1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
30 #include <trace/events/kvm.h>
37 * All of this file is extremely similar to the ARM coproc.c, but the
38 * types are different. My gut feeling is that it should be pretty
39 * easy to merge, but that would be an ABI breakage -- again. VFP
40 * would also need to be abstracted.
42 * For AArch32, we only take care of what is being trapped. Anything
43 * that has to do with init and userspace access has to go via the
47 static bool read_from_write_only(struct kvm_vcpu *vcpu,
48 struct sys_reg_params *params,
49 const struct sys_reg_desc *r)
51 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
52 print_sys_reg_instr(params);
53 kvm_inject_undefined(vcpu);
57 static bool write_to_read_only(struct kvm_vcpu *vcpu,
58 struct sys_reg_params *params,
59 const struct sys_reg_desc *r)
61 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
62 print_sys_reg_instr(params);
63 kvm_inject_undefined(vcpu);
67 static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
70 * System registers listed in the switch are not saved on every
71 * exit from the guest but are only saved on vcpu_put.
73 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
74 * should never be listed below, because the guest cannot modify its
75 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
76 * thread when emulating cross-VCPU communication.
79 case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break;
80 case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
81 case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
82 case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
83 case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
84 case TCR_EL1: *val = read_sysreg_s(SYS_TCR_EL12); break;
85 case ESR_EL1: *val = read_sysreg_s(SYS_ESR_EL12); break;
86 case AFSR0_EL1: *val = read_sysreg_s(SYS_AFSR0_EL12); break;
87 case AFSR1_EL1: *val = read_sysreg_s(SYS_AFSR1_EL12); break;
88 case FAR_EL1: *val = read_sysreg_s(SYS_FAR_EL12); break;
89 case MAIR_EL1: *val = read_sysreg_s(SYS_MAIR_EL12); break;
90 case VBAR_EL1: *val = read_sysreg_s(SYS_VBAR_EL12); break;
91 case CONTEXTIDR_EL1: *val = read_sysreg_s(SYS_CONTEXTIDR_EL12);break;
92 case TPIDR_EL0: *val = read_sysreg_s(SYS_TPIDR_EL0); break;
93 case TPIDRRO_EL0: *val = read_sysreg_s(SYS_TPIDRRO_EL0); break;
94 case TPIDR_EL1: *val = read_sysreg_s(SYS_TPIDR_EL1); break;
95 case AMAIR_EL1: *val = read_sysreg_s(SYS_AMAIR_EL12); break;
96 case CNTKCTL_EL1: *val = read_sysreg_s(SYS_CNTKCTL_EL12); break;
97 case ELR_EL1: *val = read_sysreg_s(SYS_ELR_EL12); break;
98 case PAR_EL1: *val = read_sysreg_s(SYS_PAR_EL1); break;
99 case DACR32_EL2: *val = read_sysreg_s(SYS_DACR32_EL2); break;
100 case IFSR32_EL2: *val = read_sysreg_s(SYS_IFSR32_EL2); break;
101 case DBGVCR32_EL2: *val = read_sysreg_s(SYS_DBGVCR32_EL2); break;
102 default: return false;
108 static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
111 * System registers listed in the switch are not restored on every
112 * entry to the guest but are only restored on vcpu_load.
114 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
115 * should never be listed below, because the MPIDR should only be set
116 * once, before running the VCPU, and never changed later.
119 case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break;
120 case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
121 case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
122 case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
123 case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
124 case TCR_EL1: write_sysreg_s(val, SYS_TCR_EL12); break;
125 case ESR_EL1: write_sysreg_s(val, SYS_ESR_EL12); break;
126 case AFSR0_EL1: write_sysreg_s(val, SYS_AFSR0_EL12); break;
127 case AFSR1_EL1: write_sysreg_s(val, SYS_AFSR1_EL12); break;
128 case FAR_EL1: write_sysreg_s(val, SYS_FAR_EL12); break;
129 case MAIR_EL1: write_sysreg_s(val, SYS_MAIR_EL12); break;
130 case VBAR_EL1: write_sysreg_s(val, SYS_VBAR_EL12); break;
131 case CONTEXTIDR_EL1: write_sysreg_s(val, SYS_CONTEXTIDR_EL12);break;
132 case TPIDR_EL0: write_sysreg_s(val, SYS_TPIDR_EL0); break;
133 case TPIDRRO_EL0: write_sysreg_s(val, SYS_TPIDRRO_EL0); break;
134 case TPIDR_EL1: write_sysreg_s(val, SYS_TPIDR_EL1); break;
135 case AMAIR_EL1: write_sysreg_s(val, SYS_AMAIR_EL12); break;
136 case CNTKCTL_EL1: write_sysreg_s(val, SYS_CNTKCTL_EL12); break;
137 case ELR_EL1: write_sysreg_s(val, SYS_ELR_EL12); break;
138 case PAR_EL1: write_sysreg_s(val, SYS_PAR_EL1); break;
139 case DACR32_EL2: write_sysreg_s(val, SYS_DACR32_EL2); break;
140 case IFSR32_EL2: write_sysreg_s(val, SYS_IFSR32_EL2); break;
141 case DBGVCR32_EL2: write_sysreg_s(val, SYS_DBGVCR32_EL2); break;
142 default: return false;
148 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
150 u64 val = 0x8badf00d8badf00d;
152 if (vcpu->arch.sysregs_loaded_on_cpu &&
153 __vcpu_read_sys_reg_from_cpu(reg, &val))
156 return __vcpu_sys_reg(vcpu, reg);
159 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
161 if (vcpu->arch.sysregs_loaded_on_cpu &&
162 __vcpu_write_sys_reg_to_cpu(val, reg))
165 __vcpu_sys_reg(vcpu, reg) = val;
168 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
169 static u32 cache_levels;
171 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
172 #define CSSELR_MAX 12
174 /* Which cache CCSIDR represents depends on CSSELR value. */
175 static u32 get_ccsidr(u32 csselr)
179 /* Make sure noone else changes CSSELR during this! */
181 write_sysreg(csselr, csselr_el1);
183 ccsidr = read_sysreg(ccsidr_el1);
190 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
192 static bool access_dcsw(struct kvm_vcpu *vcpu,
193 struct sys_reg_params *p,
194 const struct sys_reg_desc *r)
197 return read_from_write_only(vcpu, p, r);
200 * Only track S/W ops if we don't have FWB. It still indicates
201 * that the guest is a bit broken (S/W operations should only
202 * be done by firmware, knowing that there is only a single
203 * CPU left in the system, and certainly not from non-secure
206 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
207 kvm_set_way_flush(vcpu);
213 * Generic accessor for VM registers. Only called as long as HCR_TVM
214 * is set. If the guest enables the MMU, we stop trapping the VM
215 * sys_regs and leave it in complete control of the caches.
217 static bool access_vm_reg(struct kvm_vcpu *vcpu,
218 struct sys_reg_params *p,
219 const struct sys_reg_desc *r)
221 bool was_enabled = vcpu_has_cache_enabled(vcpu);
225 BUG_ON(!p->is_write);
227 /* See the 32bit mapping in kvm_host.h */
231 if (!p->is_aarch32 || !p->is_32bit) {
234 val = vcpu_read_sys_reg(vcpu, reg);
236 val = (p->regval << 32) | (u64)lower_32_bits(val);
238 val = ((u64)upper_32_bits(val) << 32) |
239 lower_32_bits(p->regval);
241 vcpu_write_sys_reg(vcpu, val, reg);
243 kvm_toggle_cache(vcpu, was_enabled);
247 static bool access_actlr(struct kvm_vcpu *vcpu,
248 struct sys_reg_params *p,
249 const struct sys_reg_desc *r)
252 return ignore_write(vcpu, p);
254 p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
258 p->regval = upper_32_bits(p->regval);
260 p->regval = lower_32_bits(p->regval);
267 * Trap handler for the GICv3 SGI generation system register.
268 * Forward the request to the VGIC emulation.
269 * The cp15_64 code makes sure this automatically works
270 * for both AArch64 and AArch32 accesses.
272 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
273 struct sys_reg_params *p,
274 const struct sys_reg_desc *r)
279 return read_from_write_only(vcpu, p, r);
282 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
283 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
284 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
285 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
290 default: /* Keep GCC quiet */
291 case 0: /* ICC_SGI1R */
294 case 1: /* ICC_ASGI1R */
295 case 2: /* ICC_SGI0R */
301 default: /* Keep GCC quiet */
302 case 5: /* ICC_SGI1R_EL1 */
305 case 6: /* ICC_ASGI1R_EL1 */
306 case 7: /* ICC_SGI0R_EL1 */
312 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
317 static bool access_gic_sre(struct kvm_vcpu *vcpu,
318 struct sys_reg_params *p,
319 const struct sys_reg_desc *r)
322 return ignore_write(vcpu, p);
324 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
328 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
329 struct sys_reg_params *p,
330 const struct sys_reg_desc *r)
333 return ignore_write(vcpu, p);
335 return read_zero(vcpu, p);
339 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
340 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
341 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
342 * treat it separately.
344 static bool trap_loregion(struct kvm_vcpu *vcpu,
345 struct sys_reg_params *p,
346 const struct sys_reg_desc *r)
348 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
349 u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
350 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
352 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
353 kvm_inject_undefined(vcpu);
357 if (p->is_write && sr == SYS_LORID_EL1)
358 return write_to_read_only(vcpu, p, r);
360 return trap_raz_wi(vcpu, p, r);
363 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
364 struct sys_reg_params *p,
365 const struct sys_reg_desc *r)
368 return ignore_write(vcpu, p);
370 p->regval = (1 << 3);
375 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
376 struct sys_reg_params *p,
377 const struct sys_reg_desc *r)
380 return ignore_write(vcpu, p);
382 p->regval = read_sysreg(dbgauthstatus_el1);
388 * We want to avoid world-switching all the DBG registers all the
391 * - If we've touched any debug register, it is likely that we're
392 * going to touch more of them. It then makes sense to disable the
393 * traps and start doing the save/restore dance
394 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
395 * then mandatory to save/restore the registers, as the guest
398 * For this, we use a DIRTY bit, indicating the guest has modified the
399 * debug registers, used as follow:
402 * - If the dirty bit is set (because we're coming back from trapping),
403 * disable the traps, save host registers, restore guest registers.
404 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
405 * set the dirty bit, disable the traps, save host registers,
406 * restore guest registers.
407 * - Otherwise, enable the traps
410 * - If the dirty bit is set, save guest registers, restore host
411 * registers and clear the dirty bit. This ensure that the host can
412 * now use the debug registers.
414 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
415 struct sys_reg_params *p,
416 const struct sys_reg_desc *r)
419 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
420 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
422 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
425 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
431 * reg_to_dbg/dbg_to_reg
433 * A 32 bit write to a debug register leave top bits alone
434 * A 32 bit read from a debug register only returns the bottom bits
436 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
437 * hyp.S code switches between host and guest values in future.
439 static void reg_to_dbg(struct kvm_vcpu *vcpu,
440 struct sys_reg_params *p,
447 val |= ((*dbg_reg >> 32) << 32);
451 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
454 static void dbg_to_reg(struct kvm_vcpu *vcpu,
455 struct sys_reg_params *p,
458 p->regval = *dbg_reg;
460 p->regval &= 0xffffffffUL;
463 static bool trap_bvr(struct kvm_vcpu *vcpu,
464 struct sys_reg_params *p,
465 const struct sys_reg_desc *rd)
467 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
470 reg_to_dbg(vcpu, p, dbg_reg);
472 dbg_to_reg(vcpu, p, dbg_reg);
474 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
479 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
480 const struct kvm_one_reg *reg, void __user *uaddr)
482 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
484 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
489 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490 const struct kvm_one_reg *reg, void __user *uaddr)
492 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
494 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
499 static void reset_bvr(struct kvm_vcpu *vcpu,
500 const struct sys_reg_desc *rd)
502 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
505 static bool trap_bcr(struct kvm_vcpu *vcpu,
506 struct sys_reg_params *p,
507 const struct sys_reg_desc *rd)
509 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
512 reg_to_dbg(vcpu, p, dbg_reg);
514 dbg_to_reg(vcpu, p, dbg_reg);
516 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
521 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
522 const struct kvm_one_reg *reg, void __user *uaddr)
524 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
526 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
532 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
533 const struct kvm_one_reg *reg, void __user *uaddr)
535 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
537 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
542 static void reset_bcr(struct kvm_vcpu *vcpu,
543 const struct sys_reg_desc *rd)
545 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
548 static bool trap_wvr(struct kvm_vcpu *vcpu,
549 struct sys_reg_params *p,
550 const struct sys_reg_desc *rd)
552 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
555 reg_to_dbg(vcpu, p, dbg_reg);
557 dbg_to_reg(vcpu, p, dbg_reg);
559 trace_trap_reg(__func__, rd->reg, p->is_write,
560 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
565 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566 const struct kvm_one_reg *reg, void __user *uaddr)
568 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
570 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
575 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576 const struct kvm_one_reg *reg, void __user *uaddr)
578 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
580 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
585 static void reset_wvr(struct kvm_vcpu *vcpu,
586 const struct sys_reg_desc *rd)
588 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
591 static bool trap_wcr(struct kvm_vcpu *vcpu,
592 struct sys_reg_params *p,
593 const struct sys_reg_desc *rd)
595 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
598 reg_to_dbg(vcpu, p, dbg_reg);
600 dbg_to_reg(vcpu, p, dbg_reg);
602 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
607 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
608 const struct kvm_one_reg *reg, void __user *uaddr)
610 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
612 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
617 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
618 const struct kvm_one_reg *reg, void __user *uaddr)
620 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
622 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
627 static void reset_wcr(struct kvm_vcpu *vcpu,
628 const struct sys_reg_desc *rd)
630 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
633 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
635 u64 amair = read_sysreg(amair_el1);
636 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
639 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
641 u64 actlr = read_sysreg(actlr_el1);
642 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
645 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
650 * Map the vcpu_id into the first three affinity level fields of
651 * the MPIDR. We limit the number of VCPUs in level 0 due to a
652 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
653 * of the GICv3 to be able to address each CPU directly when
656 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
657 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
658 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
659 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
662 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
666 pmcr = read_sysreg(pmcr_el0);
668 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
669 * except PMCR.E resetting to zero.
671 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
672 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
673 if (!system_supports_32bit_el0())
674 val |= ARMV8_PMU_PMCR_LC;
675 __vcpu_sys_reg(vcpu, r->reg) = val;
678 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
680 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
681 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
684 kvm_inject_undefined(vcpu);
689 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
691 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
694 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
696 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
699 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
701 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
704 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
706 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
709 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
710 const struct sys_reg_desc *r)
714 if (!kvm_arm_pmu_v3_ready(vcpu))
715 return trap_raz_wi(vcpu, p, r);
717 if (pmu_access_el0_disabled(vcpu))
721 /* Only update writeable bits of PMCR */
722 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
723 val &= ~ARMV8_PMU_PMCR_MASK;
724 val |= p->regval & ARMV8_PMU_PMCR_MASK;
725 if (!system_supports_32bit_el0())
726 val |= ARMV8_PMU_PMCR_LC;
727 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
728 kvm_pmu_handle_pmcr(vcpu, val);
729 kvm_vcpu_pmu_restore_guest(vcpu);
731 /* PMCR.P & PMCR.C are RAZ */
732 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
733 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
740 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
741 const struct sys_reg_desc *r)
743 if (!kvm_arm_pmu_v3_ready(vcpu))
744 return trap_raz_wi(vcpu, p, r);
746 if (pmu_access_event_counter_el0_disabled(vcpu))
750 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
752 /* return PMSELR.SEL field */
753 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
754 & ARMV8_PMU_COUNTER_MASK;
759 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760 const struct sys_reg_desc *r)
764 if (!kvm_arm_pmu_v3_ready(vcpu))
765 return trap_raz_wi(vcpu, p, r);
769 if (pmu_access_el0_disabled(vcpu))
772 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
779 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
783 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
784 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
785 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
786 kvm_inject_undefined(vcpu);
793 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
794 struct sys_reg_params *p,
795 const struct sys_reg_desc *r)
799 if (!kvm_arm_pmu_v3_ready(vcpu))
800 return trap_raz_wi(vcpu, p, r);
802 if (r->CRn == 9 && r->CRm == 13) {
805 if (pmu_access_event_counter_el0_disabled(vcpu))
808 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
809 & ARMV8_PMU_COUNTER_MASK;
810 } else if (r->Op2 == 0) {
812 if (pmu_access_cycle_counter_el0_disabled(vcpu))
815 idx = ARMV8_PMU_CYCLE_IDX;
819 } else if (r->CRn == 0 && r->CRm == 9) {
821 if (pmu_access_event_counter_el0_disabled(vcpu))
824 idx = ARMV8_PMU_CYCLE_IDX;
825 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
827 if (pmu_access_event_counter_el0_disabled(vcpu))
830 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
835 if (!pmu_counter_idx_valid(vcpu, idx))
839 if (pmu_access_el0_disabled(vcpu))
842 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
844 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
850 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
851 const struct sys_reg_desc *r)
855 if (!kvm_arm_pmu_v3_ready(vcpu))
856 return trap_raz_wi(vcpu, p, r);
858 if (pmu_access_el0_disabled(vcpu))
861 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
863 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
864 reg = PMEVTYPER0_EL0 + idx;
865 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
866 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
867 if (idx == ARMV8_PMU_CYCLE_IDX)
871 reg = PMEVTYPER0_EL0 + idx;
876 if (!pmu_counter_idx_valid(vcpu, idx))
880 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
881 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
882 kvm_vcpu_pmu_restore_guest(vcpu);
884 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
890 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
891 const struct sys_reg_desc *r)
895 if (!kvm_arm_pmu_v3_ready(vcpu))
896 return trap_raz_wi(vcpu, p, r);
898 if (pmu_access_el0_disabled(vcpu))
901 mask = kvm_pmu_valid_counter_mask(vcpu);
903 val = p->regval & mask;
905 /* accessing PMCNTENSET_EL0 */
906 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
907 kvm_pmu_enable_counter_mask(vcpu, val);
908 kvm_vcpu_pmu_restore_guest(vcpu);
910 /* accessing PMCNTENCLR_EL0 */
911 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
912 kvm_pmu_disable_counter_mask(vcpu, val);
915 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
921 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
922 const struct sys_reg_desc *r)
924 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
926 if (!kvm_arm_pmu_v3_ready(vcpu))
927 return trap_raz_wi(vcpu, p, r);
929 if (!vcpu_mode_priv(vcpu)) {
930 kvm_inject_undefined(vcpu);
935 u64 val = p->regval & mask;
938 /* accessing PMINTENSET_EL1 */
939 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
941 /* accessing PMINTENCLR_EL1 */
942 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
944 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
950 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
951 const struct sys_reg_desc *r)
953 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
955 if (!kvm_arm_pmu_v3_ready(vcpu))
956 return trap_raz_wi(vcpu, p, r);
958 if (pmu_access_el0_disabled(vcpu))
963 /* accessing PMOVSSET_EL0 */
964 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
966 /* accessing PMOVSCLR_EL0 */
967 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
969 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
975 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
976 const struct sys_reg_desc *r)
980 if (!kvm_arm_pmu_v3_ready(vcpu))
981 return trap_raz_wi(vcpu, p, r);
984 return read_from_write_only(vcpu, p, r);
986 if (pmu_write_swinc_el0_disabled(vcpu))
989 mask = kvm_pmu_valid_counter_mask(vcpu);
990 kvm_pmu_software_increment(vcpu, p->regval & mask);
994 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
995 const struct sys_reg_desc *r)
997 if (!kvm_arm_pmu_v3_ready(vcpu))
998 return trap_raz_wi(vcpu, p, r);
1001 if (!vcpu_mode_priv(vcpu)) {
1002 kvm_inject_undefined(vcpu);
1006 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1007 p->regval & ARMV8_PMU_USERENR_MASK;
1009 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1010 & ARMV8_PMU_USERENR_MASK;
1016 #define reg_to_encoding(x) \
1017 sys_reg((u32)(x)->Op0, (u32)(x)->Op1, \
1018 (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
1020 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1021 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
1022 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
1023 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
1024 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
1025 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
1026 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
1027 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
1028 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
1029 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
1031 /* Macro to expand the PMEVCNTRn_EL0 register */
1032 #define PMU_PMEVCNTR_EL0(n) \
1033 { SYS_DESC(SYS_PMEVCNTRn_EL0(n)), \
1034 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1036 /* Macro to expand the PMEVTYPERn_EL0 register */
1037 #define PMU_PMEVTYPER_EL0(n) \
1038 { SYS_DESC(SYS_PMEVTYPERn_EL0(n)), \
1039 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1041 static bool access_amu(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1042 const struct sys_reg_desc *r)
1044 kvm_inject_undefined(vcpu);
1049 /* Macro to expand the AMU counter and type registers*/
1050 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), access_amu }
1051 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), access_amu }
1052 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), access_amu }
1053 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), access_amu }
1055 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1056 struct sys_reg_params *p,
1057 const struct sys_reg_desc *rd)
1060 * If we land here, that is because we didn't fixup the access on exit
1061 * by allowing the PtrAuth sysregs. The only way this happens is when
1062 * the guest does not have PtrAuth support enabled.
1064 kvm_inject_undefined(vcpu);
1069 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1070 const struct sys_reg_desc *rd)
1072 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1075 #define __PTRAUTH_KEY(k) \
1076 { SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k, \
1077 .visibility = ptrauth_visibility}
1079 #define PTRAUTH_KEY(k) \
1080 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1081 __PTRAUTH_KEY(k ## KEYHI_EL1)
1083 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1084 struct sys_reg_params *p,
1085 const struct sys_reg_desc *r)
1087 enum kvm_arch_timers tmr;
1088 enum kvm_arch_timer_regs treg;
1089 u64 reg = reg_to_encoding(r);
1092 case SYS_CNTP_TVAL_EL0:
1093 case SYS_AARCH32_CNTP_TVAL:
1095 treg = TIMER_REG_TVAL;
1097 case SYS_CNTP_CTL_EL0:
1098 case SYS_AARCH32_CNTP_CTL:
1100 treg = TIMER_REG_CTL;
1102 case SYS_CNTP_CVAL_EL0:
1103 case SYS_AARCH32_CNTP_CVAL:
1105 treg = TIMER_REG_CVAL;
1112 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1114 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1119 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1120 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1121 struct sys_reg_desc const *r, bool raz)
1123 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1124 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1125 u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1127 if (id == SYS_ID_AA64PFR0_EL1) {
1128 if (!vcpu_has_sve(vcpu))
1129 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1130 val &= ~(0xfUL << ID_AA64PFR0_AMU_SHIFT);
1131 if (!(val & (0xfUL << ID_AA64PFR0_CSV2_SHIFT)) &&
1132 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
1133 val |= (1UL << ID_AA64PFR0_CSV2_SHIFT);
1134 } else if (id == SYS_ID_AA64PFR1_EL1) {
1135 val &= ~(0xfUL << ID_AA64PFR1_MTE_SHIFT);
1136 } else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1137 val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1138 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1139 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1140 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1141 } else if (id == SYS_ID_AA64DFR0_EL1) {
1142 /* Limit guests to PMUv3 for ARMv8.1 */
1143 val = cpuid_feature_cap_perfmon_field(val,
1144 ID_AA64DFR0_PMUVER_SHIFT,
1145 ID_AA64DFR0_PMUVER_8_1);
1146 } else if (id == SYS_ID_DFR0_EL1) {
1147 /* Limit guests to PMUv3 for ARMv8.1 */
1148 val = cpuid_feature_cap_perfmon_field(val,
1149 ID_DFR0_PERFMON_SHIFT,
1150 ID_DFR0_PERFMON_8_1);
1156 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1157 const struct sys_reg_desc *r)
1159 u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1160 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1163 case SYS_ID_AA64ZFR0_EL1:
1164 if (!vcpu_has_sve(vcpu))
1172 /* cpufeature ID register access trap handlers */
1174 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1175 struct sys_reg_params *p,
1176 const struct sys_reg_desc *r,
1180 return write_to_read_only(vcpu, p, r);
1182 p->regval = read_id_reg(vcpu, r, raz);
1186 static bool access_id_reg(struct kvm_vcpu *vcpu,
1187 struct sys_reg_params *p,
1188 const struct sys_reg_desc *r)
1190 bool raz = sysreg_visible_as_raz(vcpu, r);
1192 return __access_id_reg(vcpu, p, r, raz);
1195 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1196 struct sys_reg_params *p,
1197 const struct sys_reg_desc *r)
1199 return __access_id_reg(vcpu, p, r, true);
1202 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1203 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1204 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1206 /* Visibility overrides for SVE-specific control registers */
1207 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1208 const struct sys_reg_desc *rd)
1210 if (vcpu_has_sve(vcpu))
1217 * cpufeature ID register user accessors
1219 * For now, these registers are immutable for userspace, so no values
1220 * are stored, and for set_id_reg() we don't allow the effective value
1223 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1224 const struct sys_reg_desc *rd, void __user *uaddr,
1227 const u64 id = sys_reg_to_index(rd);
1228 const u64 val = read_id_reg(vcpu, rd, raz);
1230 return reg_to_user(uaddr, &val, id);
1233 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1234 const struct sys_reg_desc *rd, void __user *uaddr,
1237 const u64 id = sys_reg_to_index(rd);
1241 err = reg_from_user(&val, uaddr, id);
1245 /* This is what we mean by invariant: you can't change it. */
1246 if (val != read_id_reg(vcpu, rd, raz))
1252 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1253 const struct kvm_one_reg *reg, void __user *uaddr)
1255 bool raz = sysreg_visible_as_raz(vcpu, rd);
1257 return __get_id_reg(vcpu, rd, uaddr, raz);
1260 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1261 const struct kvm_one_reg *reg, void __user *uaddr)
1263 bool raz = sysreg_visible_as_raz(vcpu, rd);
1265 return __set_id_reg(vcpu, rd, uaddr, raz);
1268 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1269 const struct kvm_one_reg *reg, void __user *uaddr)
1271 return __get_id_reg(vcpu, rd, uaddr, true);
1274 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1275 const struct kvm_one_reg *reg, void __user *uaddr)
1277 return __set_id_reg(vcpu, rd, uaddr, true);
1280 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1281 const struct sys_reg_desc *r)
1284 return write_to_read_only(vcpu, p, r);
1286 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1290 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1291 const struct sys_reg_desc *r)
1294 return write_to_read_only(vcpu, p, r);
1296 p->regval = read_sysreg(clidr_el1);
1300 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1301 const struct sys_reg_desc *r)
1305 /* See the 32bit mapping in kvm_host.h */
1310 vcpu_write_sys_reg(vcpu, p->regval, reg);
1312 p->regval = vcpu_read_sys_reg(vcpu, reg);
1316 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1317 const struct sys_reg_desc *r)
1322 return write_to_read_only(vcpu, p, r);
1324 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1325 p->regval = get_ccsidr(csselr);
1328 * Guests should not be doing cache operations by set/way at all, and
1329 * for this reason, we trap them and attempt to infer the intent, so
1330 * that we can flush the entire guest's address space at the appropriate
1332 * To prevent this trapping from causing performance problems, let's
1333 * expose the geometry of all data and unified caches (which are
1334 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1335 * [If guests should attempt to infer aliasing properties from the
1336 * geometry (which is not permitted by the architecture), they would
1337 * only do so for virtually indexed caches.]
1339 if (!(csselr & 1)) // data or unified cache
1340 p->regval &= ~GENMASK(27, 3);
1344 static bool access_mte_regs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1345 const struct sys_reg_desc *r)
1347 kvm_inject_undefined(vcpu);
1351 /* sys_reg_desc initialiser for known cpufeature ID registers */
1352 #define ID_SANITISED(name) { \
1353 SYS_DESC(SYS_##name), \
1354 .access = access_id_reg, \
1355 .get_user = get_id_reg, \
1356 .set_user = set_id_reg, \
1357 .visibility = id_visibility, \
1361 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1362 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1363 * (1 <= crm < 8, 0 <= Op2 < 8).
1365 #define ID_UNALLOCATED(crm, op2) { \
1366 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1367 .access = access_raz_id_reg, \
1368 .get_user = get_raz_id_reg, \
1369 .set_user = set_raz_id_reg, \
1373 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1374 * For now, these are exposed just like unallocated ID regs: they appear
1375 * RAZ for the guest.
1377 #define ID_HIDDEN(name) { \
1378 SYS_DESC(SYS_##name), \
1379 .access = access_raz_id_reg, \
1380 .get_user = get_raz_id_reg, \
1381 .set_user = set_raz_id_reg, \
1385 * Architected system registers.
1386 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1388 * Debug handling: We do trap most, if not all debug related system
1389 * registers. The implementation is good enough to ensure that a guest
1390 * can use these with minimal performance degradation. The drawback is
1391 * that we don't implement any of the external debug, none of the
1392 * OSlock protocol. This should be revisited if we ever encounter a
1393 * more demanding guest...
1395 static const struct sys_reg_desc sys_reg_descs[] = {
1396 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1397 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1398 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1400 DBG_BCR_BVR_WCR_WVR_EL1(0),
1401 DBG_BCR_BVR_WCR_WVR_EL1(1),
1402 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1403 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1404 DBG_BCR_BVR_WCR_WVR_EL1(2),
1405 DBG_BCR_BVR_WCR_WVR_EL1(3),
1406 DBG_BCR_BVR_WCR_WVR_EL1(4),
1407 DBG_BCR_BVR_WCR_WVR_EL1(5),
1408 DBG_BCR_BVR_WCR_WVR_EL1(6),
1409 DBG_BCR_BVR_WCR_WVR_EL1(7),
1410 DBG_BCR_BVR_WCR_WVR_EL1(8),
1411 DBG_BCR_BVR_WCR_WVR_EL1(9),
1412 DBG_BCR_BVR_WCR_WVR_EL1(10),
1413 DBG_BCR_BVR_WCR_WVR_EL1(11),
1414 DBG_BCR_BVR_WCR_WVR_EL1(12),
1415 DBG_BCR_BVR_WCR_WVR_EL1(13),
1416 DBG_BCR_BVR_WCR_WVR_EL1(14),
1417 DBG_BCR_BVR_WCR_WVR_EL1(15),
1419 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1420 { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1421 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1422 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1423 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1424 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1425 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1426 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1428 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1429 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1430 // DBGDTR[TR]X_EL0 share the same encoding
1431 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1433 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1435 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1438 * ID regs: all ID_SANITISED() entries here must have corresponding
1439 * entries in arm64_ftr_regs[].
1442 /* AArch64 mappings of the AArch32 ID registers */
1444 ID_SANITISED(ID_PFR0_EL1),
1445 ID_SANITISED(ID_PFR1_EL1),
1446 ID_SANITISED(ID_DFR0_EL1),
1447 ID_HIDDEN(ID_AFR0_EL1),
1448 ID_SANITISED(ID_MMFR0_EL1),
1449 ID_SANITISED(ID_MMFR1_EL1),
1450 ID_SANITISED(ID_MMFR2_EL1),
1451 ID_SANITISED(ID_MMFR3_EL1),
1454 ID_SANITISED(ID_ISAR0_EL1),
1455 ID_SANITISED(ID_ISAR1_EL1),
1456 ID_SANITISED(ID_ISAR2_EL1),
1457 ID_SANITISED(ID_ISAR3_EL1),
1458 ID_SANITISED(ID_ISAR4_EL1),
1459 ID_SANITISED(ID_ISAR5_EL1),
1460 ID_SANITISED(ID_MMFR4_EL1),
1461 ID_SANITISED(ID_ISAR6_EL1),
1464 ID_SANITISED(MVFR0_EL1),
1465 ID_SANITISED(MVFR1_EL1),
1466 ID_SANITISED(MVFR2_EL1),
1467 ID_UNALLOCATED(3,3),
1468 ID_SANITISED(ID_PFR2_EL1),
1469 ID_HIDDEN(ID_DFR1_EL1),
1470 ID_SANITISED(ID_MMFR5_EL1),
1471 ID_UNALLOCATED(3,7),
1473 /* AArch64 ID registers */
1475 ID_SANITISED(ID_AA64PFR0_EL1),
1476 ID_SANITISED(ID_AA64PFR1_EL1),
1477 ID_UNALLOCATED(4,2),
1478 ID_UNALLOCATED(4,3),
1479 ID_SANITISED(ID_AA64ZFR0_EL1),
1480 ID_UNALLOCATED(4,5),
1481 ID_UNALLOCATED(4,6),
1482 ID_UNALLOCATED(4,7),
1485 ID_SANITISED(ID_AA64DFR0_EL1),
1486 ID_SANITISED(ID_AA64DFR1_EL1),
1487 ID_UNALLOCATED(5,2),
1488 ID_UNALLOCATED(5,3),
1489 ID_HIDDEN(ID_AA64AFR0_EL1),
1490 ID_HIDDEN(ID_AA64AFR1_EL1),
1491 ID_UNALLOCATED(5,6),
1492 ID_UNALLOCATED(5,7),
1495 ID_SANITISED(ID_AA64ISAR0_EL1),
1496 ID_SANITISED(ID_AA64ISAR1_EL1),
1497 ID_UNALLOCATED(6,2),
1498 ID_UNALLOCATED(6,3),
1499 ID_UNALLOCATED(6,4),
1500 ID_UNALLOCATED(6,5),
1501 ID_UNALLOCATED(6,6),
1502 ID_UNALLOCATED(6,7),
1505 ID_SANITISED(ID_AA64MMFR0_EL1),
1506 ID_SANITISED(ID_AA64MMFR1_EL1),
1507 ID_SANITISED(ID_AA64MMFR2_EL1),
1508 ID_UNALLOCATED(7,3),
1509 ID_UNALLOCATED(7,4),
1510 ID_UNALLOCATED(7,5),
1511 ID_UNALLOCATED(7,6),
1512 ID_UNALLOCATED(7,7),
1514 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1515 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1516 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1518 { SYS_DESC(SYS_RGSR_EL1), access_mte_regs },
1519 { SYS_DESC(SYS_GCR_EL1), access_mte_regs },
1521 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1522 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1523 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1524 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1532 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1533 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1534 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1536 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1537 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1538 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1539 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1540 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1541 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1542 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1543 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1545 { SYS_DESC(SYS_TFSR_EL1), access_mte_regs },
1546 { SYS_DESC(SYS_TFSRE0_EL1), access_mte_regs },
1548 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1549 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1551 { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1552 { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1554 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1555 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1557 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1558 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1559 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1560 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1561 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1563 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1564 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1566 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1567 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1568 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1569 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1570 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1571 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1572 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1573 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1574 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1575 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1576 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1577 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1579 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1580 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1582 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1584 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1585 { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1586 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1587 { SYS_DESC(SYS_CTR_EL0), access_ctr },
1589 { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1590 { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1591 { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1592 { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1593 { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1594 { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1595 { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1596 { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1597 { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1598 { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1599 { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1601 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1602 * in 32bit mode. Here we choose to reset it as zero for consistency.
1604 { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1605 { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1607 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1608 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1610 { SYS_DESC(SYS_AMCR_EL0), access_amu },
1611 { SYS_DESC(SYS_AMCFGR_EL0), access_amu },
1612 { SYS_DESC(SYS_AMCGCR_EL0), access_amu },
1613 { SYS_DESC(SYS_AMUSERENR_EL0), access_amu },
1614 { SYS_DESC(SYS_AMCNTENCLR0_EL0), access_amu },
1615 { SYS_DESC(SYS_AMCNTENSET0_EL0), access_amu },
1616 { SYS_DESC(SYS_AMCNTENCLR1_EL0), access_amu },
1617 { SYS_DESC(SYS_AMCNTENSET1_EL0), access_amu },
1618 AMU_AMEVCNTR0_EL0(0),
1619 AMU_AMEVCNTR0_EL0(1),
1620 AMU_AMEVCNTR0_EL0(2),
1621 AMU_AMEVCNTR0_EL0(3),
1622 AMU_AMEVCNTR0_EL0(4),
1623 AMU_AMEVCNTR0_EL0(5),
1624 AMU_AMEVCNTR0_EL0(6),
1625 AMU_AMEVCNTR0_EL0(7),
1626 AMU_AMEVCNTR0_EL0(8),
1627 AMU_AMEVCNTR0_EL0(9),
1628 AMU_AMEVCNTR0_EL0(10),
1629 AMU_AMEVCNTR0_EL0(11),
1630 AMU_AMEVCNTR0_EL0(12),
1631 AMU_AMEVCNTR0_EL0(13),
1632 AMU_AMEVCNTR0_EL0(14),
1633 AMU_AMEVCNTR0_EL0(15),
1634 AMU_AMEVTYPER0_EL0(0),
1635 AMU_AMEVTYPER0_EL0(1),
1636 AMU_AMEVTYPER0_EL0(2),
1637 AMU_AMEVTYPER0_EL0(3),
1638 AMU_AMEVTYPER0_EL0(4),
1639 AMU_AMEVTYPER0_EL0(5),
1640 AMU_AMEVTYPER0_EL0(6),
1641 AMU_AMEVTYPER0_EL0(7),
1642 AMU_AMEVTYPER0_EL0(8),
1643 AMU_AMEVTYPER0_EL0(9),
1644 AMU_AMEVTYPER0_EL0(10),
1645 AMU_AMEVTYPER0_EL0(11),
1646 AMU_AMEVTYPER0_EL0(12),
1647 AMU_AMEVTYPER0_EL0(13),
1648 AMU_AMEVTYPER0_EL0(14),
1649 AMU_AMEVTYPER0_EL0(15),
1650 AMU_AMEVCNTR1_EL0(0),
1651 AMU_AMEVCNTR1_EL0(1),
1652 AMU_AMEVCNTR1_EL0(2),
1653 AMU_AMEVCNTR1_EL0(3),
1654 AMU_AMEVCNTR1_EL0(4),
1655 AMU_AMEVCNTR1_EL0(5),
1656 AMU_AMEVCNTR1_EL0(6),
1657 AMU_AMEVCNTR1_EL0(7),
1658 AMU_AMEVCNTR1_EL0(8),
1659 AMU_AMEVCNTR1_EL0(9),
1660 AMU_AMEVCNTR1_EL0(10),
1661 AMU_AMEVCNTR1_EL0(11),
1662 AMU_AMEVCNTR1_EL0(12),
1663 AMU_AMEVCNTR1_EL0(13),
1664 AMU_AMEVCNTR1_EL0(14),
1665 AMU_AMEVCNTR1_EL0(15),
1666 AMU_AMEVTYPER1_EL0(0),
1667 AMU_AMEVTYPER1_EL0(1),
1668 AMU_AMEVTYPER1_EL0(2),
1669 AMU_AMEVTYPER1_EL0(3),
1670 AMU_AMEVTYPER1_EL0(4),
1671 AMU_AMEVTYPER1_EL0(5),
1672 AMU_AMEVTYPER1_EL0(6),
1673 AMU_AMEVTYPER1_EL0(7),
1674 AMU_AMEVTYPER1_EL0(8),
1675 AMU_AMEVTYPER1_EL0(9),
1676 AMU_AMEVTYPER1_EL0(10),
1677 AMU_AMEVTYPER1_EL0(11),
1678 AMU_AMEVTYPER1_EL0(12),
1679 AMU_AMEVTYPER1_EL0(13),
1680 AMU_AMEVTYPER1_EL0(14),
1681 AMU_AMEVTYPER1_EL0(15),
1683 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1684 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1685 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1688 PMU_PMEVCNTR_EL0(0),
1689 PMU_PMEVCNTR_EL0(1),
1690 PMU_PMEVCNTR_EL0(2),
1691 PMU_PMEVCNTR_EL0(3),
1692 PMU_PMEVCNTR_EL0(4),
1693 PMU_PMEVCNTR_EL0(5),
1694 PMU_PMEVCNTR_EL0(6),
1695 PMU_PMEVCNTR_EL0(7),
1696 PMU_PMEVCNTR_EL0(8),
1697 PMU_PMEVCNTR_EL0(9),
1698 PMU_PMEVCNTR_EL0(10),
1699 PMU_PMEVCNTR_EL0(11),
1700 PMU_PMEVCNTR_EL0(12),
1701 PMU_PMEVCNTR_EL0(13),
1702 PMU_PMEVCNTR_EL0(14),
1703 PMU_PMEVCNTR_EL0(15),
1704 PMU_PMEVCNTR_EL0(16),
1705 PMU_PMEVCNTR_EL0(17),
1706 PMU_PMEVCNTR_EL0(18),
1707 PMU_PMEVCNTR_EL0(19),
1708 PMU_PMEVCNTR_EL0(20),
1709 PMU_PMEVCNTR_EL0(21),
1710 PMU_PMEVCNTR_EL0(22),
1711 PMU_PMEVCNTR_EL0(23),
1712 PMU_PMEVCNTR_EL0(24),
1713 PMU_PMEVCNTR_EL0(25),
1714 PMU_PMEVCNTR_EL0(26),
1715 PMU_PMEVCNTR_EL0(27),
1716 PMU_PMEVCNTR_EL0(28),
1717 PMU_PMEVCNTR_EL0(29),
1718 PMU_PMEVCNTR_EL0(30),
1719 /* PMEVTYPERn_EL0 */
1720 PMU_PMEVTYPER_EL0(0),
1721 PMU_PMEVTYPER_EL0(1),
1722 PMU_PMEVTYPER_EL0(2),
1723 PMU_PMEVTYPER_EL0(3),
1724 PMU_PMEVTYPER_EL0(4),
1725 PMU_PMEVTYPER_EL0(5),
1726 PMU_PMEVTYPER_EL0(6),
1727 PMU_PMEVTYPER_EL0(7),
1728 PMU_PMEVTYPER_EL0(8),
1729 PMU_PMEVTYPER_EL0(9),
1730 PMU_PMEVTYPER_EL0(10),
1731 PMU_PMEVTYPER_EL0(11),
1732 PMU_PMEVTYPER_EL0(12),
1733 PMU_PMEVTYPER_EL0(13),
1734 PMU_PMEVTYPER_EL0(14),
1735 PMU_PMEVTYPER_EL0(15),
1736 PMU_PMEVTYPER_EL0(16),
1737 PMU_PMEVTYPER_EL0(17),
1738 PMU_PMEVTYPER_EL0(18),
1739 PMU_PMEVTYPER_EL0(19),
1740 PMU_PMEVTYPER_EL0(20),
1741 PMU_PMEVTYPER_EL0(21),
1742 PMU_PMEVTYPER_EL0(22),
1743 PMU_PMEVTYPER_EL0(23),
1744 PMU_PMEVTYPER_EL0(24),
1745 PMU_PMEVTYPER_EL0(25),
1746 PMU_PMEVTYPER_EL0(26),
1747 PMU_PMEVTYPER_EL0(27),
1748 PMU_PMEVTYPER_EL0(28),
1749 PMU_PMEVTYPER_EL0(29),
1750 PMU_PMEVTYPER_EL0(30),
1752 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1753 * in 32bit mode. Here we choose to reset it as zero for consistency.
1755 { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1757 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1758 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1759 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1762 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1763 struct sys_reg_params *p,
1764 const struct sys_reg_desc *r)
1767 return ignore_write(vcpu, p);
1769 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1770 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1771 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1773 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1774 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1775 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1776 | (6 << 16) | (el3 << 14) | (el3 << 12));
1781 static bool trap_debug32(struct kvm_vcpu *vcpu,
1782 struct sys_reg_params *p,
1783 const struct sys_reg_desc *r)
1786 vcpu_cp14(vcpu, r->reg) = p->regval;
1787 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1789 p->regval = vcpu_cp14(vcpu, r->reg);
1795 /* AArch32 debug register mappings
1797 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1798 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1800 * All control registers and watchpoint value registers are mapped to
1801 * the lower 32 bits of their AArch64 equivalents. We share the trap
1802 * handlers with the above AArch64 code which checks what mode the
1806 static bool trap_xvr(struct kvm_vcpu *vcpu,
1807 struct sys_reg_params *p,
1808 const struct sys_reg_desc *rd)
1810 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1815 val &= 0xffffffffUL;
1816 val |= p->regval << 32;
1819 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1821 p->regval = *dbg_reg >> 32;
1824 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1829 #define DBG_BCR_BVR_WCR_WVR(n) \
1831 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1833 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1835 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1837 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1839 #define DBGBXVR(n) \
1840 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1843 * Trapped cp14 registers. We generally ignore most of the external
1844 * debug, on the principle that they don't really make sense to a
1845 * guest. Revisit this one day, would this principle change.
1847 static const struct sys_reg_desc cp14_regs[] = {
1849 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1851 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1853 DBG_BCR_BVR_WCR_WVR(0),
1855 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1856 DBG_BCR_BVR_WCR_WVR(1),
1858 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32, NULL, cp14_DBGDCCINT },
1860 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32, NULL, cp14_DBGDSCRext },
1861 DBG_BCR_BVR_WCR_WVR(2),
1862 /* DBGDTR[RT]Xint */
1863 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1864 /* DBGDTR[RT]Xext */
1865 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1866 DBG_BCR_BVR_WCR_WVR(3),
1867 DBG_BCR_BVR_WCR_WVR(4),
1868 DBG_BCR_BVR_WCR_WVR(5),
1870 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1872 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1873 DBG_BCR_BVR_WCR_WVR(6),
1875 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32, NULL, cp14_DBGVCR },
1876 DBG_BCR_BVR_WCR_WVR(7),
1877 DBG_BCR_BVR_WCR_WVR(8),
1878 DBG_BCR_BVR_WCR_WVR(9),
1879 DBG_BCR_BVR_WCR_WVR(10),
1880 DBG_BCR_BVR_WCR_WVR(11),
1881 DBG_BCR_BVR_WCR_WVR(12),
1882 DBG_BCR_BVR_WCR_WVR(13),
1883 DBG_BCR_BVR_WCR_WVR(14),
1884 DBG_BCR_BVR_WCR_WVR(15),
1886 /* DBGDRAR (32bit) */
1887 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1891 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1894 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1898 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1901 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1914 /* DBGDSAR (32bit) */
1915 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1918 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1920 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1922 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1924 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1926 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1928 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1931 /* Trapped cp14 64bit registers */
1932 static const struct sys_reg_desc cp14_64_regs[] = {
1933 /* DBGDRAR (64bit) */
1934 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1936 /* DBGDSAR (64bit) */
1937 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1940 /* Macro to expand the PMEVCNTRn register */
1941 #define PMU_PMEVCNTR(n) \
1943 { Op1(0), CRn(0b1110), \
1944 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1947 /* Macro to expand the PMEVTYPERn register */
1948 #define PMU_PMEVTYPER(n) \
1950 { Op1(0), CRn(0b1110), \
1951 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1952 access_pmu_evtyper }
1955 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1956 * depending on the way they are accessed (as a 32bit or a 64bit
1959 static const struct sys_reg_desc cp15_regs[] = {
1960 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1961 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1962 { Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr },
1963 { Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr },
1964 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1965 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1966 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1967 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1968 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1969 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1970 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1971 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1972 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1973 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1976 * DC{C,I,CI}SW operations:
1978 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1979 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1980 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1983 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1984 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1985 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1986 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1987 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1988 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1989 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1990 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1991 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1992 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1993 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1994 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1995 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1996 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1997 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1999 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
2000 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
2001 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
2002 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
2005 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2007 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
2010 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2011 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2078 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2080 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2081 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2082 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
2085 static const struct sys_reg_desc cp15_64_regs[] = {
2086 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
2087 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2088 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2089 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
2090 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2091 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2092 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
2095 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2100 for (i = 0; i < n; i++) {
2101 if (!is_32 && table[i].reg && !table[i].reset) {
2102 kvm_err("sys_reg table %p entry %d has lacks reset\n",
2107 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2108 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2116 static int match_sys_reg(const void *key, const void *elt)
2118 const unsigned long pval = (unsigned long)key;
2119 const struct sys_reg_desc *r = elt;
2121 return pval - reg_to_encoding(r);
2124 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2125 const struct sys_reg_desc table[],
2128 unsigned long pval = reg_to_encoding(params);
2130 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2133 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2135 kvm_inject_undefined(vcpu);
2139 static void perform_access(struct kvm_vcpu *vcpu,
2140 struct sys_reg_params *params,
2141 const struct sys_reg_desc *r)
2143 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2145 /* Check for regs disabled by runtime config */
2146 if (sysreg_hidden(vcpu, r)) {
2147 kvm_inject_undefined(vcpu);
2152 * Not having an accessor means that we have configured a trap
2153 * that we don't know how to handle. This certainly qualifies
2154 * as a gross bug that should be fixed right away.
2158 /* Skip instruction if instructed so */
2159 if (likely(r->access(vcpu, params, r)))
2160 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2164 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2165 * call the corresponding trap handler.
2167 * @params: pointer to the descriptor of the access
2168 * @table: array of trap descriptors
2169 * @num: size of the trap descriptor array
2171 * Return 0 if the access has been handled, and -1 if not.
2173 static int emulate_cp(struct kvm_vcpu *vcpu,
2174 struct sys_reg_params *params,
2175 const struct sys_reg_desc *table,
2178 const struct sys_reg_desc *r;
2181 return -1; /* Not handled */
2183 r = find_reg(params, table, num);
2186 perform_access(vcpu, params, r);
2194 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2195 struct sys_reg_params *params)
2197 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2201 case ESR_ELx_EC_CP15_32:
2202 case ESR_ELx_EC_CP15_64:
2205 case ESR_ELx_EC_CP14_MR:
2206 case ESR_ELx_EC_CP14_64:
2213 print_sys_reg_msg(params,
2214 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2215 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2216 kvm_inject_undefined(vcpu);
2220 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2221 * @vcpu: The VCPU pointer
2222 * @run: The kvm_run struct
2224 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2225 const struct sys_reg_desc *global,
2228 struct sys_reg_params params;
2229 u32 esr = kvm_vcpu_get_esr(vcpu);
2230 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2231 int Rt2 = (esr >> 10) & 0x1f;
2233 params.is_aarch32 = true;
2234 params.is_32bit = false;
2235 params.CRm = (esr >> 1) & 0xf;
2236 params.is_write = ((esr & 1) == 0);
2239 params.Op1 = (esr >> 16) & 0xf;
2244 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2245 * backends between AArch32 and AArch64, we get away with it.
2247 if (params.is_write) {
2248 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2249 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2253 * If the table contains a handler, handle the
2254 * potential register operation in the case of a read and return
2257 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) {
2258 /* Split up the value between registers for the read side */
2259 if (!params.is_write) {
2260 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2261 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2267 unhandled_cp_access(vcpu, ¶ms);
2272 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2273 * @vcpu: The VCPU pointer
2274 * @run: The kvm_run struct
2276 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2277 const struct sys_reg_desc *global,
2280 struct sys_reg_params params;
2281 u32 esr = kvm_vcpu_get_esr(vcpu);
2282 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2284 params.is_aarch32 = true;
2285 params.is_32bit = true;
2286 params.CRm = (esr >> 1) & 0xf;
2287 params.regval = vcpu_get_reg(vcpu, Rt);
2288 params.is_write = ((esr & 1) == 0);
2289 params.CRn = (esr >> 10) & 0xf;
2291 params.Op1 = (esr >> 14) & 0x7;
2292 params.Op2 = (esr >> 17) & 0x7;
2294 if (!emulate_cp(vcpu, ¶ms, global, nr_global)) {
2295 if (!params.is_write)
2296 vcpu_set_reg(vcpu, Rt, params.regval);
2300 unhandled_cp_access(vcpu, ¶ms);
2304 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2306 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2309 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2311 return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2314 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2316 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2319 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2321 return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2324 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2326 // See ARM DDI 0487E.a, section D12.3.2
2327 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2330 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2331 struct sys_reg_params *params)
2333 const struct sys_reg_desc *r;
2335 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2338 perform_access(vcpu, params, r);
2339 } else if (is_imp_def_sys_reg(params)) {
2340 kvm_inject_undefined(vcpu);
2342 print_sys_reg_msg(params,
2343 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2344 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2345 kvm_inject_undefined(vcpu);
2351 * kvm_reset_sys_regs - sets system registers to reset value
2352 * @vcpu: The VCPU pointer
2354 * This function finds the right table above and sets the registers on the
2355 * virtual CPU struct to their architecturally defined reset values.
2357 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2361 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2362 if (sys_reg_descs[i].reset)
2363 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2367 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2368 * @vcpu: The VCPU pointer
2370 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2372 struct sys_reg_params params;
2373 unsigned long esr = kvm_vcpu_get_esr(vcpu);
2374 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2377 trace_kvm_handle_sys_reg(esr);
2379 params.is_aarch32 = false;
2380 params.is_32bit = false;
2381 params.Op0 = (esr >> 20) & 3;
2382 params.Op1 = (esr >> 14) & 0x7;
2383 params.CRn = (esr >> 10) & 0xf;
2384 params.CRm = (esr >> 1) & 0xf;
2385 params.Op2 = (esr >> 17) & 0x7;
2386 params.regval = vcpu_get_reg(vcpu, Rt);
2387 params.is_write = !(esr & 1);
2389 ret = emulate_sys_reg(vcpu, ¶ms);
2391 if (!params.is_write)
2392 vcpu_set_reg(vcpu, Rt, params.regval);
2396 /******************************************************************************
2398 *****************************************************************************/
2400 static bool index_to_params(u64 id, struct sys_reg_params *params)
2402 switch (id & KVM_REG_SIZE_MASK) {
2403 case KVM_REG_SIZE_U64:
2404 /* Any unused index bits means it's not valid. */
2405 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2406 | KVM_REG_ARM_COPROC_MASK
2407 | KVM_REG_ARM64_SYSREG_OP0_MASK
2408 | KVM_REG_ARM64_SYSREG_OP1_MASK
2409 | KVM_REG_ARM64_SYSREG_CRN_MASK
2410 | KVM_REG_ARM64_SYSREG_CRM_MASK
2411 | KVM_REG_ARM64_SYSREG_OP2_MASK))
2413 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2414 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2415 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2416 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2417 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2418 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2419 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2420 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2421 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2422 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2429 const struct sys_reg_desc *find_reg_by_id(u64 id,
2430 struct sys_reg_params *params,
2431 const struct sys_reg_desc table[],
2434 if (!index_to_params(id, params))
2437 return find_reg(params, table, num);
2440 /* Decode an index value, and find the sys_reg_desc entry. */
2441 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2444 const struct sys_reg_desc *r;
2445 struct sys_reg_params params;
2447 /* We only do sys_reg for now. */
2448 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2451 if (!index_to_params(id, ¶ms))
2454 r = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2456 /* Not saved in the sys_reg array and not otherwise accessible? */
2457 if (r && !(r->reg || r->get_user))
2464 * These are the invariant sys_reg registers: we let the guest see the
2465 * host versions of these, so they're part of the guest state.
2467 * A future CPU may provide a mechanism to present different values to
2468 * the guest, or a future kvm may trap them.
2471 #define FUNCTION_INVARIANT(reg) \
2472 static void get_##reg(struct kvm_vcpu *v, \
2473 const struct sys_reg_desc *r) \
2475 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
2478 FUNCTION_INVARIANT(midr_el1)
2479 FUNCTION_INVARIANT(revidr_el1)
2480 FUNCTION_INVARIANT(clidr_el1)
2481 FUNCTION_INVARIANT(aidr_el1)
2483 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2485 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2488 /* ->val is filled in by kvm_sys_reg_table_init() */
2489 static struct sys_reg_desc invariant_sys_regs[] = {
2490 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2491 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2492 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2493 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2494 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2497 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2499 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2504 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2506 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2511 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2513 struct sys_reg_params params;
2514 const struct sys_reg_desc *r;
2516 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2517 ARRAY_SIZE(invariant_sys_regs));
2521 return reg_to_user(uaddr, &r->val, id);
2524 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2526 struct sys_reg_params params;
2527 const struct sys_reg_desc *r;
2529 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2531 r = find_reg_by_id(id, ¶ms, invariant_sys_regs,
2532 ARRAY_SIZE(invariant_sys_regs));
2536 err = reg_from_user(&val, uaddr, id);
2540 /* This is what we mean by invariant: you can't change it. */
2547 static bool is_valid_cache(u32 val)
2551 if (val >= CSSELR_MAX)
2554 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
2556 ctype = (cache_levels >> (level * 3)) & 7;
2559 case 0: /* No cache */
2561 case 1: /* Instruction cache only */
2563 case 2: /* Data cache only */
2564 case 4: /* Unified cache */
2566 case 3: /* Separate instruction and data caches */
2568 default: /* Reserved: we can't know instruction or data. */
2573 static int demux_c15_get(u64 id, void __user *uaddr)
2576 u32 __user *uval = uaddr;
2578 /* Fail if we have unknown bits set. */
2579 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2580 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2583 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2584 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2585 if (KVM_REG_SIZE(id) != 4)
2587 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2588 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2589 if (!is_valid_cache(val))
2592 return put_user(get_ccsidr(val), uval);
2598 static int demux_c15_set(u64 id, void __user *uaddr)
2601 u32 __user *uval = uaddr;
2603 /* Fail if we have unknown bits set. */
2604 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2605 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2608 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2609 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2610 if (KVM_REG_SIZE(id) != 4)
2612 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2613 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2614 if (!is_valid_cache(val))
2617 if (get_user(newval, uval))
2620 /* This is also invariant: you can't change it. */
2621 if (newval != get_ccsidr(val))
2629 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2631 const struct sys_reg_desc *r;
2632 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2634 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2635 return demux_c15_get(reg->id, uaddr);
2637 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2640 r = index_to_sys_reg_desc(vcpu, reg->id);
2642 return get_invariant_sys_reg(reg->id, uaddr);
2644 /* Check for regs disabled by runtime config */
2645 if (sysreg_hidden(vcpu, r))
2649 return (r->get_user)(vcpu, r, reg, uaddr);
2651 return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2654 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2656 const struct sys_reg_desc *r;
2657 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2659 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2660 return demux_c15_set(reg->id, uaddr);
2662 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2665 r = index_to_sys_reg_desc(vcpu, reg->id);
2667 return set_invariant_sys_reg(reg->id, uaddr);
2669 /* Check for regs disabled by runtime config */
2670 if (sysreg_hidden(vcpu, r))
2674 return (r->set_user)(vcpu, r, reg, uaddr);
2676 return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2679 static unsigned int num_demux_regs(void)
2681 unsigned int i, count = 0;
2683 for (i = 0; i < CSSELR_MAX; i++)
2684 if (is_valid_cache(i))
2690 static int write_demux_regids(u64 __user *uindices)
2692 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2695 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2696 for (i = 0; i < CSSELR_MAX; i++) {
2697 if (!is_valid_cache(i))
2699 if (put_user(val | i, uindices))
2706 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2708 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2709 KVM_REG_ARM64_SYSREG |
2710 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2711 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2712 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2713 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2714 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2717 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2722 if (put_user(sys_reg_to_index(reg), *uind))
2729 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2730 const struct sys_reg_desc *rd,
2732 unsigned int *total)
2735 * Ignore registers we trap but don't save,
2736 * and for which no custom user accessor is provided.
2738 if (!(rd->reg || rd->get_user))
2741 if (sysreg_hidden(vcpu, rd))
2744 if (!copy_reg_to_user(rd, uind))
2751 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2752 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2754 const struct sys_reg_desc *i2, *end2;
2755 unsigned int total = 0;
2759 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2761 while (i2 != end2) {
2762 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2769 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2771 return ARRAY_SIZE(invariant_sys_regs)
2773 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2776 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2781 /* Then give them all the invariant registers' indices. */
2782 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2783 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2788 err = walk_sys_regs(vcpu, uindices);
2793 return write_demux_regids(uindices);
2796 void kvm_sys_reg_table_init(void)
2799 struct sys_reg_desc clidr;
2801 /* Make sure tables are unique and in order. */
2802 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2803 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2804 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2805 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2806 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2807 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2809 /* We abuse the reset function to overwrite the table itself. */
2810 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2811 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2814 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2816 * If software reads the Cache Type fields from Ctype1
2817 * upwards, once it has seen a value of 0b000, no caches
2818 * exist at further-out levels of the hierarchy. So, for
2819 * example, if Ctype3 is the first Cache Type field with a
2820 * value of 0b000, the values of Ctype4 to Ctype7 must be
2823 get_clidr_el1(NULL, &clidr); /* Ugly... */
2824 cache_levels = clidr.val;
2825 for (i = 0; i < 7; i++)
2826 if (((cache_levels >> (i*3)) & 7) == 0)
2828 /* Clear all higher bits. */
2829 cache_levels &= (1 << (i*3))-1;