Merge 6.4-rc5 into usb-next
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31
32 #include <trace/events/kvm.h>
33
34 #include "sys_regs.h"
35
36 #include "trace.h"
37
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47                                  struct sys_reg_params *params,
48                                  const struct sys_reg_desc *r)
49 {
50         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51         print_sys_reg_instr(params);
52         kvm_inject_undefined(vcpu);
53         return false;
54 }
55
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57                                struct sys_reg_params *params,
58                                const struct sys_reg_desc *r)
59 {
60         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61         print_sys_reg_instr(params);
62         kvm_inject_undefined(vcpu);
63         return false;
64 }
65
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68         u64 val = 0x8badf00d8badf00d;
69
70         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
71             __vcpu_read_sys_reg_from_cpu(reg, &val))
72                 return val;
73
74         return __vcpu_sys_reg(vcpu, reg);
75 }
76
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
80             __vcpu_write_sys_reg_to_cpu(val, reg))
81                 return;
82
83         __vcpu_sys_reg(vcpu, reg) = val;
84 }
85
86 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
87 #define CSSELR_MAX 14
88
89 /*
90  * Returns the minimum line size for the selected cache, expressed as
91  * Log2(bytes).
92  */
93 static u8 get_min_cache_line_size(bool icache)
94 {
95         u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
96         u8 field;
97
98         if (icache)
99                 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
100         else
101                 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
102
103         /*
104          * Cache line size is represented as Log2(words) in CTR_EL0.
105          * Log2(bytes) can be derived with the following:
106          *
107          * Log2(words) + 2 = Log2(bytes / 4) + 2
108          *                 = Log2(bytes) - 2 + 2
109          *                 = Log2(bytes)
110          */
111         return field + 2;
112 }
113
114 /* Which cache CCSIDR represents depends on CSSELR value. */
115 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
116 {
117         u8 line_size;
118
119         if (vcpu->arch.ccsidr)
120                 return vcpu->arch.ccsidr[csselr];
121
122         line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
123
124         /*
125          * Fabricate a CCSIDR value as the overriding value does not exist.
126          * The real CCSIDR value will not be used as it can vary by the
127          * physical CPU which the vcpu currently resides in.
128          *
129          * The line size is determined with get_min_cache_line_size(), which
130          * should be valid for all CPUs even if they have different cache
131          * configuration.
132          *
133          * The associativity bits are cleared, meaning the geometry of all data
134          * and unified caches (which are guaranteed to be PIPT and thus
135          * non-aliasing) are 1 set and 1 way.
136          * Guests should not be doing cache operations by set/way at all, and
137          * for this reason, we trap them and attempt to infer the intent, so
138          * that we can flush the entire guest's address space at the appropriate
139          * time. The exposed geometry minimizes the number of the traps.
140          * [If guests should attempt to infer aliasing properties from the
141          * geometry (which is not permitted by the architecture), they would
142          * only do so for virtually indexed caches.]
143          *
144          * We don't check if the cache level exists as it is allowed to return
145          * an UNKNOWN value if not.
146          */
147         return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
148 }
149
150 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
151 {
152         u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
153         u32 *ccsidr = vcpu->arch.ccsidr;
154         u32 i;
155
156         if ((val & CCSIDR_EL1_RES0) ||
157             line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
158                 return -EINVAL;
159
160         if (!ccsidr) {
161                 if (val == get_ccsidr(vcpu, csselr))
162                         return 0;
163
164                 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
165                 if (!ccsidr)
166                         return -ENOMEM;
167
168                 for (i = 0; i < CSSELR_MAX; i++)
169                         ccsidr[i] = get_ccsidr(vcpu, i);
170
171                 vcpu->arch.ccsidr = ccsidr;
172         }
173
174         ccsidr[csselr] = val;
175
176         return 0;
177 }
178
179 static bool access_rw(struct kvm_vcpu *vcpu,
180                       struct sys_reg_params *p,
181                       const struct sys_reg_desc *r)
182 {
183         if (p->is_write)
184                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
185         else
186                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
187
188         return true;
189 }
190
191 /*
192  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
193  */
194 static bool access_dcsw(struct kvm_vcpu *vcpu,
195                         struct sys_reg_params *p,
196                         const struct sys_reg_desc *r)
197 {
198         if (!p->is_write)
199                 return read_from_write_only(vcpu, p, r);
200
201         /*
202          * Only track S/W ops if we don't have FWB. It still indicates
203          * that the guest is a bit broken (S/W operations should only
204          * be done by firmware, knowing that there is only a single
205          * CPU left in the system, and certainly not from non-secure
206          * software).
207          */
208         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
209                 kvm_set_way_flush(vcpu);
210
211         return true;
212 }
213
214 static bool access_dcgsw(struct kvm_vcpu *vcpu,
215                          struct sys_reg_params *p,
216                          const struct sys_reg_desc *r)
217 {
218         if (!kvm_has_mte(vcpu->kvm)) {
219                 kvm_inject_undefined(vcpu);
220                 return false;
221         }
222
223         /* Treat MTE S/W ops as we treat the classic ones: with contempt */
224         return access_dcsw(vcpu, p, r);
225 }
226
227 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
228 {
229         switch (r->aarch32_map) {
230         case AA32_LO:
231                 *mask = GENMASK_ULL(31, 0);
232                 *shift = 0;
233                 break;
234         case AA32_HI:
235                 *mask = GENMASK_ULL(63, 32);
236                 *shift = 32;
237                 break;
238         default:
239                 *mask = GENMASK_ULL(63, 0);
240                 *shift = 0;
241                 break;
242         }
243 }
244
245 /*
246  * Generic accessor for VM registers. Only called as long as HCR_TVM
247  * is set. If the guest enables the MMU, we stop trapping the VM
248  * sys_regs and leave it in complete control of the caches.
249  */
250 static bool access_vm_reg(struct kvm_vcpu *vcpu,
251                           struct sys_reg_params *p,
252                           const struct sys_reg_desc *r)
253 {
254         bool was_enabled = vcpu_has_cache_enabled(vcpu);
255         u64 val, mask, shift;
256
257         BUG_ON(!p->is_write);
258
259         get_access_mask(r, &mask, &shift);
260
261         if (~mask) {
262                 val = vcpu_read_sys_reg(vcpu, r->reg);
263                 val &= ~mask;
264         } else {
265                 val = 0;
266         }
267
268         val |= (p->regval & (mask >> shift)) << shift;
269         vcpu_write_sys_reg(vcpu, val, r->reg);
270
271         kvm_toggle_cache(vcpu, was_enabled);
272         return true;
273 }
274
275 static bool access_actlr(struct kvm_vcpu *vcpu,
276                          struct sys_reg_params *p,
277                          const struct sys_reg_desc *r)
278 {
279         u64 mask, shift;
280
281         if (p->is_write)
282                 return ignore_write(vcpu, p);
283
284         get_access_mask(r, &mask, &shift);
285         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
286
287         return true;
288 }
289
290 /*
291  * Trap handler for the GICv3 SGI generation system register.
292  * Forward the request to the VGIC emulation.
293  * The cp15_64 code makes sure this automatically works
294  * for both AArch64 and AArch32 accesses.
295  */
296 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
297                            struct sys_reg_params *p,
298                            const struct sys_reg_desc *r)
299 {
300         bool g1;
301
302         if (!p->is_write)
303                 return read_from_write_only(vcpu, p, r);
304
305         /*
306          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
307          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
308          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
309          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
310          * group.
311          */
312         if (p->Op0 == 0) {              /* AArch32 */
313                 switch (p->Op1) {
314                 default:                /* Keep GCC quiet */
315                 case 0:                 /* ICC_SGI1R */
316                         g1 = true;
317                         break;
318                 case 1:                 /* ICC_ASGI1R */
319                 case 2:                 /* ICC_SGI0R */
320                         g1 = false;
321                         break;
322                 }
323         } else {                        /* AArch64 */
324                 switch (p->Op2) {
325                 default:                /* Keep GCC quiet */
326                 case 5:                 /* ICC_SGI1R_EL1 */
327                         g1 = true;
328                         break;
329                 case 6:                 /* ICC_ASGI1R_EL1 */
330                 case 7:                 /* ICC_SGI0R_EL1 */
331                         g1 = false;
332                         break;
333                 }
334         }
335
336         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
337
338         return true;
339 }
340
341 static bool access_gic_sre(struct kvm_vcpu *vcpu,
342                            struct sys_reg_params *p,
343                            const struct sys_reg_desc *r)
344 {
345         if (p->is_write)
346                 return ignore_write(vcpu, p);
347
348         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
349         return true;
350 }
351
352 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
353                         struct sys_reg_params *p,
354                         const struct sys_reg_desc *r)
355 {
356         if (p->is_write)
357                 return ignore_write(vcpu, p);
358         else
359                 return read_zero(vcpu, p);
360 }
361
362 static bool trap_undef(struct kvm_vcpu *vcpu,
363                        struct sys_reg_params *p,
364                        const struct sys_reg_desc *r)
365 {
366         kvm_inject_undefined(vcpu);
367         return false;
368 }
369
370 /*
371  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
372  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
373  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
374  * treat it separately.
375  */
376 static bool trap_loregion(struct kvm_vcpu *vcpu,
377                           struct sys_reg_params *p,
378                           const struct sys_reg_desc *r)
379 {
380         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
381         u32 sr = reg_to_encoding(r);
382
383         if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
384                 kvm_inject_undefined(vcpu);
385                 return false;
386         }
387
388         if (p->is_write && sr == SYS_LORID_EL1)
389                 return write_to_read_only(vcpu, p, r);
390
391         return trap_raz_wi(vcpu, p, r);
392 }
393
394 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
395                            struct sys_reg_params *p,
396                            const struct sys_reg_desc *r)
397 {
398         u64 oslsr;
399
400         if (!p->is_write)
401                 return read_from_write_only(vcpu, p, r);
402
403         /* Forward the OSLK bit to OSLSR */
404         oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
405         if (p->regval & SYS_OSLAR_OSLK)
406                 oslsr |= SYS_OSLSR_OSLK;
407
408         __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
409         return true;
410 }
411
412 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
413                            struct sys_reg_params *p,
414                            const struct sys_reg_desc *r)
415 {
416         if (p->is_write)
417                 return write_to_read_only(vcpu, p, r);
418
419         p->regval = __vcpu_sys_reg(vcpu, r->reg);
420         return true;
421 }
422
423 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
424                          u64 val)
425 {
426         /*
427          * The only modifiable bit is the OSLK bit. Refuse the write if
428          * userspace attempts to change any other bit in the register.
429          */
430         if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
431                 return -EINVAL;
432
433         __vcpu_sys_reg(vcpu, rd->reg) = val;
434         return 0;
435 }
436
437 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
438                                    struct sys_reg_params *p,
439                                    const struct sys_reg_desc *r)
440 {
441         if (p->is_write) {
442                 return ignore_write(vcpu, p);
443         } else {
444                 p->regval = read_sysreg(dbgauthstatus_el1);
445                 return true;
446         }
447 }
448
449 /*
450  * We want to avoid world-switching all the DBG registers all the
451  * time:
452  *
453  * - If we've touched any debug register, it is likely that we're
454  *   going to touch more of them. It then makes sense to disable the
455  *   traps and start doing the save/restore dance
456  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
457  *   then mandatory to save/restore the registers, as the guest
458  *   depends on them.
459  *
460  * For this, we use a DIRTY bit, indicating the guest has modified the
461  * debug registers, used as follow:
462  *
463  * On guest entry:
464  * - If the dirty bit is set (because we're coming back from trapping),
465  *   disable the traps, save host registers, restore guest registers.
466  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
467  *   set the dirty bit, disable the traps, save host registers,
468  *   restore guest registers.
469  * - Otherwise, enable the traps
470  *
471  * On guest exit:
472  * - If the dirty bit is set, save guest registers, restore host
473  *   registers and clear the dirty bit. This ensure that the host can
474  *   now use the debug registers.
475  */
476 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
477                             struct sys_reg_params *p,
478                             const struct sys_reg_desc *r)
479 {
480         access_rw(vcpu, p, r);
481         if (p->is_write)
482                 vcpu_set_flag(vcpu, DEBUG_DIRTY);
483
484         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
485
486         return true;
487 }
488
489 /*
490  * reg_to_dbg/dbg_to_reg
491  *
492  * A 32 bit write to a debug register leave top bits alone
493  * A 32 bit read from a debug register only returns the bottom bits
494  *
495  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
496  * switches between host and guest values in future.
497  */
498 static void reg_to_dbg(struct kvm_vcpu *vcpu,
499                        struct sys_reg_params *p,
500                        const struct sys_reg_desc *rd,
501                        u64 *dbg_reg)
502 {
503         u64 mask, shift, val;
504
505         get_access_mask(rd, &mask, &shift);
506
507         val = *dbg_reg;
508         val &= ~mask;
509         val |= (p->regval & (mask >> shift)) << shift;
510         *dbg_reg = val;
511
512         vcpu_set_flag(vcpu, DEBUG_DIRTY);
513 }
514
515 static void dbg_to_reg(struct kvm_vcpu *vcpu,
516                        struct sys_reg_params *p,
517                        const struct sys_reg_desc *rd,
518                        u64 *dbg_reg)
519 {
520         u64 mask, shift;
521
522         get_access_mask(rd, &mask, &shift);
523         p->regval = (*dbg_reg & mask) >> shift;
524 }
525
526 static bool trap_bvr(struct kvm_vcpu *vcpu,
527                      struct sys_reg_params *p,
528                      const struct sys_reg_desc *rd)
529 {
530         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
531
532         if (p->is_write)
533                 reg_to_dbg(vcpu, p, rd, dbg_reg);
534         else
535                 dbg_to_reg(vcpu, p, rd, dbg_reg);
536
537         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
538
539         return true;
540 }
541
542 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
543                    u64 val)
544 {
545         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
546         return 0;
547 }
548
549 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
550                    u64 *val)
551 {
552         *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
553         return 0;
554 }
555
556 static void reset_bvr(struct kvm_vcpu *vcpu,
557                       const struct sys_reg_desc *rd)
558 {
559         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
560 }
561
562 static bool trap_bcr(struct kvm_vcpu *vcpu,
563                      struct sys_reg_params *p,
564                      const struct sys_reg_desc *rd)
565 {
566         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
567
568         if (p->is_write)
569                 reg_to_dbg(vcpu, p, rd, dbg_reg);
570         else
571                 dbg_to_reg(vcpu, p, rd, dbg_reg);
572
573         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
574
575         return true;
576 }
577
578 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
579                    u64 val)
580 {
581         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
582         return 0;
583 }
584
585 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
586                    u64 *val)
587 {
588         *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
589         return 0;
590 }
591
592 static void reset_bcr(struct kvm_vcpu *vcpu,
593                       const struct sys_reg_desc *rd)
594 {
595         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
596 }
597
598 static bool trap_wvr(struct kvm_vcpu *vcpu,
599                      struct sys_reg_params *p,
600                      const struct sys_reg_desc *rd)
601 {
602         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
603
604         if (p->is_write)
605                 reg_to_dbg(vcpu, p, rd, dbg_reg);
606         else
607                 dbg_to_reg(vcpu, p, rd, dbg_reg);
608
609         trace_trap_reg(__func__, rd->CRm, p->is_write,
610                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
611
612         return true;
613 }
614
615 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
616                    u64 val)
617 {
618         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
619         return 0;
620 }
621
622 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
623                    u64 *val)
624 {
625         *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
626         return 0;
627 }
628
629 static void reset_wvr(struct kvm_vcpu *vcpu,
630                       const struct sys_reg_desc *rd)
631 {
632         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
633 }
634
635 static bool trap_wcr(struct kvm_vcpu *vcpu,
636                      struct sys_reg_params *p,
637                      const struct sys_reg_desc *rd)
638 {
639         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
640
641         if (p->is_write)
642                 reg_to_dbg(vcpu, p, rd, dbg_reg);
643         else
644                 dbg_to_reg(vcpu, p, rd, dbg_reg);
645
646         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
647
648         return true;
649 }
650
651 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
652                    u64 val)
653 {
654         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
655         return 0;
656 }
657
658 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
659                    u64 *val)
660 {
661         *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
662         return 0;
663 }
664
665 static void reset_wcr(struct kvm_vcpu *vcpu,
666                       const struct sys_reg_desc *rd)
667 {
668         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
669 }
670
671 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
672 {
673         u64 amair = read_sysreg(amair_el1);
674         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
675 }
676
677 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
678 {
679         u64 actlr = read_sysreg(actlr_el1);
680         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
681 }
682
683 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
684 {
685         u64 mpidr;
686
687         /*
688          * Map the vcpu_id into the first three affinity level fields of
689          * the MPIDR. We limit the number of VCPUs in level 0 due to a
690          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
691          * of the GICv3 to be able to address each CPU directly when
692          * sending IPIs.
693          */
694         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
695         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
696         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
697         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
698 }
699
700 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
701                                    const struct sys_reg_desc *r)
702 {
703         if (kvm_vcpu_has_pmu(vcpu))
704                 return 0;
705
706         return REG_HIDDEN;
707 }
708
709 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
710 {
711         u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
712
713         /* No PMU available, any PMU reg may UNDEF... */
714         if (!kvm_arm_support_pmu_v3())
715                 return;
716
717         n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
718         n &= ARMV8_PMU_PMCR_N_MASK;
719         if (n)
720                 mask |= GENMASK(n - 1, 0);
721
722         reset_unknown(vcpu, r);
723         __vcpu_sys_reg(vcpu, r->reg) &= mask;
724 }
725
726 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
727 {
728         reset_unknown(vcpu, r);
729         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
730 }
731
732 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
733 {
734         reset_unknown(vcpu, r);
735         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
736 }
737
738 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
739 {
740         reset_unknown(vcpu, r);
741         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
742 }
743
744 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
745 {
746         u64 pmcr;
747
748         /* No PMU available, PMCR_EL0 may UNDEF... */
749         if (!kvm_arm_support_pmu_v3())
750                 return;
751
752         /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
753         pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
754         if (!kvm_supports_32bit_el0())
755                 pmcr |= ARMV8_PMU_PMCR_LC;
756
757         __vcpu_sys_reg(vcpu, r->reg) = pmcr;
758 }
759
760 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
761 {
762         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
763         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
764
765         if (!enabled)
766                 kvm_inject_undefined(vcpu);
767
768         return !enabled;
769 }
770
771 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
772 {
773         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
774 }
775
776 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
777 {
778         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
779 }
780
781 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
782 {
783         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
784 }
785
786 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
787 {
788         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
789 }
790
791 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
792                         const struct sys_reg_desc *r)
793 {
794         u64 val;
795
796         if (pmu_access_el0_disabled(vcpu))
797                 return false;
798
799         if (p->is_write) {
800                 /*
801                  * Only update writeable bits of PMCR (continuing into
802                  * kvm_pmu_handle_pmcr() as well)
803                  */
804                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
805                 val &= ~ARMV8_PMU_PMCR_MASK;
806                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
807                 if (!kvm_supports_32bit_el0())
808                         val |= ARMV8_PMU_PMCR_LC;
809                 kvm_pmu_handle_pmcr(vcpu, val);
810         } else {
811                 /* PMCR.P & PMCR.C are RAZ */
812                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
813                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
814                 p->regval = val;
815         }
816
817         return true;
818 }
819
820 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
821                           const struct sys_reg_desc *r)
822 {
823         if (pmu_access_event_counter_el0_disabled(vcpu))
824                 return false;
825
826         if (p->is_write)
827                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
828         else
829                 /* return PMSELR.SEL field */
830                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
831                             & ARMV8_PMU_COUNTER_MASK;
832
833         return true;
834 }
835
836 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
837                           const struct sys_reg_desc *r)
838 {
839         u64 pmceid, mask, shift;
840
841         BUG_ON(p->is_write);
842
843         if (pmu_access_el0_disabled(vcpu))
844                 return false;
845
846         get_access_mask(r, &mask, &shift);
847
848         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
849         pmceid &= mask;
850         pmceid >>= shift;
851
852         p->regval = pmceid;
853
854         return true;
855 }
856
857 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
858 {
859         u64 pmcr, val;
860
861         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
862         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
863         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
864                 kvm_inject_undefined(vcpu);
865                 return false;
866         }
867
868         return true;
869 }
870
871 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
872                           u64 *val)
873 {
874         u64 idx;
875
876         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
877                 /* PMCCNTR_EL0 */
878                 idx = ARMV8_PMU_CYCLE_IDX;
879         else
880                 /* PMEVCNTRn_EL0 */
881                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
882
883         *val = kvm_pmu_get_counter_value(vcpu, idx);
884         return 0;
885 }
886
887 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
888                               struct sys_reg_params *p,
889                               const struct sys_reg_desc *r)
890 {
891         u64 idx = ~0UL;
892
893         if (r->CRn == 9 && r->CRm == 13) {
894                 if (r->Op2 == 2) {
895                         /* PMXEVCNTR_EL0 */
896                         if (pmu_access_event_counter_el0_disabled(vcpu))
897                                 return false;
898
899                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
900                               & ARMV8_PMU_COUNTER_MASK;
901                 } else if (r->Op2 == 0) {
902                         /* PMCCNTR_EL0 */
903                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
904                                 return false;
905
906                         idx = ARMV8_PMU_CYCLE_IDX;
907                 }
908         } else if (r->CRn == 0 && r->CRm == 9) {
909                 /* PMCCNTR */
910                 if (pmu_access_event_counter_el0_disabled(vcpu))
911                         return false;
912
913                 idx = ARMV8_PMU_CYCLE_IDX;
914         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
915                 /* PMEVCNTRn_EL0 */
916                 if (pmu_access_event_counter_el0_disabled(vcpu))
917                         return false;
918
919                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
920         }
921
922         /* Catch any decoding mistake */
923         WARN_ON(idx == ~0UL);
924
925         if (!pmu_counter_idx_valid(vcpu, idx))
926                 return false;
927
928         if (p->is_write) {
929                 if (pmu_access_el0_disabled(vcpu))
930                         return false;
931
932                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
933         } else {
934                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
935         }
936
937         return true;
938 }
939
940 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
941                                const struct sys_reg_desc *r)
942 {
943         u64 idx, reg;
944
945         if (pmu_access_el0_disabled(vcpu))
946                 return false;
947
948         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
949                 /* PMXEVTYPER_EL0 */
950                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
951                 reg = PMEVTYPER0_EL0 + idx;
952         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
953                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
954                 if (idx == ARMV8_PMU_CYCLE_IDX)
955                         reg = PMCCFILTR_EL0;
956                 else
957                         /* PMEVTYPERn_EL0 */
958                         reg = PMEVTYPER0_EL0 + idx;
959         } else {
960                 BUG();
961         }
962
963         if (!pmu_counter_idx_valid(vcpu, idx))
964                 return false;
965
966         if (p->is_write) {
967                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
968                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
969                 kvm_vcpu_pmu_restore_guest(vcpu);
970         } else {
971                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
972         }
973
974         return true;
975 }
976
977 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
978                            const struct sys_reg_desc *r)
979 {
980         u64 val, mask;
981
982         if (pmu_access_el0_disabled(vcpu))
983                 return false;
984
985         mask = kvm_pmu_valid_counter_mask(vcpu);
986         if (p->is_write) {
987                 val = p->regval & mask;
988                 if (r->Op2 & 0x1) {
989                         /* accessing PMCNTENSET_EL0 */
990                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
991                         kvm_pmu_enable_counter_mask(vcpu, val);
992                         kvm_vcpu_pmu_restore_guest(vcpu);
993                 } else {
994                         /* accessing PMCNTENCLR_EL0 */
995                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
996                         kvm_pmu_disable_counter_mask(vcpu, val);
997                 }
998         } else {
999                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1000         }
1001
1002         return true;
1003 }
1004
1005 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1006                            const struct sys_reg_desc *r)
1007 {
1008         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1009
1010         if (check_pmu_access_disabled(vcpu, 0))
1011                 return false;
1012
1013         if (p->is_write) {
1014                 u64 val = p->regval & mask;
1015
1016                 if (r->Op2 & 0x1)
1017                         /* accessing PMINTENSET_EL1 */
1018                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1019                 else
1020                         /* accessing PMINTENCLR_EL1 */
1021                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1022         } else {
1023                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1024         }
1025
1026         return true;
1027 }
1028
1029 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1030                          const struct sys_reg_desc *r)
1031 {
1032         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1033
1034         if (pmu_access_el0_disabled(vcpu))
1035                 return false;
1036
1037         if (p->is_write) {
1038                 if (r->CRm & 0x2)
1039                         /* accessing PMOVSSET_EL0 */
1040                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1041                 else
1042                         /* accessing PMOVSCLR_EL0 */
1043                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1044         } else {
1045                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1046         }
1047
1048         return true;
1049 }
1050
1051 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1052                            const struct sys_reg_desc *r)
1053 {
1054         u64 mask;
1055
1056         if (!p->is_write)
1057                 return read_from_write_only(vcpu, p, r);
1058
1059         if (pmu_write_swinc_el0_disabled(vcpu))
1060                 return false;
1061
1062         mask = kvm_pmu_valid_counter_mask(vcpu);
1063         kvm_pmu_software_increment(vcpu, p->regval & mask);
1064         return true;
1065 }
1066
1067 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1068                              const struct sys_reg_desc *r)
1069 {
1070         if (p->is_write) {
1071                 if (!vcpu_mode_priv(vcpu)) {
1072                         kvm_inject_undefined(vcpu);
1073                         return false;
1074                 }
1075
1076                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1077                                p->regval & ARMV8_PMU_USERENR_MASK;
1078         } else {
1079                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1080                             & ARMV8_PMU_USERENR_MASK;
1081         }
1082
1083         return true;
1084 }
1085
1086 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1087 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1088         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1089           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1090         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1091           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1092         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1093           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1094         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1095           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1096
1097 #define PMU_SYS_REG(r)                                          \
1098         SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1099
1100 /* Macro to expand the PMEVCNTRn_EL0 register */
1101 #define PMU_PMEVCNTR_EL0(n)                                             \
1102         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
1103           .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,          \
1104           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1105
1106 /* Macro to expand the PMEVTYPERn_EL0 register */
1107 #define PMU_PMEVTYPER_EL0(n)                                            \
1108         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
1109           .reset = reset_pmevtyper,                                     \
1110           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1111
1112 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1113                          const struct sys_reg_desc *r)
1114 {
1115         kvm_inject_undefined(vcpu);
1116
1117         return false;
1118 }
1119
1120 /* Macro to expand the AMU counter and type registers*/
1121 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1122 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1123 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1124 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1125
1126 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1127                         const struct sys_reg_desc *rd)
1128 {
1129         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1130 }
1131
1132 /*
1133  * If we land here on a PtrAuth access, that is because we didn't
1134  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1135  * way this happens is when the guest does not have PtrAuth support
1136  * enabled.
1137  */
1138 #define __PTRAUTH_KEY(k)                                                \
1139         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1140         .visibility = ptrauth_visibility}
1141
1142 #define PTRAUTH_KEY(k)                                                  \
1143         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1144         __PTRAUTH_KEY(k ## KEYHI_EL1)
1145
1146 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1147                               struct sys_reg_params *p,
1148                               const struct sys_reg_desc *r)
1149 {
1150         enum kvm_arch_timers tmr;
1151         enum kvm_arch_timer_regs treg;
1152         u64 reg = reg_to_encoding(r);
1153
1154         switch (reg) {
1155         case SYS_CNTP_TVAL_EL0:
1156         case SYS_AARCH32_CNTP_TVAL:
1157                 tmr = TIMER_PTIMER;
1158                 treg = TIMER_REG_TVAL;
1159                 break;
1160         case SYS_CNTP_CTL_EL0:
1161         case SYS_AARCH32_CNTP_CTL:
1162                 tmr = TIMER_PTIMER;
1163                 treg = TIMER_REG_CTL;
1164                 break;
1165         case SYS_CNTP_CVAL_EL0:
1166         case SYS_AARCH32_CNTP_CVAL:
1167                 tmr = TIMER_PTIMER;
1168                 treg = TIMER_REG_CVAL;
1169                 break;
1170         case SYS_CNTPCT_EL0:
1171         case SYS_CNTPCTSS_EL0:
1172         case SYS_AARCH32_CNTPCT:
1173                 tmr = TIMER_PTIMER;
1174                 treg = TIMER_REG_CNT;
1175                 break;
1176         default:
1177                 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1178                 kvm_inject_undefined(vcpu);
1179                 return false;
1180         }
1181
1182         if (p->is_write)
1183                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1184         else
1185                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1186
1187         return true;
1188 }
1189
1190 static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu)
1191 {
1192         if (kvm_vcpu_has_pmu(vcpu))
1193                 return vcpu->kvm->arch.dfr0_pmuver.imp;
1194
1195         return vcpu->kvm->arch.dfr0_pmuver.unimp;
1196 }
1197
1198 static u8 perfmon_to_pmuver(u8 perfmon)
1199 {
1200         switch (perfmon) {
1201         case ID_DFR0_EL1_PerfMon_PMUv3:
1202                 return ID_AA64DFR0_EL1_PMUVer_IMP;
1203         case ID_DFR0_EL1_PerfMon_IMPDEF:
1204                 return ID_AA64DFR0_EL1_PMUVer_IMP_DEF;
1205         default:
1206                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1207                 return perfmon;
1208         }
1209 }
1210
1211 static u8 pmuver_to_perfmon(u8 pmuver)
1212 {
1213         switch (pmuver) {
1214         case ID_AA64DFR0_EL1_PMUVer_IMP:
1215                 return ID_DFR0_EL1_PerfMon_PMUv3;
1216         case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1217                 return ID_DFR0_EL1_PerfMon_IMPDEF;
1218         default:
1219                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1220                 return pmuver;
1221         }
1222 }
1223
1224 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1225 static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r)
1226 {
1227         u32 id = reg_to_encoding(r);
1228         u64 val;
1229
1230         if (sysreg_visible_as_raz(vcpu, r))
1231                 return 0;
1232
1233         val = read_sanitised_ftr_reg(id);
1234
1235         switch (id) {
1236         case SYS_ID_AA64PFR0_EL1:
1237                 if (!vcpu_has_sve(vcpu))
1238                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
1239                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
1240                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
1241                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1242                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
1243                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1244                 if (kvm_vgic_global_state.type == VGIC_V3) {
1245                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
1246                         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
1247                 }
1248                 break;
1249         case SYS_ID_AA64PFR1_EL1:
1250                 if (!kvm_has_mte(vcpu->kvm))
1251                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1252
1253                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1254                 break;
1255         case SYS_ID_AA64ISAR1_EL1:
1256                 if (!vcpu_has_ptrauth(vcpu))
1257                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1258                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1259                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1260                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1261                 break;
1262         case SYS_ID_AA64ISAR2_EL1:
1263                 if (!vcpu_has_ptrauth(vcpu))
1264                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1265                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1266                 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1267                         val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1268                 break;
1269         case SYS_ID_AA64DFR0_EL1:
1270                 /* Limit debug to ARMv8.0 */
1271                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
1272                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
1273                 /* Set PMUver to the required version */
1274                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1275                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
1276                                   vcpu_pmuver(vcpu));
1277                 /* Hide SPE from guests */
1278                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
1279                 break;
1280         case SYS_ID_DFR0_EL1:
1281                 val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1282                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon),
1283                                   pmuver_to_perfmon(vcpu_pmuver(vcpu)));
1284                 break;
1285         case SYS_ID_AA64MMFR2_EL1:
1286                 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1287                 break;
1288         case SYS_ID_MMFR4_EL1:
1289                 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1290                 break;
1291         }
1292
1293         return val;
1294 }
1295
1296 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1297                                   const struct sys_reg_desc *r)
1298 {
1299         u32 id = reg_to_encoding(r);
1300
1301         switch (id) {
1302         case SYS_ID_AA64ZFR0_EL1:
1303                 if (!vcpu_has_sve(vcpu))
1304                         return REG_RAZ;
1305                 break;
1306         }
1307
1308         return 0;
1309 }
1310
1311 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1312                                        const struct sys_reg_desc *r)
1313 {
1314         /*
1315          * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1316          * EL. Promote to RAZ/WI in order to guarantee consistency between
1317          * systems.
1318          */
1319         if (!kvm_supports_32bit_el0())
1320                 return REG_RAZ | REG_USER_WI;
1321
1322         return id_visibility(vcpu, r);
1323 }
1324
1325 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1326                                    const struct sys_reg_desc *r)
1327 {
1328         return REG_RAZ;
1329 }
1330
1331 /* cpufeature ID register access trap handlers */
1332
1333 static bool access_id_reg(struct kvm_vcpu *vcpu,
1334                           struct sys_reg_params *p,
1335                           const struct sys_reg_desc *r)
1336 {
1337         if (p->is_write)
1338                 return write_to_read_only(vcpu, p, r);
1339
1340         p->regval = read_id_reg(vcpu, r);
1341         if (vcpu_has_nv(vcpu))
1342                 access_nested_id_reg(vcpu, p, r);
1343
1344         return true;
1345 }
1346
1347 /* Visibility overrides for SVE-specific control registers */
1348 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1349                                    const struct sys_reg_desc *rd)
1350 {
1351         if (vcpu_has_sve(vcpu))
1352                 return 0;
1353
1354         return REG_HIDDEN;
1355 }
1356
1357 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1358                                const struct sys_reg_desc *rd,
1359                                u64 val)
1360 {
1361         u8 csv2, csv3;
1362
1363         /*
1364          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1365          * it doesn't promise more than what is actually provided (the
1366          * guest could otherwise be covered in ectoplasmic residue).
1367          */
1368         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT);
1369         if (csv2 > 1 ||
1370             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1371                 return -EINVAL;
1372
1373         /* Same thing for CSV3 */
1374         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT);
1375         if (csv3 > 1 ||
1376             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1377                 return -EINVAL;
1378
1379         /* We can only differ with CSV[23], and anything else is an error */
1380         val ^= read_id_reg(vcpu, rd);
1381         val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
1382                  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
1383         if (val)
1384                 return -EINVAL;
1385
1386         vcpu->kvm->arch.pfr0_csv2 = csv2;
1387         vcpu->kvm->arch.pfr0_csv3 = csv3;
1388
1389         return 0;
1390 }
1391
1392 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1393                                const struct sys_reg_desc *rd,
1394                                u64 val)
1395 {
1396         u8 pmuver, host_pmuver;
1397         bool valid_pmu;
1398
1399         host_pmuver = kvm_arm_pmu_get_pmuver_limit();
1400
1401         /*
1402          * Allow AA64DFR0_EL1.PMUver to be set from userspace as long
1403          * as it doesn't promise more than what the HW gives us. We
1404          * allow an IMPDEF PMU though, only if no PMU is supported
1405          * (KVM backward compatibility handling).
1406          */
1407         pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val);
1408         if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver))
1409                 return -EINVAL;
1410
1411         valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF);
1412
1413         /* Make sure view register and PMU support do match */
1414         if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1415                 return -EINVAL;
1416
1417         /* We can only differ with PMUver, and anything else is an error */
1418         val ^= read_id_reg(vcpu, rd);
1419         val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1420         if (val)
1421                 return -EINVAL;
1422
1423         if (valid_pmu)
1424                 vcpu->kvm->arch.dfr0_pmuver.imp = pmuver;
1425         else
1426                 vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver;
1427
1428         return 0;
1429 }
1430
1431 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1432                            const struct sys_reg_desc *rd,
1433                            u64 val)
1434 {
1435         u8 perfmon, host_perfmon;
1436         bool valid_pmu;
1437
1438         host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1439
1440         /*
1441          * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1442          * it doesn't promise more than what the HW gives us on the
1443          * AArch64 side (as everything is emulated with that), and
1444          * that this is a PMUv3.
1445          */
1446         perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val);
1447         if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) ||
1448             (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3))
1449                 return -EINVAL;
1450
1451         valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF);
1452
1453         /* Make sure view register and PMU support do match */
1454         if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1455                 return -EINVAL;
1456
1457         /* We can only differ with PerfMon, and anything else is an error */
1458         val ^= read_id_reg(vcpu, rd);
1459         val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1460         if (val)
1461                 return -EINVAL;
1462
1463         if (valid_pmu)
1464                 vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon);
1465         else
1466                 vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon);
1467
1468         return 0;
1469 }
1470
1471 /*
1472  * cpufeature ID register user accessors
1473  *
1474  * For now, these registers are immutable for userspace, so no values
1475  * are stored, and for set_id_reg() we don't allow the effective value
1476  * to be changed.
1477  */
1478 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1479                       u64 *val)
1480 {
1481         *val = read_id_reg(vcpu, rd);
1482         return 0;
1483 }
1484
1485 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1486                       u64 val)
1487 {
1488         /* This is what we mean by invariant: you can't change it. */
1489         if (val != read_id_reg(vcpu, rd))
1490                 return -EINVAL;
1491
1492         return 0;
1493 }
1494
1495 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1496                        u64 *val)
1497 {
1498         *val = 0;
1499         return 0;
1500 }
1501
1502 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1503                       u64 val)
1504 {
1505         return 0;
1506 }
1507
1508 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1509                        const struct sys_reg_desc *r)
1510 {
1511         if (p->is_write)
1512                 return write_to_read_only(vcpu, p, r);
1513
1514         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1515         return true;
1516 }
1517
1518 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1519                          const struct sys_reg_desc *r)
1520 {
1521         if (p->is_write)
1522                 return write_to_read_only(vcpu, p, r);
1523
1524         p->regval = __vcpu_sys_reg(vcpu, r->reg);
1525         return true;
1526 }
1527
1528 /*
1529  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1530  * by the physical CPU which the vcpu currently resides in.
1531  */
1532 static void reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1533 {
1534         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1535         u64 clidr;
1536         u8 loc;
1537
1538         if ((ctr_el0 & CTR_EL0_IDC)) {
1539                 /*
1540                  * Data cache clean to the PoU is not required so LoUU and LoUIS
1541                  * will not be set and a unified cache, which will be marked as
1542                  * LoC, will be added.
1543                  *
1544                  * If not DIC, let the unified cache L2 so that an instruction
1545                  * cache can be added as L1 later.
1546                  */
1547                 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1548                 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1549         } else {
1550                 /*
1551                  * Data cache clean to the PoU is required so let L1 have a data
1552                  * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1553                  * it can be marked as LoC too.
1554                  */
1555                 loc = 1;
1556                 clidr = 1 << CLIDR_LOUU_SHIFT;
1557                 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1558                 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1559         }
1560
1561         /*
1562          * Instruction cache invalidation to the PoU is required so let L1 have
1563          * an instruction cache. If L1 already has a data cache, it will be
1564          * CACHE_TYPE_SEPARATE.
1565          */
1566         if (!(ctr_el0 & CTR_EL0_DIC))
1567                 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1568
1569         clidr |= loc << CLIDR_LOC_SHIFT;
1570
1571         /*
1572          * Add tag cache unified to data cache. Allocation tags and data are
1573          * unified in a cache line so that it looks valid even if there is only
1574          * one cache line.
1575          */
1576         if (kvm_has_mte(vcpu->kvm))
1577                 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1578
1579         __vcpu_sys_reg(vcpu, r->reg) = clidr;
1580 }
1581
1582 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1583                       u64 val)
1584 {
1585         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1586         u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1587
1588         if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1589                 return -EINVAL;
1590
1591         __vcpu_sys_reg(vcpu, rd->reg) = val;
1592
1593         return 0;
1594 }
1595
1596 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1597                           const struct sys_reg_desc *r)
1598 {
1599         int reg = r->reg;
1600
1601         if (p->is_write)
1602                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1603         else
1604                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1605         return true;
1606 }
1607
1608 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1609                           const struct sys_reg_desc *r)
1610 {
1611         u32 csselr;
1612
1613         if (p->is_write)
1614                 return write_to_read_only(vcpu, p, r);
1615
1616         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1617         csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1618         if (csselr < CSSELR_MAX)
1619                 p->regval = get_ccsidr(vcpu, csselr);
1620
1621         return true;
1622 }
1623
1624 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1625                                    const struct sys_reg_desc *rd)
1626 {
1627         if (kvm_has_mte(vcpu->kvm))
1628                 return 0;
1629
1630         return REG_HIDDEN;
1631 }
1632
1633 #define MTE_REG(name) {                         \
1634         SYS_DESC(SYS_##name),                   \
1635         .access = undef_access,                 \
1636         .reset = reset_unknown,                 \
1637         .reg = name,                            \
1638         .visibility = mte_visibility,           \
1639 }
1640
1641 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1642                                    const struct sys_reg_desc *rd)
1643 {
1644         if (vcpu_has_nv(vcpu))
1645                 return 0;
1646
1647         return REG_HIDDEN;
1648 }
1649
1650 #define EL2_REG(name, acc, rst, v) {            \
1651         SYS_DESC(SYS_##name),                   \
1652         .access = acc,                          \
1653         .reset = rst,                           \
1654         .reg = name,                            \
1655         .visibility = el2_visibility,           \
1656         .val = v,                               \
1657 }
1658
1659 /*
1660  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1661  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1662  * handling traps. Given that, they are always hidden from userspace.
1663  */
1664 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1665                                     const struct sys_reg_desc *rd)
1666 {
1667         return REG_HIDDEN_USER;
1668 }
1669
1670 #define EL12_REG(name, acc, rst, v) {           \
1671         SYS_DESC(SYS_##name##_EL12),            \
1672         .access = acc,                          \
1673         .reset = rst,                           \
1674         .reg = name##_EL1,                      \
1675         .val = v,                               \
1676         .visibility = elx2_visibility,          \
1677 }
1678
1679 /* sys_reg_desc initialiser for known cpufeature ID registers */
1680 #define ID_SANITISED(name) {                    \
1681         SYS_DESC(SYS_##name),                   \
1682         .access = access_id_reg,                \
1683         .get_user = get_id_reg,                 \
1684         .set_user = set_id_reg,                 \
1685         .visibility = id_visibility,            \
1686 }
1687
1688 /* sys_reg_desc initialiser for known cpufeature ID registers */
1689 #define AA32_ID_SANITISED(name) {               \
1690         SYS_DESC(SYS_##name),                   \
1691         .access = access_id_reg,                \
1692         .get_user = get_id_reg,                 \
1693         .set_user = set_id_reg,                 \
1694         .visibility = aa32_id_visibility,       \
1695 }
1696
1697 /*
1698  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1699  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1700  * (1 <= crm < 8, 0 <= Op2 < 8).
1701  */
1702 #define ID_UNALLOCATED(crm, op2) {                      \
1703         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1704         .access = access_id_reg,                        \
1705         .get_user = get_id_reg,                         \
1706         .set_user = set_id_reg,                         \
1707         .visibility = raz_visibility                    \
1708 }
1709
1710 /*
1711  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1712  * For now, these are exposed just like unallocated ID regs: they appear
1713  * RAZ for the guest.
1714  */
1715 #define ID_HIDDEN(name) {                       \
1716         SYS_DESC(SYS_##name),                   \
1717         .access = access_id_reg,                \
1718         .get_user = get_id_reg,                 \
1719         .set_user = set_id_reg,                 \
1720         .visibility = raz_visibility,           \
1721 }
1722
1723 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1724                           struct sys_reg_params *p,
1725                           const struct sys_reg_desc *r)
1726 {
1727         if (p->is_write)
1728                 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1729         else
1730                 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1731
1732         return true;
1733 }
1734
1735 static bool access_elr(struct kvm_vcpu *vcpu,
1736                        struct sys_reg_params *p,
1737                        const struct sys_reg_desc *r)
1738 {
1739         if (p->is_write)
1740                 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1741         else
1742                 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1743
1744         return true;
1745 }
1746
1747 static bool access_spsr(struct kvm_vcpu *vcpu,
1748                         struct sys_reg_params *p,
1749                         const struct sys_reg_desc *r)
1750 {
1751         if (p->is_write)
1752                 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1753         else
1754                 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1755
1756         return true;
1757 }
1758
1759 /*
1760  * Architected system registers.
1761  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1762  *
1763  * Debug handling: We do trap most, if not all debug related system
1764  * registers. The implementation is good enough to ensure that a guest
1765  * can use these with minimal performance degradation. The drawback is
1766  * that we don't implement any of the external debug architecture.
1767  * This should be revisited if we ever encounter a more demanding
1768  * guest...
1769  */
1770 static const struct sys_reg_desc sys_reg_descs[] = {
1771         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1772         { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
1773         { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
1774         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1775         { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
1776         { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
1777         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1778         { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
1779         { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
1780
1781         DBG_BCR_BVR_WCR_WVR_EL1(0),
1782         DBG_BCR_BVR_WCR_WVR_EL1(1),
1783         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1784         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1785         DBG_BCR_BVR_WCR_WVR_EL1(2),
1786         DBG_BCR_BVR_WCR_WVR_EL1(3),
1787         DBG_BCR_BVR_WCR_WVR_EL1(4),
1788         DBG_BCR_BVR_WCR_WVR_EL1(5),
1789         DBG_BCR_BVR_WCR_WVR_EL1(6),
1790         DBG_BCR_BVR_WCR_WVR_EL1(7),
1791         DBG_BCR_BVR_WCR_WVR_EL1(8),
1792         DBG_BCR_BVR_WCR_WVR_EL1(9),
1793         DBG_BCR_BVR_WCR_WVR_EL1(10),
1794         DBG_BCR_BVR_WCR_WVR_EL1(11),
1795         DBG_BCR_BVR_WCR_WVR_EL1(12),
1796         DBG_BCR_BVR_WCR_WVR_EL1(13),
1797         DBG_BCR_BVR_WCR_WVR_EL1(14),
1798         DBG_BCR_BVR_WCR_WVR_EL1(15),
1799
1800         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1801         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1802         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1803                 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1804         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1805         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1806         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1807         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1808         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1809
1810         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1811         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1812         // DBGDTR[TR]X_EL0 share the same encoding
1813         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1814
1815         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1816
1817         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1818
1819         /*
1820          * ID regs: all ID_SANITISED() entries here must have corresponding
1821          * entries in arm64_ftr_regs[].
1822          */
1823
1824         /* AArch64 mappings of the AArch32 ID registers */
1825         /* CRm=1 */
1826         AA32_ID_SANITISED(ID_PFR0_EL1),
1827         AA32_ID_SANITISED(ID_PFR1_EL1),
1828         { SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg,
1829           .get_user = get_id_reg, .set_user = set_id_dfr0_el1,
1830           .visibility = aa32_id_visibility, },
1831         ID_HIDDEN(ID_AFR0_EL1),
1832         AA32_ID_SANITISED(ID_MMFR0_EL1),
1833         AA32_ID_SANITISED(ID_MMFR1_EL1),
1834         AA32_ID_SANITISED(ID_MMFR2_EL1),
1835         AA32_ID_SANITISED(ID_MMFR3_EL1),
1836
1837         /* CRm=2 */
1838         AA32_ID_SANITISED(ID_ISAR0_EL1),
1839         AA32_ID_SANITISED(ID_ISAR1_EL1),
1840         AA32_ID_SANITISED(ID_ISAR2_EL1),
1841         AA32_ID_SANITISED(ID_ISAR3_EL1),
1842         AA32_ID_SANITISED(ID_ISAR4_EL1),
1843         AA32_ID_SANITISED(ID_ISAR5_EL1),
1844         AA32_ID_SANITISED(ID_MMFR4_EL1),
1845         AA32_ID_SANITISED(ID_ISAR6_EL1),
1846
1847         /* CRm=3 */
1848         AA32_ID_SANITISED(MVFR0_EL1),
1849         AA32_ID_SANITISED(MVFR1_EL1),
1850         AA32_ID_SANITISED(MVFR2_EL1),
1851         ID_UNALLOCATED(3,3),
1852         AA32_ID_SANITISED(ID_PFR2_EL1),
1853         ID_HIDDEN(ID_DFR1_EL1),
1854         AA32_ID_SANITISED(ID_MMFR5_EL1),
1855         ID_UNALLOCATED(3,7),
1856
1857         /* AArch64 ID registers */
1858         /* CRm=4 */
1859         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1860           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1861         ID_SANITISED(ID_AA64PFR1_EL1),
1862         ID_UNALLOCATED(4,2),
1863         ID_UNALLOCATED(4,3),
1864         ID_SANITISED(ID_AA64ZFR0_EL1),
1865         ID_HIDDEN(ID_AA64SMFR0_EL1),
1866         ID_UNALLOCATED(4,6),
1867         ID_UNALLOCATED(4,7),
1868
1869         /* CRm=5 */
1870         { SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg,
1871           .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, },
1872         ID_SANITISED(ID_AA64DFR1_EL1),
1873         ID_UNALLOCATED(5,2),
1874         ID_UNALLOCATED(5,3),
1875         ID_HIDDEN(ID_AA64AFR0_EL1),
1876         ID_HIDDEN(ID_AA64AFR1_EL1),
1877         ID_UNALLOCATED(5,6),
1878         ID_UNALLOCATED(5,7),
1879
1880         /* CRm=6 */
1881         ID_SANITISED(ID_AA64ISAR0_EL1),
1882         ID_SANITISED(ID_AA64ISAR1_EL1),
1883         ID_SANITISED(ID_AA64ISAR2_EL1),
1884         ID_UNALLOCATED(6,3),
1885         ID_UNALLOCATED(6,4),
1886         ID_UNALLOCATED(6,5),
1887         ID_UNALLOCATED(6,6),
1888         ID_UNALLOCATED(6,7),
1889
1890         /* CRm=7 */
1891         ID_SANITISED(ID_AA64MMFR0_EL1),
1892         ID_SANITISED(ID_AA64MMFR1_EL1),
1893         ID_SANITISED(ID_AA64MMFR2_EL1),
1894         ID_UNALLOCATED(7,3),
1895         ID_UNALLOCATED(7,4),
1896         ID_UNALLOCATED(7,5),
1897         ID_UNALLOCATED(7,6),
1898         ID_UNALLOCATED(7,7),
1899
1900         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1901         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1902         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1903
1904         MTE_REG(RGSR_EL1),
1905         MTE_REG(GCR_EL1),
1906
1907         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1908         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1909         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
1910         { SYS_DESC(SYS_SMCR_EL1), undef_access },
1911         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1912         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1913         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1914
1915         PTRAUTH_KEY(APIA),
1916         PTRAUTH_KEY(APIB),
1917         PTRAUTH_KEY(APDA),
1918         PTRAUTH_KEY(APDB),
1919         PTRAUTH_KEY(APGA),
1920
1921         { SYS_DESC(SYS_SPSR_EL1), access_spsr},
1922         { SYS_DESC(SYS_ELR_EL1), access_elr},
1923
1924         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1925         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1926         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1927
1928         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1929         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1930         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1931         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1932         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1933         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1934         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1935         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1936
1937         MTE_REG(TFSR_EL1),
1938         MTE_REG(TFSRE0_EL1),
1939
1940         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1941         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1942
1943         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1944         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1945         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1946         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1947         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1948         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1949         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1950         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1951         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1952         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1953         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1954         /* PMBIDR_EL1 is not trapped */
1955
1956         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1957           .access = access_pminten, .reg = PMINTENSET_EL1 },
1958         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1959           .access = access_pminten, .reg = PMINTENSET_EL1 },
1960         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1961
1962         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1963         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1964
1965         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1966         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1967         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1968         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1969         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1970
1971         { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
1972         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1973
1974         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1975         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1976         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1977         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1978         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1979         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1980         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1981         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1982         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1983         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1984         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1985         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1986
1987         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1988         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1989
1990         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1991
1992         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1993
1994         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1995         { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
1996           .set_user = set_clidr },
1997         { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
1998         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
1999         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2000         { SYS_DESC(SYS_CTR_EL0), access_ctr },
2001         { SYS_DESC(SYS_SVCR), undef_access },
2002
2003         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
2004           .reset = reset_pmcr, .reg = PMCR_EL0 },
2005         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
2006           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2007         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
2008           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2009         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
2010           .access = access_pmovs, .reg = PMOVSSET_EL0 },
2011         /*
2012          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2013          * previously (and pointlessly) advertised in the past...
2014          */
2015         { PMU_SYS_REG(SYS_PMSWINC_EL0),
2016           .get_user = get_raz_reg, .set_user = set_wi_reg,
2017           .access = access_pmswinc, .reset = NULL },
2018         { PMU_SYS_REG(SYS_PMSELR_EL0),
2019           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2020         { PMU_SYS_REG(SYS_PMCEID0_EL0),
2021           .access = access_pmceid, .reset = NULL },
2022         { PMU_SYS_REG(SYS_PMCEID1_EL0),
2023           .access = access_pmceid, .reset = NULL },
2024         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
2025           .access = access_pmu_evcntr, .reset = reset_unknown,
2026           .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2027         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
2028           .access = access_pmu_evtyper, .reset = NULL },
2029         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
2030           .access = access_pmu_evcntr, .reset = NULL },
2031         /*
2032          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2033          * in 32bit mode. Here we choose to reset it as zero for consistency.
2034          */
2035         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
2036           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2037         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
2038           .access = access_pmovs, .reg = PMOVSSET_EL0 },
2039
2040         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2041         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2042         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2043
2044         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2045
2046         { SYS_DESC(SYS_AMCR_EL0), undef_access },
2047         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2048         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2049         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2050         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2051         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2052         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2053         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2054         AMU_AMEVCNTR0_EL0(0),
2055         AMU_AMEVCNTR0_EL0(1),
2056         AMU_AMEVCNTR0_EL0(2),
2057         AMU_AMEVCNTR0_EL0(3),
2058         AMU_AMEVCNTR0_EL0(4),
2059         AMU_AMEVCNTR0_EL0(5),
2060         AMU_AMEVCNTR0_EL0(6),
2061         AMU_AMEVCNTR0_EL0(7),
2062         AMU_AMEVCNTR0_EL0(8),
2063         AMU_AMEVCNTR0_EL0(9),
2064         AMU_AMEVCNTR0_EL0(10),
2065         AMU_AMEVCNTR0_EL0(11),
2066         AMU_AMEVCNTR0_EL0(12),
2067         AMU_AMEVCNTR0_EL0(13),
2068         AMU_AMEVCNTR0_EL0(14),
2069         AMU_AMEVCNTR0_EL0(15),
2070         AMU_AMEVTYPER0_EL0(0),
2071         AMU_AMEVTYPER0_EL0(1),
2072         AMU_AMEVTYPER0_EL0(2),
2073         AMU_AMEVTYPER0_EL0(3),
2074         AMU_AMEVTYPER0_EL0(4),
2075         AMU_AMEVTYPER0_EL0(5),
2076         AMU_AMEVTYPER0_EL0(6),
2077         AMU_AMEVTYPER0_EL0(7),
2078         AMU_AMEVTYPER0_EL0(8),
2079         AMU_AMEVTYPER0_EL0(9),
2080         AMU_AMEVTYPER0_EL0(10),
2081         AMU_AMEVTYPER0_EL0(11),
2082         AMU_AMEVTYPER0_EL0(12),
2083         AMU_AMEVTYPER0_EL0(13),
2084         AMU_AMEVTYPER0_EL0(14),
2085         AMU_AMEVTYPER0_EL0(15),
2086         AMU_AMEVCNTR1_EL0(0),
2087         AMU_AMEVCNTR1_EL0(1),
2088         AMU_AMEVCNTR1_EL0(2),
2089         AMU_AMEVCNTR1_EL0(3),
2090         AMU_AMEVCNTR1_EL0(4),
2091         AMU_AMEVCNTR1_EL0(5),
2092         AMU_AMEVCNTR1_EL0(6),
2093         AMU_AMEVCNTR1_EL0(7),
2094         AMU_AMEVCNTR1_EL0(8),
2095         AMU_AMEVCNTR1_EL0(9),
2096         AMU_AMEVCNTR1_EL0(10),
2097         AMU_AMEVCNTR1_EL0(11),
2098         AMU_AMEVCNTR1_EL0(12),
2099         AMU_AMEVCNTR1_EL0(13),
2100         AMU_AMEVCNTR1_EL0(14),
2101         AMU_AMEVCNTR1_EL0(15),
2102         AMU_AMEVTYPER1_EL0(0),
2103         AMU_AMEVTYPER1_EL0(1),
2104         AMU_AMEVTYPER1_EL0(2),
2105         AMU_AMEVTYPER1_EL0(3),
2106         AMU_AMEVTYPER1_EL0(4),
2107         AMU_AMEVTYPER1_EL0(5),
2108         AMU_AMEVTYPER1_EL0(6),
2109         AMU_AMEVTYPER1_EL0(7),
2110         AMU_AMEVTYPER1_EL0(8),
2111         AMU_AMEVTYPER1_EL0(9),
2112         AMU_AMEVTYPER1_EL0(10),
2113         AMU_AMEVTYPER1_EL0(11),
2114         AMU_AMEVTYPER1_EL0(12),
2115         AMU_AMEVTYPER1_EL0(13),
2116         AMU_AMEVTYPER1_EL0(14),
2117         AMU_AMEVTYPER1_EL0(15),
2118
2119         { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2120         { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2121         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2122         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2123         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2124
2125         /* PMEVCNTRn_EL0 */
2126         PMU_PMEVCNTR_EL0(0),
2127         PMU_PMEVCNTR_EL0(1),
2128         PMU_PMEVCNTR_EL0(2),
2129         PMU_PMEVCNTR_EL0(3),
2130         PMU_PMEVCNTR_EL0(4),
2131         PMU_PMEVCNTR_EL0(5),
2132         PMU_PMEVCNTR_EL0(6),
2133         PMU_PMEVCNTR_EL0(7),
2134         PMU_PMEVCNTR_EL0(8),
2135         PMU_PMEVCNTR_EL0(9),
2136         PMU_PMEVCNTR_EL0(10),
2137         PMU_PMEVCNTR_EL0(11),
2138         PMU_PMEVCNTR_EL0(12),
2139         PMU_PMEVCNTR_EL0(13),
2140         PMU_PMEVCNTR_EL0(14),
2141         PMU_PMEVCNTR_EL0(15),
2142         PMU_PMEVCNTR_EL0(16),
2143         PMU_PMEVCNTR_EL0(17),
2144         PMU_PMEVCNTR_EL0(18),
2145         PMU_PMEVCNTR_EL0(19),
2146         PMU_PMEVCNTR_EL0(20),
2147         PMU_PMEVCNTR_EL0(21),
2148         PMU_PMEVCNTR_EL0(22),
2149         PMU_PMEVCNTR_EL0(23),
2150         PMU_PMEVCNTR_EL0(24),
2151         PMU_PMEVCNTR_EL0(25),
2152         PMU_PMEVCNTR_EL0(26),
2153         PMU_PMEVCNTR_EL0(27),
2154         PMU_PMEVCNTR_EL0(28),
2155         PMU_PMEVCNTR_EL0(29),
2156         PMU_PMEVCNTR_EL0(30),
2157         /* PMEVTYPERn_EL0 */
2158         PMU_PMEVTYPER_EL0(0),
2159         PMU_PMEVTYPER_EL0(1),
2160         PMU_PMEVTYPER_EL0(2),
2161         PMU_PMEVTYPER_EL0(3),
2162         PMU_PMEVTYPER_EL0(4),
2163         PMU_PMEVTYPER_EL0(5),
2164         PMU_PMEVTYPER_EL0(6),
2165         PMU_PMEVTYPER_EL0(7),
2166         PMU_PMEVTYPER_EL0(8),
2167         PMU_PMEVTYPER_EL0(9),
2168         PMU_PMEVTYPER_EL0(10),
2169         PMU_PMEVTYPER_EL0(11),
2170         PMU_PMEVTYPER_EL0(12),
2171         PMU_PMEVTYPER_EL0(13),
2172         PMU_PMEVTYPER_EL0(14),
2173         PMU_PMEVTYPER_EL0(15),
2174         PMU_PMEVTYPER_EL0(16),
2175         PMU_PMEVTYPER_EL0(17),
2176         PMU_PMEVTYPER_EL0(18),
2177         PMU_PMEVTYPER_EL0(19),
2178         PMU_PMEVTYPER_EL0(20),
2179         PMU_PMEVTYPER_EL0(21),
2180         PMU_PMEVTYPER_EL0(22),
2181         PMU_PMEVTYPER_EL0(23),
2182         PMU_PMEVTYPER_EL0(24),
2183         PMU_PMEVTYPER_EL0(25),
2184         PMU_PMEVTYPER_EL0(26),
2185         PMU_PMEVTYPER_EL0(27),
2186         PMU_PMEVTYPER_EL0(28),
2187         PMU_PMEVTYPER_EL0(29),
2188         PMU_PMEVTYPER_EL0(30),
2189         /*
2190          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2191          * in 32bit mode. Here we choose to reset it as zero for consistency.
2192          */
2193         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
2194           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2195
2196         EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2197         EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2198         EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2199         EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2200         EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2201         EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2202         EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_EL2_DEFAULT ),
2203         EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2204         EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2205
2206         EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2207         EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2208         EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2209         EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2210         EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2211
2212         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2213         EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2214         EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2215         { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2216
2217         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2218         EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2219         EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2220         EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2221         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2222
2223         EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2224         EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2225
2226         EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2227         EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2228
2229         EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2230         EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2231         { SYS_DESC(SYS_RMR_EL2), trap_undef },
2232
2233         EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2234         EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2235
2236         EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2237         EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2238
2239         EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2240         EL12_REG(CPACR, access_rw, reset_val, 0),
2241         EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2242         EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2243         EL12_REG(TCR, access_vm_reg, reset_val, 0),
2244         { SYS_DESC(SYS_SPSR_EL12), access_spsr},
2245         { SYS_DESC(SYS_ELR_EL12), access_elr},
2246         EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2247         EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2248         EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2249         EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2250         EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2251         EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2252         EL12_REG(VBAR, access_rw, reset_val, 0),
2253         EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2254         EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2255
2256         EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2257 };
2258
2259 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2260                         struct sys_reg_params *p,
2261                         const struct sys_reg_desc *r)
2262 {
2263         if (p->is_write) {
2264                 return ignore_write(vcpu, p);
2265         } else {
2266                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2267                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2268                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2269
2270                 p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2271                              (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2272                              (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2273                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2274                 return true;
2275         }
2276 }
2277
2278 /*
2279  * AArch32 debug register mappings
2280  *
2281  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2282  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2283  *
2284  * None of the other registers share their location, so treat them as
2285  * if they were 64bit.
2286  */
2287 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
2288         /* DBGBVRn */                                                         \
2289         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2290         /* DBGBCRn */                                                         \
2291         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
2292         /* DBGWVRn */                                                         \
2293         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
2294         /* DBGWCRn */                                                         \
2295         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2296
2297 #define DBGBXVR(n)                                                            \
2298         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2299
2300 /*
2301  * Trapped cp14 registers. We generally ignore most of the external
2302  * debug, on the principle that they don't really make sense to a
2303  * guest. Revisit this one day, would this principle change.
2304  */
2305 static const struct sys_reg_desc cp14_regs[] = {
2306         /* DBGDIDR */
2307         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2308         /* DBGDTRRXext */
2309         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2310
2311         DBG_BCR_BVR_WCR_WVR(0),
2312         /* DBGDSCRint */
2313         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2314         DBG_BCR_BVR_WCR_WVR(1),
2315         /* DBGDCCINT */
2316         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2317         /* DBGDSCRext */
2318         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2319         DBG_BCR_BVR_WCR_WVR(2),
2320         /* DBGDTR[RT]Xint */
2321         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2322         /* DBGDTR[RT]Xext */
2323         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2324         DBG_BCR_BVR_WCR_WVR(3),
2325         DBG_BCR_BVR_WCR_WVR(4),
2326         DBG_BCR_BVR_WCR_WVR(5),
2327         /* DBGWFAR */
2328         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2329         /* DBGOSECCR */
2330         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2331         DBG_BCR_BVR_WCR_WVR(6),
2332         /* DBGVCR */
2333         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2334         DBG_BCR_BVR_WCR_WVR(7),
2335         DBG_BCR_BVR_WCR_WVR(8),
2336         DBG_BCR_BVR_WCR_WVR(9),
2337         DBG_BCR_BVR_WCR_WVR(10),
2338         DBG_BCR_BVR_WCR_WVR(11),
2339         DBG_BCR_BVR_WCR_WVR(12),
2340         DBG_BCR_BVR_WCR_WVR(13),
2341         DBG_BCR_BVR_WCR_WVR(14),
2342         DBG_BCR_BVR_WCR_WVR(15),
2343
2344         /* DBGDRAR (32bit) */
2345         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2346
2347         DBGBXVR(0),
2348         /* DBGOSLAR */
2349         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2350         DBGBXVR(1),
2351         /* DBGOSLSR */
2352         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2353         DBGBXVR(2),
2354         DBGBXVR(3),
2355         /* DBGOSDLR */
2356         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2357         DBGBXVR(4),
2358         /* DBGPRCR */
2359         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2360         DBGBXVR(5),
2361         DBGBXVR(6),
2362         DBGBXVR(7),
2363         DBGBXVR(8),
2364         DBGBXVR(9),
2365         DBGBXVR(10),
2366         DBGBXVR(11),
2367         DBGBXVR(12),
2368         DBGBXVR(13),
2369         DBGBXVR(14),
2370         DBGBXVR(15),
2371
2372         /* DBGDSAR (32bit) */
2373         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2374
2375         /* DBGDEVID2 */
2376         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2377         /* DBGDEVID1 */
2378         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2379         /* DBGDEVID */
2380         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2381         /* DBGCLAIMSET */
2382         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2383         /* DBGCLAIMCLR */
2384         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2385         /* DBGAUTHSTATUS */
2386         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2387 };
2388
2389 /* Trapped cp14 64bit registers */
2390 static const struct sys_reg_desc cp14_64_regs[] = {
2391         /* DBGDRAR (64bit) */
2392         { Op1( 0), CRm( 1), .access = trap_raz_wi },
2393
2394         /* DBGDSAR (64bit) */
2395         { Op1( 0), CRm( 2), .access = trap_raz_wi },
2396 };
2397
2398 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)                  \
2399         AA32(_map),                                                     \
2400         Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),                     \
2401         .visibility = pmu_visibility
2402
2403 /* Macro to expand the PMEVCNTRn register */
2404 #define PMU_PMEVCNTR(n)                                                 \
2405         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2406           (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2407           .access = access_pmu_evcntr }
2408
2409 /* Macro to expand the PMEVTYPERn register */
2410 #define PMU_PMEVTYPER(n)                                                \
2411         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2412           (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2413           .access = access_pmu_evtyper }
2414 /*
2415  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2416  * depending on the way they are accessed (as a 32bit or a 64bit
2417  * register).
2418  */
2419 static const struct sys_reg_desc cp15_regs[] = {
2420         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2421         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2422         /* ACTLR */
2423         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2424         /* ACTLR2 */
2425         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2426         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2427         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2428         /* TTBCR */
2429         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2430         /* TTBCR2 */
2431         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2432         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2433         /* DFSR */
2434         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2435         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2436         /* ADFSR */
2437         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2438         /* AIFSR */
2439         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2440         /* DFAR */
2441         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2442         /* IFAR */
2443         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2444
2445         /*
2446          * DC{C,I,CI}SW operations:
2447          */
2448         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2449         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2450         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2451
2452         /* PMU */
2453         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2454         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2455         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2456         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2457         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2458         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2459         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2460         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2461         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2462         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2463         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2464         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2465         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2466         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2467         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2468         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2469         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2470         /* PMMIR */
2471         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2472
2473         /* PRRR/MAIR0 */
2474         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2475         /* NMRR/MAIR1 */
2476         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2477         /* AMAIR0 */
2478         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2479         /* AMAIR1 */
2480         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2481
2482         /* ICC_SRE */
2483         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2484
2485         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2486
2487         /* Arch Tmers */
2488         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2489         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2490
2491         /* PMEVCNTRn */
2492         PMU_PMEVCNTR(0),
2493         PMU_PMEVCNTR(1),
2494         PMU_PMEVCNTR(2),
2495         PMU_PMEVCNTR(3),
2496         PMU_PMEVCNTR(4),
2497         PMU_PMEVCNTR(5),
2498         PMU_PMEVCNTR(6),
2499         PMU_PMEVCNTR(7),
2500         PMU_PMEVCNTR(8),
2501         PMU_PMEVCNTR(9),
2502         PMU_PMEVCNTR(10),
2503         PMU_PMEVCNTR(11),
2504         PMU_PMEVCNTR(12),
2505         PMU_PMEVCNTR(13),
2506         PMU_PMEVCNTR(14),
2507         PMU_PMEVCNTR(15),
2508         PMU_PMEVCNTR(16),
2509         PMU_PMEVCNTR(17),
2510         PMU_PMEVCNTR(18),
2511         PMU_PMEVCNTR(19),
2512         PMU_PMEVCNTR(20),
2513         PMU_PMEVCNTR(21),
2514         PMU_PMEVCNTR(22),
2515         PMU_PMEVCNTR(23),
2516         PMU_PMEVCNTR(24),
2517         PMU_PMEVCNTR(25),
2518         PMU_PMEVCNTR(26),
2519         PMU_PMEVCNTR(27),
2520         PMU_PMEVCNTR(28),
2521         PMU_PMEVCNTR(29),
2522         PMU_PMEVCNTR(30),
2523         /* PMEVTYPERn */
2524         PMU_PMEVTYPER(0),
2525         PMU_PMEVTYPER(1),
2526         PMU_PMEVTYPER(2),
2527         PMU_PMEVTYPER(3),
2528         PMU_PMEVTYPER(4),
2529         PMU_PMEVTYPER(5),
2530         PMU_PMEVTYPER(6),
2531         PMU_PMEVTYPER(7),
2532         PMU_PMEVTYPER(8),
2533         PMU_PMEVTYPER(9),
2534         PMU_PMEVTYPER(10),
2535         PMU_PMEVTYPER(11),
2536         PMU_PMEVTYPER(12),
2537         PMU_PMEVTYPER(13),
2538         PMU_PMEVTYPER(14),
2539         PMU_PMEVTYPER(15),
2540         PMU_PMEVTYPER(16),
2541         PMU_PMEVTYPER(17),
2542         PMU_PMEVTYPER(18),
2543         PMU_PMEVTYPER(19),
2544         PMU_PMEVTYPER(20),
2545         PMU_PMEVTYPER(21),
2546         PMU_PMEVTYPER(22),
2547         PMU_PMEVTYPER(23),
2548         PMU_PMEVTYPER(24),
2549         PMU_PMEVTYPER(25),
2550         PMU_PMEVTYPER(26),
2551         PMU_PMEVTYPER(27),
2552         PMU_PMEVTYPER(28),
2553         PMU_PMEVTYPER(29),
2554         PMU_PMEVTYPER(30),
2555         /* PMCCFILTR */
2556         { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2557
2558         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2559         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2560
2561         /* CCSIDR2 */
2562         { Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2563
2564         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2565 };
2566
2567 static const struct sys_reg_desc cp15_64_regs[] = {
2568         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2569         { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2570         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2571         { SYS_DESC(SYS_AARCH32_CNTPCT),       access_arch_timer },
2572         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2573         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2574         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2575         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2576         { SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
2577 };
2578
2579 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2580                                bool is_32)
2581 {
2582         unsigned int i;
2583
2584         for (i = 0; i < n; i++) {
2585                 if (!is_32 && table[i].reg && !table[i].reset) {
2586                         kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2587                         return false;
2588                 }
2589
2590                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2591                         kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2592                         return false;
2593                 }
2594         }
2595
2596         return true;
2597 }
2598
2599 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2600 {
2601         kvm_inject_undefined(vcpu);
2602         return 1;
2603 }
2604
2605 static void perform_access(struct kvm_vcpu *vcpu,
2606                            struct sys_reg_params *params,
2607                            const struct sys_reg_desc *r)
2608 {
2609         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2610
2611         /* Check for regs disabled by runtime config */
2612         if (sysreg_hidden(vcpu, r)) {
2613                 kvm_inject_undefined(vcpu);
2614                 return;
2615         }
2616
2617         /*
2618          * Not having an accessor means that we have configured a trap
2619          * that we don't know how to handle. This certainly qualifies
2620          * as a gross bug that should be fixed right away.
2621          */
2622         BUG_ON(!r->access);
2623
2624         /* Skip instruction if instructed so */
2625         if (likely(r->access(vcpu, params, r)))
2626                 kvm_incr_pc(vcpu);
2627 }
2628
2629 /*
2630  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2631  *                call the corresponding trap handler.
2632  *
2633  * @params: pointer to the descriptor of the access
2634  * @table: array of trap descriptors
2635  * @num: size of the trap descriptor array
2636  *
2637  * Return true if the access has been handled, false if not.
2638  */
2639 static bool emulate_cp(struct kvm_vcpu *vcpu,
2640                        struct sys_reg_params *params,
2641                        const struct sys_reg_desc *table,
2642                        size_t num)
2643 {
2644         const struct sys_reg_desc *r;
2645
2646         if (!table)
2647                 return false;   /* Not handled */
2648
2649         r = find_reg(params, table, num);
2650
2651         if (r) {
2652                 perform_access(vcpu, params, r);
2653                 return true;
2654         }
2655
2656         /* Not handled */
2657         return false;
2658 }
2659
2660 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2661                                 struct sys_reg_params *params)
2662 {
2663         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2664         int cp = -1;
2665
2666         switch (esr_ec) {
2667         case ESR_ELx_EC_CP15_32:
2668         case ESR_ELx_EC_CP15_64:
2669                 cp = 15;
2670                 break;
2671         case ESR_ELx_EC_CP14_MR:
2672         case ESR_ELx_EC_CP14_64:
2673                 cp = 14;
2674                 break;
2675         default:
2676                 WARN_ON(1);
2677         }
2678
2679         print_sys_reg_msg(params,
2680                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2681                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2682         kvm_inject_undefined(vcpu);
2683 }
2684
2685 /**
2686  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2687  * @vcpu: The VCPU pointer
2688  * @run:  The kvm_run struct
2689  */
2690 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2691                             const struct sys_reg_desc *global,
2692                             size_t nr_global)
2693 {
2694         struct sys_reg_params params;
2695         u64 esr = kvm_vcpu_get_esr(vcpu);
2696         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2697         int Rt2 = (esr >> 10) & 0x1f;
2698
2699         params.CRm = (esr >> 1) & 0xf;
2700         params.is_write = ((esr & 1) == 0);
2701
2702         params.Op0 = 0;
2703         params.Op1 = (esr >> 16) & 0xf;
2704         params.Op2 = 0;
2705         params.CRn = 0;
2706
2707         /*
2708          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2709          * backends between AArch32 and AArch64, we get away with it.
2710          */
2711         if (params.is_write) {
2712                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2713                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2714         }
2715
2716         /*
2717          * If the table contains a handler, handle the
2718          * potential register operation in the case of a read and return
2719          * with success.
2720          */
2721         if (emulate_cp(vcpu, &params, global, nr_global)) {
2722                 /* Split up the value between registers for the read side */
2723                 if (!params.is_write) {
2724                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2725                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2726                 }
2727
2728                 return 1;
2729         }
2730
2731         unhandled_cp_access(vcpu, &params);
2732         return 1;
2733 }
2734
2735 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2736
2737 /*
2738  * The CP10 ID registers are architecturally mapped to AArch64 feature
2739  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2740  * from AArch32.
2741  */
2742 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2743 {
2744         u8 reg_id = (esr >> 10) & 0xf;
2745         bool valid;
2746
2747         params->is_write = ((esr & 1) == 0);
2748         params->Op0 = 3;
2749         params->Op1 = 0;
2750         params->CRn = 0;
2751         params->CRm = 3;
2752
2753         /* CP10 ID registers are read-only */
2754         valid = !params->is_write;
2755
2756         switch (reg_id) {
2757         /* MVFR0 */
2758         case 0b0111:
2759                 params->Op2 = 0;
2760                 break;
2761         /* MVFR1 */
2762         case 0b0110:
2763                 params->Op2 = 1;
2764                 break;
2765         /* MVFR2 */
2766         case 0b0101:
2767                 params->Op2 = 2;
2768                 break;
2769         default:
2770                 valid = false;
2771         }
2772
2773         if (valid)
2774                 return true;
2775
2776         kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2777                       params->is_write ? "write" : "read", reg_id);
2778         return false;
2779 }
2780
2781 /**
2782  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2783  *                        VFP Register' from AArch32.
2784  * @vcpu: The vCPU pointer
2785  *
2786  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2787  * Work out the correct AArch64 system register encoding and reroute to the
2788  * AArch64 system register emulation.
2789  */
2790 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2791 {
2792         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2793         u64 esr = kvm_vcpu_get_esr(vcpu);
2794         struct sys_reg_params params;
2795
2796         /* UNDEF on any unhandled register access */
2797         if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2798                 kvm_inject_undefined(vcpu);
2799                 return 1;
2800         }
2801
2802         if (emulate_sys_reg(vcpu, &params))
2803                 vcpu_set_reg(vcpu, Rt, params.regval);
2804
2805         return 1;
2806 }
2807
2808 /**
2809  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2810  *                             CRn=0, which corresponds to the AArch32 feature
2811  *                             registers.
2812  * @vcpu: the vCPU pointer
2813  * @params: the system register access parameters.
2814  *
2815  * Our cp15 system register tables do not enumerate the AArch32 feature
2816  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2817  * register encoding can be trivially remapped into the AArch64 for the feature
2818  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2819  *
2820  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2821  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2822  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2823  * treat undefined registers in this range as RAZ.
2824  */
2825 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2826                                    struct sys_reg_params *params)
2827 {
2828         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2829
2830         /* Treat impossible writes to RO registers as UNDEFINED */
2831         if (params->is_write) {
2832                 unhandled_cp_access(vcpu, params);
2833                 return 1;
2834         }
2835
2836         params->Op0 = 3;
2837
2838         /*
2839          * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2840          * Avoid conflicting with future expansion of AArch64 feature registers
2841          * and simply treat them as RAZ here.
2842          */
2843         if (params->CRm > 3)
2844                 params->regval = 0;
2845         else if (!emulate_sys_reg(vcpu, params))
2846                 return 1;
2847
2848         vcpu_set_reg(vcpu, Rt, params->regval);
2849         return 1;
2850 }
2851
2852 /**
2853  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2854  * @vcpu: The VCPU pointer
2855  * @run:  The kvm_run struct
2856  */
2857 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2858                             struct sys_reg_params *params,
2859                             const struct sys_reg_desc *global,
2860                             size_t nr_global)
2861 {
2862         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2863
2864         params->regval = vcpu_get_reg(vcpu, Rt);
2865
2866         if (emulate_cp(vcpu, params, global, nr_global)) {
2867                 if (!params->is_write)
2868                         vcpu_set_reg(vcpu, Rt, params->regval);
2869                 return 1;
2870         }
2871
2872         unhandled_cp_access(vcpu, params);
2873         return 1;
2874 }
2875
2876 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2877 {
2878         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2879 }
2880
2881 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2882 {
2883         struct sys_reg_params params;
2884
2885         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2886
2887         /*
2888          * Certain AArch32 ID registers are handled by rerouting to the AArch64
2889          * system register table. Registers in the ID range where CRm=0 are
2890          * excluded from this scheme as they do not trivially map into AArch64
2891          * system register encodings.
2892          */
2893         if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2894                 return kvm_emulate_cp15_id_reg(vcpu, &params);
2895
2896         return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2897 }
2898
2899 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2900 {
2901         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2902 }
2903
2904 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2905 {
2906         struct sys_reg_params params;
2907
2908         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2909
2910         return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2911 }
2912
2913 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2914 {
2915         // See ARM DDI 0487E.a, section D12.3.2
2916         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2917 }
2918
2919 /**
2920  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2921  * @vcpu: The VCPU pointer
2922  * @params: Decoded system register parameters
2923  *
2924  * Return: true if the system register access was successful, false otherwise.
2925  */
2926 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2927                            struct sys_reg_params *params)
2928 {
2929         const struct sys_reg_desc *r;
2930
2931         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2932
2933         if (likely(r)) {
2934                 perform_access(vcpu, params, r);
2935                 return true;
2936         }
2937
2938         if (is_imp_def_sys_reg(params)) {
2939                 kvm_inject_undefined(vcpu);
2940         } else {
2941                 print_sys_reg_msg(params,
2942                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2943                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2944                 kvm_inject_undefined(vcpu);
2945         }
2946         return false;
2947 }
2948
2949 /**
2950  * kvm_reset_sys_regs - sets system registers to reset value
2951  * @vcpu: The VCPU pointer
2952  *
2953  * This function finds the right table above and sets the registers on the
2954  * virtual CPU struct to their architecturally defined reset values.
2955  */
2956 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2957 {
2958         unsigned long i;
2959
2960         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2961                 if (sys_reg_descs[i].reset)
2962                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2963 }
2964
2965 /**
2966  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2967  * @vcpu: The VCPU pointer
2968  */
2969 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2970 {
2971         struct sys_reg_params params;
2972         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2973         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2974
2975         trace_kvm_handle_sys_reg(esr);
2976
2977         params = esr_sys64_to_params(esr);
2978         params.regval = vcpu_get_reg(vcpu, Rt);
2979
2980         if (!emulate_sys_reg(vcpu, &params))
2981                 return 1;
2982
2983         if (!params.is_write)
2984                 vcpu_set_reg(vcpu, Rt, params.regval);
2985         return 1;
2986 }
2987
2988 /******************************************************************************
2989  * Userspace API
2990  *****************************************************************************/
2991
2992 static bool index_to_params(u64 id, struct sys_reg_params *params)
2993 {
2994         switch (id & KVM_REG_SIZE_MASK) {
2995         case KVM_REG_SIZE_U64:
2996                 /* Any unused index bits means it's not valid. */
2997                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2998                               | KVM_REG_ARM_COPROC_MASK
2999                               | KVM_REG_ARM64_SYSREG_OP0_MASK
3000                               | KVM_REG_ARM64_SYSREG_OP1_MASK
3001                               | KVM_REG_ARM64_SYSREG_CRN_MASK
3002                               | KVM_REG_ARM64_SYSREG_CRM_MASK
3003                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
3004                         return false;
3005                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3006                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3007                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3008                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3009                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3010                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3011                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3012                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3013                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3014                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3015                 return true;
3016         default:
3017                 return false;
3018         }
3019 }
3020
3021 const struct sys_reg_desc *get_reg_by_id(u64 id,
3022                                          const struct sys_reg_desc table[],
3023                                          unsigned int num)
3024 {
3025         struct sys_reg_params params;
3026
3027         if (!index_to_params(id, &params))
3028                 return NULL;
3029
3030         return find_reg(&params, table, num);
3031 }
3032
3033 /* Decode an index value, and find the sys_reg_desc entry. */
3034 static const struct sys_reg_desc *
3035 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3036                    const struct sys_reg_desc table[], unsigned int num)
3037
3038 {
3039         const struct sys_reg_desc *r;
3040
3041         /* We only do sys_reg for now. */
3042         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3043                 return NULL;
3044
3045         r = get_reg_by_id(id, table, num);
3046
3047         /* Not saved in the sys_reg array and not otherwise accessible? */
3048         if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3049                 r = NULL;
3050
3051         return r;
3052 }
3053
3054 /*
3055  * These are the invariant sys_reg registers: we let the guest see the
3056  * host versions of these, so they're part of the guest state.
3057  *
3058  * A future CPU may provide a mechanism to present different values to
3059  * the guest, or a future kvm may trap them.
3060  */
3061
3062 #define FUNCTION_INVARIANT(reg)                                         \
3063         static void get_##reg(struct kvm_vcpu *v,                       \
3064                               const struct sys_reg_desc *r)             \
3065         {                                                               \
3066                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
3067         }
3068
3069 FUNCTION_INVARIANT(midr_el1)
3070 FUNCTION_INVARIANT(revidr_el1)
3071 FUNCTION_INVARIANT(aidr_el1)
3072
3073 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3074 {
3075         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3076 }
3077
3078 /* ->val is filled in by kvm_sys_reg_table_init() */
3079 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3080         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3081         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3082         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3083         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3084 };
3085
3086 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3087 {
3088         const struct sys_reg_desc *r;
3089
3090         r = get_reg_by_id(id, invariant_sys_regs,
3091                           ARRAY_SIZE(invariant_sys_regs));
3092         if (!r)
3093                 return -ENOENT;
3094
3095         return put_user(r->val, uaddr);
3096 }
3097
3098 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3099 {
3100         const struct sys_reg_desc *r;
3101         u64 val;
3102
3103         r = get_reg_by_id(id, invariant_sys_regs,
3104                           ARRAY_SIZE(invariant_sys_regs));
3105         if (!r)
3106                 return -ENOENT;
3107
3108         if (get_user(val, uaddr))
3109                 return -EFAULT;
3110
3111         /* This is what we mean by invariant: you can't change it. */
3112         if (r->val != val)
3113                 return -EINVAL;
3114
3115         return 0;
3116 }
3117
3118 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3119 {
3120         u32 val;
3121         u32 __user *uval = uaddr;
3122
3123         /* Fail if we have unknown bits set. */
3124         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3125                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3126                 return -ENOENT;
3127
3128         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3129         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3130                 if (KVM_REG_SIZE(id) != 4)
3131                         return -ENOENT;
3132                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3133                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3134                 if (val >= CSSELR_MAX)
3135                         return -ENOENT;
3136
3137                 return put_user(get_ccsidr(vcpu, val), uval);
3138         default:
3139                 return -ENOENT;
3140         }
3141 }
3142
3143 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3144 {
3145         u32 val, newval;
3146         u32 __user *uval = uaddr;
3147
3148         /* Fail if we have unknown bits set. */
3149         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3150                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3151                 return -ENOENT;
3152
3153         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3154         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3155                 if (KVM_REG_SIZE(id) != 4)
3156                         return -ENOENT;
3157                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3158                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3159                 if (val >= CSSELR_MAX)
3160                         return -ENOENT;
3161
3162                 if (get_user(newval, uval))
3163                         return -EFAULT;
3164
3165                 return set_ccsidr(vcpu, val, newval);
3166         default:
3167                 return -ENOENT;
3168         }
3169 }
3170
3171 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3172                          const struct sys_reg_desc table[], unsigned int num)
3173 {
3174         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3175         const struct sys_reg_desc *r;
3176         u64 val;
3177         int ret;
3178
3179         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3180         if (!r || sysreg_hidden_user(vcpu, r))
3181                 return -ENOENT;
3182
3183         if (r->get_user) {
3184                 ret = (r->get_user)(vcpu, r, &val);
3185         } else {
3186                 val = __vcpu_sys_reg(vcpu, r->reg);
3187                 ret = 0;
3188         }
3189
3190         if (!ret)
3191                 ret = put_user(val, uaddr);
3192
3193         return ret;
3194 }
3195
3196 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3197 {
3198         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3199         int err;
3200
3201         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3202                 return demux_c15_get(vcpu, reg->id, uaddr);
3203
3204         err = get_invariant_sys_reg(reg->id, uaddr);
3205         if (err != -ENOENT)
3206                 return err;
3207
3208         return kvm_sys_reg_get_user(vcpu, reg,
3209                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3210 }
3211
3212 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3213                          const struct sys_reg_desc table[], unsigned int num)
3214 {
3215         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3216         const struct sys_reg_desc *r;
3217         u64 val;
3218         int ret;
3219
3220         if (get_user(val, uaddr))
3221                 return -EFAULT;
3222
3223         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3224         if (!r || sysreg_hidden_user(vcpu, r))
3225                 return -ENOENT;
3226
3227         if (sysreg_user_write_ignore(vcpu, r))
3228                 return 0;
3229
3230         if (r->set_user) {
3231                 ret = (r->set_user)(vcpu, r, val);
3232         } else {
3233                 __vcpu_sys_reg(vcpu, r->reg) = val;
3234                 ret = 0;
3235         }
3236
3237         return ret;
3238 }
3239
3240 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3241 {
3242         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3243         int err;
3244
3245         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3246                 return demux_c15_set(vcpu, reg->id, uaddr);
3247
3248         err = set_invariant_sys_reg(reg->id, uaddr);
3249         if (err != -ENOENT)
3250                 return err;
3251
3252         return kvm_sys_reg_set_user(vcpu, reg,
3253                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3254 }
3255
3256 static unsigned int num_demux_regs(void)
3257 {
3258         return CSSELR_MAX;
3259 }
3260
3261 static int write_demux_regids(u64 __user *uindices)
3262 {
3263         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3264         unsigned int i;
3265
3266         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3267         for (i = 0; i < CSSELR_MAX; i++) {
3268                 if (put_user(val | i, uindices))
3269                         return -EFAULT;
3270                 uindices++;
3271         }
3272         return 0;
3273 }
3274
3275 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3276 {
3277         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3278                 KVM_REG_ARM64_SYSREG |
3279                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3280                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3281                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3282                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3283                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3284 }
3285
3286 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3287 {
3288         if (!*uind)
3289                 return true;
3290
3291         if (put_user(sys_reg_to_index(reg), *uind))
3292                 return false;
3293
3294         (*uind)++;
3295         return true;
3296 }
3297
3298 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3299                             const struct sys_reg_desc *rd,
3300                             u64 __user **uind,
3301                             unsigned int *total)
3302 {
3303         /*
3304          * Ignore registers we trap but don't save,
3305          * and for which no custom user accessor is provided.
3306          */
3307         if (!(rd->reg || rd->get_user))
3308                 return 0;
3309
3310         if (sysreg_hidden_user(vcpu, rd))
3311                 return 0;
3312
3313         if (!copy_reg_to_user(rd, uind))
3314                 return -EFAULT;
3315
3316         (*total)++;
3317         return 0;
3318 }
3319
3320 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3321 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3322 {
3323         const struct sys_reg_desc *i2, *end2;
3324         unsigned int total = 0;
3325         int err;
3326
3327         i2 = sys_reg_descs;
3328         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3329
3330         while (i2 != end2) {
3331                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3332                 if (err)
3333                         return err;
3334         }
3335         return total;
3336 }
3337
3338 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3339 {
3340         return ARRAY_SIZE(invariant_sys_regs)
3341                 + num_demux_regs()
3342                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3343 }
3344
3345 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3346 {
3347         unsigned int i;
3348         int err;
3349
3350         /* Then give them all the invariant registers' indices. */
3351         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3352                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3353                         return -EFAULT;
3354                 uindices++;
3355         }
3356
3357         err = walk_sys_regs(vcpu, uindices);
3358         if (err < 0)
3359                 return err;
3360         uindices += err;
3361
3362         return write_demux_regids(uindices);
3363 }
3364
3365 int __init kvm_sys_reg_table_init(void)
3366 {
3367         bool valid = true;
3368         unsigned int i;
3369
3370         /* Make sure tables are unique and in order. */
3371         valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3372         valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3373         valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3374         valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3375         valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3376         valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3377
3378         if (!valid)
3379                 return -EINVAL;
3380
3381         /* We abuse the reset function to overwrite the table itself. */
3382         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3383                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3384
3385         return 0;
3386 }