigned long)key;
1482 const struct sys_reg_desc *r = elt;
1484 return pval - reg_to_match_value(r);
1487 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1488 const struct sys_reg_desc table[],
1491 unsigned long pval = reg_to_match_value(params);
1493 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1496 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1498 kvm_inject_undefined(vcpu);
1503 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1504 * call the corresponding trap handler.
1506 * @params: pointer to the descriptor of the access
1507 * @table: array of trap descriptors
1508 * @num: size of the trap descriptor array
1510 * Return 0 if the access has been handled, and -1 if not.
1512 static int emulate_cp(struct kvm_vcpu *vcpu,
1513 struct sys_reg_params *params,
1514 const struct sys_reg_desc *table,
1517 const struct sys_reg_desc *r;
1520 return -1; /* Not handled */
1522 r = find_reg(params, table, num);
1526 * Not having an accessor means that we have
1527 * configured a trap that we don't know how to
1528 * handle. This certainly qualifies as a gross bug
1529 * that should be fixed right away.
1533 if (likely(r->access(vcpu, params, r))) {
1534 /* Skip instruction, since it was emulated */
1535 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1545 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1546 struct sys_reg_params *params)
1548 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1552 case ESR_ELx_EC_CP15_32:
1553 case ESR_ELx_EC_CP15_64:
1556 case ESR_ELx_EC_CP14_MR:
1557 case ESR_ELx_EC_CP14_64:
1564 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1565 cp, *vcpu_pc(vcpu));
1566 print_sys_reg_instr(params);
1567 kvm_inject_undefined(vcpu);
1571 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1572 * @vcpu: The VCPU pointer
1573 * @run: The kvm_run struct
1575 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1576 const struct sys_reg_desc *global,
1578 const struct sys_reg_desc *target_specific,
1581 struct sys_reg_params params;
1582 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1583 int Rt = (hsr >> 5) & 0xf;
1584 int Rt2 = (hsr >> 10) & 0xf;
1586 params.is_aarch32 = true;
1587 params.is_32bit = false;
1588 params.CRm = (hsr >> 1) & 0xf;
1589 params.is_write = ((hsr & 1) == 0);
1592 params.Op1 = (hsr >> 16) & 0xf;
1597 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1598 * backends between AArch32 and AArch64, we get away with it.
1600 if (params.is_write) {
1601 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1602 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1605 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific))
1607 if (!emulate_cp(vcpu, ¶ms, global, nr_global))
1610 unhandled_cp_access(vcpu, ¶ms);
1613 /* Split up the value between registers for the read side */
1614 if (!params.is_write) {
1615 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1616 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1623 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1624 * @vcpu: The VCPU pointer
1625 * @run: The kvm_run struct
1627 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1628 const struct sys_reg_desc *global,
1630 const struct sys_reg_desc *target_specific,
1633 struct sys_reg_params params;
1634 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1635 int Rt = (hsr >> 5) & 0xf;
1637 params.is_aarch32 = true;
1638 params.is_32bit = true;
1639 params.CRm = (hsr >> 1) & 0xf;
1640 params.regval = vcpu_get_reg(vcpu, Rt);
1641 params.is_write = ((hsr & 1) == 0);
1642 params.CRn = (hsr >> 10) & 0xf;
1644 params.Op1 = (hsr >> 14) & 0x7;
1645 params.Op2 = (hsr >> 17) & 0x7;
1647 if (!emulate_cp(vcpu, ¶ms, target_specific, nr_specific) ||
1648 !emulate_cp(vcpu, ¶ms, global, nr_global)) {
1649 if (!params.is_write)
1650 vcpu_set_reg(vcpu, Rt, params.regval);
1654 unhandled_cp_access(vcpu, ¶ms);
1658 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1660 const struct sys_reg_desc *target_specific;
1663 target_specific = get_target_table(vcpu->arch.target, false, &num);
1664 return kvm_handle_cp_64(vcpu,
1665 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1666 target_specific, num);
1669 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1671 const struct sys_reg_desc *target_specific;
1674 target_specific = get_target_table(vcpu->arch.target, false, &num);
1675 return kvm_handle_cp_32(vcpu,
1676 cp15_regs, ARRAY_SIZE(cp15_regs),
1677 target_specific, num);
1680 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1682 return kvm_handle_cp_64(vcpu,
1683 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1687 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1689 return kvm_handle_cp_32(vcpu,
1690 cp14_regs, ARRAY_SIZE(cp14_regs),
1694 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1695 struct sys_reg_params *params)
1698 const struct sys_reg_desc *table, *r;
1700 table = get_target_table(vcpu->arch.target, true, &num);
1702 /* Search target-specific then generic table. */
1703 r = find_reg(params, table, num);
1705 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1709 * Not having an accessor means that we have
1710 * configured a trap that we don't know how to
1711 * handle. This certainly qualifies as a gross bug
1712 * that should be fixed right away.
1716 if (likely(r->access(vcpu, params, r))) {
1717 /* Skip instruction, since it was emulated */
1718 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1721 /* If access function fails, it should complain. */
1723 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1725 print_sys_reg_instr(params);
1727 kvm_inject_undefined(vcpu);
1731 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1732 const struct sys_reg_desc *table, size_t num)
1736 for (i = 0; i < num; i++)
1738 table[i].reset(vcpu, &table[i]);
1742 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1743 * @vcpu: The VCPU pointer
1744 * @run: The kvm_run struct
1746 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1748 struct sys_reg_params params;
1749 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1750 int Rt = (esr >> 5) & 0x1f;
1753 trace_kvm_handle_sys_reg(esr);
1755 params.is_aarch32 = false;
1756 params.is_32bit = false;
1757 params.Op0 = (esr >> 20) & 3;
1758 params.Op1 = (esr >> 14) & 0x7;
1759 params.CRn = (esr >> 10) & 0xf;
1760 params.CRm = (esr >> 1) & 0xf;
1761 params.Op2 = (esr >> 17) & 0x7;
1762 params.regval = vcpu_get_reg(vcpu, Rt);
1763 params.is_write = !(esr & 1);
1765 ret = emulate_sys_reg(vcpu, ¶ms);
1767 if (!params.is_write)
1768 vcpu_set_reg(vcpu, Rt, params.regval);
1772 /******************************************************************************
1774 *****************************************************************************/
1776 static bool index_to_params(u64 id, struct sys_reg_params *params)
1778 switch (id & KVM_REG_SIZE_MASK) {
1779 case KVM_REG_SIZE_U64:
1780 /* Any unused index bits means it's not valid. */
1781 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1782 | KVM_REG_ARM_COPROC_MASK
1783 | KVM_REG_ARM64_SYSREG_OP0_MASK
1784 | KVM_REG_ARM64_SYSREG_OP1_MASK
1785 | KVM_REG_ARM64_SYSREG_CRN_MASK
1786 | KVM_REG_ARM64_SYSREG_CRM_MASK
1787 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1789 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1790 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1791 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1792 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1793 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1794 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1795 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1796 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1797 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1798 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1805 /* Decode an index value, and find the sys_reg_desc entry. */
1806 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1810 const struct sys_reg_desc *table, *r;
1811 struct sys_reg_params params;
1813 /* We only do sys_reg for now. */
1814 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1817 if (!index_to_params(id, ¶ms))
1820 table = get_target_table(vcpu->arch.target, true, &num);
1821 r = find_reg(¶ms, table, num);
1823 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1825 /* Not saved in the sys_reg array? */
1833 * These are the invariant sys_reg registers: we let the guest see the
1834 * host versions of these, so they're part of the guest state.
1836 * A future CPU may provide a mechanism to present different values to
1837 * the guest, or a future kvm may trap them.
1840 #define FUNCTION_INVARIANT(reg) \
1841 static void get_##reg(struct kvm_vcpu *v, \
1842 const struct sys_reg_desc *r) \
1846 asm volatile("mrs %0, " __stringify(reg) "\n" \
1848 ((struct sys_reg_desc *)r)->val = val; \
1851 FUNCTION_INVARIANT(midr_el1)
1852 FUNCTION_INVARIANT(ctr_el0)
1853 FUNCTION_INVARIANT(revidr_el1)
1854 FUNCTION_INVARIANT(id_pfr0_el1)
1855 FUNCTION_INVARIANT(id_pfr1_el1)
1856 FUNCTION_INVARIANT(id_dfr0_el1)
1857 FUNCTION_INVARIANT(id_afr0_el1)
1858 FUNCTION_INVARIANT(id_mmfr0_el1)
1859 FUNCTION_INVARIANT(id_mmfr1_el1)
1860 FUNCTION_INVARIANT(id_mmfr2_el1)
1861 FUNCTION_INVARIANT(id_mmfr3_el1)
1862 FUNCTION_INVARIANT(id_isar0_el1)
1863 FUNCTION_INVARIANT(id_isar1_el1)
1864 FUNCTION_INVARIANT(id_isar2_el1)
1865 FUNCTION_INVARIANT(id_isar3_el1)
1866 FUNCTION_INVARIANT(id_isar4_el1)
1867 FUNCTION_INVARIANT(id_isar5_el1)
1868 FUNCTION_INVARIANT(clidr_el1)
1869 FUNCTION_INVARIANT(aidr_el1)
1871 /* ->val is filled in by kvm_sys_reg_table_init() */
1872 static struct sys_reg_desc invariant_sys_regs[] = {
1873 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1874 NULL, get_midr_el1 },
1875 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1876 NULL, get_revidr_el1 },
1877 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1878 NULL, get_id_pfr0_el1 },
1879 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1880 NULL, get_id_pfr1_el1 },
1881 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1882 NULL, get_id_dfr0_el1 },
1883 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1884 NULL, get_id_afr0_el1 },
1885 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1886 NULL, get_id_mmfr0_el1 },
1887 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1888 NULL, get_id_mmfr1_el1 },
1889 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1890 NULL, get_id_mmfr2_el1 },
1891 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1892 NULL, get_id_mmfr3_el1 },
1893 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1894 NULL, get_id_isar0_el1 },
1895 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1896 NULL, get_id_isar1_el1 },
1897 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1898 NULL, get_id_isar2_el1 },
1899 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1900 NULL, get_id_isar3_el1 },
1901 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1902 NULL, get_id_isar4_el1 },
1903 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1904 NULL, get_id_isar5_el1 },
1905 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1906 NULL, get_clidr_el1 },
1907 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1908 NULL, get_aidr_el1 },
1909 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1910 NULL, get_ctr_el0 },
1913 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1915 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1920 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1922 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1927 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1929 struct sys_reg_params params;
1930 const struct sys_reg_desc *r;
1932 if (!index_to_params(id, ¶ms))
1935 r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1939 return reg_to_user(uaddr, &r->val, id);
1942 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1944 struct sys_reg_params params;
1945 const struct sys_reg_desc *r;
1947 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1949 if (!index_to_params(id, ¶ms))
1951 r = find_reg(¶ms, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1955 err = reg_from_user(&val, uaddr, id);
1959 /* This is what we mean by invariant: you can't change it. */
1966 static bool is_valid_cache(u32 val)
1970 if (val >= CSSELR_MAX)
1973 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1975 ctype = (cache_levels >> (level * 3)) & 7;
1978 case 0: /* No cache */
1980 case 1: /* Instruction cache only */
1982 case 2: /* Data cache only */
1983 case 4: /* Unified cache */
1985 case 3: /* Separate instruction and data caches */
1987 default: /* Reserved: we can't know instruction or data. */
1992 static int demux_c15_get(u64 id, void __user *uaddr)
1995 u32 __user *uval = uaddr;
1997 /* Fail if we have unknown bits set. */
1998 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1999 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2002 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2003 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2004 if (KVM_REG_SIZE(id) != 4)
2006 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2007 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2008 if (!is_valid_cache(val))
2011 return put_user(get_ccsidr(val), uval);
2017 static int demux_c15_set(u64 id, void __user *uaddr)
2020 u32 __user *uval = uaddr;
2022 /* Fail if we have unknown bits set. */
2023 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2024 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2027 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2028 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2029 if (KVM_REG_SIZE(id) != 4)
2031 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2032 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2033 if (!is_valid_cache(val))
2036 if (get_user(newval, uval))
2039 /* This is also invariant: you can't change it. */
2040 if (newval != get_ccsidr(val))
2048 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2050 const struct sys_reg_desc *r;
2051 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2053 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2054 return demux_c15_get(reg->id, uaddr);
2056 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2059 r = index_to_sys_reg_desc(vcpu, reg->id);
2061 return get_invariant_sys_reg(reg->id, uaddr);
2064 return (r->get_user)(vcpu, r, reg, uaddr);
2066 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2069 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2071 const struct sys_reg_desc *r;
2072 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2074 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2075 return demux_c15_set(reg->id, uaddr);
2077 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2080 r = index_to_sys_reg_desc(vcpu, reg->id);
2082 return set_invariant_sys_reg(reg->id, uaddr);
2085 return (r->set_user)(vcpu, r, reg, uaddr);
2087 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2090 static unsigned int num_demux_regs(void)
2092 unsigned int i, count = 0;
2094 for (i = 0; i < CSSELR_MAX; i++)
2095 if (is_valid_cache(i))
2101 static int write_demux_regids(u64 __user *uindices)
2103 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2106 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2107 for (i = 0; i < CSSELR_MAX; i++) {
2108 if (!is_valid_cache(i))
2110 if (put_user(val | i, uindices))
2117 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2119 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2120 KVM_REG_ARM64_SYSREG |
2121 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2122 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2123 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2124 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2125 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2128 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2133 if (put_user(sys_reg_to_index(reg), *uind))
2140 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2141 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2143 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2144 unsigned int total = 0;
2147 /* We check for duplicates here, to allow arch-specific overrides. */
2148 i1 = get_target_table(vcpu->arch.target, true, &num);
2151 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2153 BUG_ON(i1 == end1 || i2 == end2);
2155 /* Walk carefully, as both tables may refer to the same register. */
2157 int cmp = cmp_sys_reg(i1, i2);
2158 /* target-specific overrides generic entry. */
2160 /* Ignore registers we trap but don't save. */
2162 if (!copy_reg_to_user(i1, &uind))
2167 /* Ignore registers we trap but don't save. */
2169 if (!copy_reg_to_user(i2, &uind))
2175 if (cmp <= 0 && ++i1 == end1)
2177 if (cmp >= 0 && ++i2 == end2)
2183 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2185 return ARRAY_SIZE(invariant_sys_regs)
2187 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2190 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2195 /* Then give them all the invariant registers' indices. */
2196 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2197 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2202 err = walk_sys_regs(vcpu, uindices);
2207 return write_demux_regids(uindices);
2210 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2214 for (i = 1; i < n; i++) {
2215 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2216 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2224 void kvm_sys_reg_table_init(void)
2227 struct sys_reg_desc clidr;
2229 /* Make sure tables are unique and in order. */
2230 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2231 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2232 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2233 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2234 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2235 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2237 /* We abuse the reset function to overwrite the table itself. */
2238 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2239 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2242 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2244 * If software reads the Cache Type fields from Ctype1
2245 * upwards, once it has seen a value of 0b000, no caches
2246 * exist at further-out levels of the hierarchy. So, for
2247 * example, if Ctype3 is the first Cache Type field with a
2248 * value of 0b000, the values of Ctype4 to Ctype7 must be
2251 get_clidr_el1(NULL, &clidr); /* Ugly... */
2252 cache_levels = clidr.val;
2253 for (i = 0; i < 7; i++)
2254 if (((cache_levels >> (i*3)) & 7) == 0)
2256 /* Clear all higher bits. */
2257 cache_levels &= (1 << (i*3))-1;
2261 * kvm_reset_sys_regs - sets system registers to reset value
2262 * @vcpu: The VCPU pointer
2264 * This function finds the right table above and sets the registers on the
2265 * virtual CPU struct to their architecturally defined reset values.
2267 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2270 const struct sys_reg_desc *table;
2272 /* Catch someone adding a register without putting in reset entry. */
2273 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2275 /* Generic chip reset first (so target could override). */
2276 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2278 table = get_target_table(vcpu->arch.target, true, &num);
2279 reset_sys_reg_descs(vcpu, table, num);
2281 for (num = 1; num < NR_SYS_REGS; num++)
2282 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2283 panic("Didn't reset vcpu_sys_reg(%zi)", num);