Merge tag 'kvmarm-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm...
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31
32 #include <trace/events/kvm.h>
33
34 #include "sys_regs.h"
35
36 #include "trace.h"
37
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
46                       u64 val);
47
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49                                  struct sys_reg_params *params,
50                                  const struct sys_reg_desc *r)
51 {
52         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53         print_sys_reg_instr(params);
54         kvm_inject_undefined(vcpu);
55         return false;
56 }
57
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59                                struct sys_reg_params *params,
60                                const struct sys_reg_desc *r)
61 {
62         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63         print_sys_reg_instr(params);
64         kvm_inject_undefined(vcpu);
65         return false;
66 }
67
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70         u64 val = 0x8badf00d8badf00d;
71
72         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
73             __vcpu_read_sys_reg_from_cpu(reg, &val))
74                 return val;
75
76         return __vcpu_sys_reg(vcpu, reg);
77 }
78
79 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
80 {
81         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
82             __vcpu_write_sys_reg_to_cpu(val, reg))
83                 return;
84
85         __vcpu_sys_reg(vcpu, reg) = val;
86 }
87
88 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
89 #define CSSELR_MAX 14
90
91 /*
92  * Returns the minimum line size for the selected cache, expressed as
93  * Log2(bytes).
94  */
95 static u8 get_min_cache_line_size(bool icache)
96 {
97         u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
98         u8 field;
99
100         if (icache)
101                 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
102         else
103                 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
104
105         /*
106          * Cache line size is represented as Log2(words) in CTR_EL0.
107          * Log2(bytes) can be derived with the following:
108          *
109          * Log2(words) + 2 = Log2(bytes / 4) + 2
110          *                 = Log2(bytes) - 2 + 2
111          *                 = Log2(bytes)
112          */
113         return field + 2;
114 }
115
116 /* Which cache CCSIDR represents depends on CSSELR value. */
117 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
118 {
119         u8 line_size;
120
121         if (vcpu->arch.ccsidr)
122                 return vcpu->arch.ccsidr[csselr];
123
124         line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
125
126         /*
127          * Fabricate a CCSIDR value as the overriding value does not exist.
128          * The real CCSIDR value will not be used as it can vary by the
129          * physical CPU which the vcpu currently resides in.
130          *
131          * The line size is determined with get_min_cache_line_size(), which
132          * should be valid for all CPUs even if they have different cache
133          * configuration.
134          *
135          * The associativity bits are cleared, meaning the geometry of all data
136          * and unified caches (which are guaranteed to be PIPT and thus
137          * non-aliasing) are 1 set and 1 way.
138          * Guests should not be doing cache operations by set/way at all, and
139          * for this reason, we trap them and attempt to infer the intent, so
140          * that we can flush the entire guest's address space at the appropriate
141          * time. The exposed geometry minimizes the number of the traps.
142          * [If guests should attempt to infer aliasing properties from the
143          * geometry (which is not permitted by the architecture), they would
144          * only do so for virtually indexed caches.]
145          *
146          * We don't check if the cache level exists as it is allowed to return
147          * an UNKNOWN value if not.
148          */
149         return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
150 }
151
152 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
153 {
154         u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
155         u32 *ccsidr = vcpu->arch.ccsidr;
156         u32 i;
157
158         if ((val & CCSIDR_EL1_RES0) ||
159             line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
160                 return -EINVAL;
161
162         if (!ccsidr) {
163                 if (val == get_ccsidr(vcpu, csselr))
164                         return 0;
165
166                 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
167                 if (!ccsidr)
168                         return -ENOMEM;
169
170                 for (i = 0; i < CSSELR_MAX; i++)
171                         ccsidr[i] = get_ccsidr(vcpu, i);
172
173                 vcpu->arch.ccsidr = ccsidr;
174         }
175
176         ccsidr[csselr] = val;
177
178         return 0;
179 }
180
181 static bool access_rw(struct kvm_vcpu *vcpu,
182                       struct sys_reg_params *p,
183                       const struct sys_reg_desc *r)
184 {
185         if (p->is_write)
186                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
187         else
188                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
189
190         return true;
191 }
192
193 /*
194  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
195  */
196 static bool access_dcsw(struct kvm_vcpu *vcpu,
197                         struct sys_reg_params *p,
198                         const struct sys_reg_desc *r)
199 {
200         if (!p->is_write)
201                 return read_from_write_only(vcpu, p, r);
202
203         /*
204          * Only track S/W ops if we don't have FWB. It still indicates
205          * that the guest is a bit broken (S/W operations should only
206          * be done by firmware, knowing that there is only a single
207          * CPU left in the system, and certainly not from non-secure
208          * software).
209          */
210         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
211                 kvm_set_way_flush(vcpu);
212
213         return true;
214 }
215
216 static bool access_dcgsw(struct kvm_vcpu *vcpu,
217                          struct sys_reg_params *p,
218                          const struct sys_reg_desc *r)
219 {
220         if (!kvm_has_mte(vcpu->kvm)) {
221                 kvm_inject_undefined(vcpu);
222                 return false;
223         }
224
225         /* Treat MTE S/W ops as we treat the classic ones: with contempt */
226         return access_dcsw(vcpu, p, r);
227 }
228
229 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
230 {
231         switch (r->aarch32_map) {
232         case AA32_LO:
233                 *mask = GENMASK_ULL(31, 0);
234                 *shift = 0;
235                 break;
236         case AA32_HI:
237                 *mask = GENMASK_ULL(63, 32);
238                 *shift = 32;
239                 break;
240         default:
241                 *mask = GENMASK_ULL(63, 0);
242                 *shift = 0;
243                 break;
244         }
245 }
246
247 /*
248  * Generic accessor for VM registers. Only called as long as HCR_TVM
249  * is set. If the guest enables the MMU, we stop trapping the VM
250  * sys_regs and leave it in complete control of the caches.
251  */
252 static bool access_vm_reg(struct kvm_vcpu *vcpu,
253                           struct sys_reg_params *p,
254                           const struct sys_reg_desc *r)
255 {
256         bool was_enabled = vcpu_has_cache_enabled(vcpu);
257         u64 val, mask, shift;
258
259         BUG_ON(!p->is_write);
260
261         get_access_mask(r, &mask, &shift);
262
263         if (~mask) {
264                 val = vcpu_read_sys_reg(vcpu, r->reg);
265                 val &= ~mask;
266         } else {
267                 val = 0;
268         }
269
270         val |= (p->regval & (mask >> shift)) << shift;
271         vcpu_write_sys_reg(vcpu, val, r->reg);
272
273         kvm_toggle_cache(vcpu, was_enabled);
274         return true;
275 }
276
277 static bool access_actlr(struct kvm_vcpu *vcpu,
278                          struct sys_reg_params *p,
279                          const struct sys_reg_desc *r)
280 {
281         u64 mask, shift;
282
283         if (p->is_write)
284                 return ignore_write(vcpu, p);
285
286         get_access_mask(r, &mask, &shift);
287         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
288
289         return true;
290 }
291
292 /*
293  * Trap handler for the GICv3 SGI generation system register.
294  * Forward the request to the VGIC emulation.
295  * The cp15_64 code makes sure this automatically works
296  * for both AArch64 and AArch32 accesses.
297  */
298 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
299                            struct sys_reg_params *p,
300                            const struct sys_reg_desc *r)
301 {
302         bool g1;
303
304         if (!p->is_write)
305                 return read_from_write_only(vcpu, p, r);
306
307         /*
308          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
309          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
310          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
311          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
312          * group.
313          */
314         if (p->Op0 == 0) {              /* AArch32 */
315                 switch (p->Op1) {
316                 default:                /* Keep GCC quiet */
317                 case 0:                 /* ICC_SGI1R */
318                         g1 = true;
319                         break;
320                 case 1:                 /* ICC_ASGI1R */
321                 case 2:                 /* ICC_SGI0R */
322                         g1 = false;
323                         break;
324                 }
325         } else {                        /* AArch64 */
326                 switch (p->Op2) {
327                 default:                /* Keep GCC quiet */
328                 case 5:                 /* ICC_SGI1R_EL1 */
329                         g1 = true;
330                         break;
331                 case 6:                 /* ICC_ASGI1R_EL1 */
332                 case 7:                 /* ICC_SGI0R_EL1 */
333                         g1 = false;
334                         break;
335                 }
336         }
337
338         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
339
340         return true;
341 }
342
343 static bool access_gic_sre(struct kvm_vcpu *vcpu,
344                            struct sys_reg_params *p,
345                            const struct sys_reg_desc *r)
346 {
347         if (p->is_write)
348                 return ignore_write(vcpu, p);
349
350         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
351         return true;
352 }
353
354 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
355                         struct sys_reg_params *p,
356                         const struct sys_reg_desc *r)
357 {
358         if (p->is_write)
359                 return ignore_write(vcpu, p);
360         else
361                 return read_zero(vcpu, p);
362 }
363
364 static bool trap_undef(struct kvm_vcpu *vcpu,
365                        struct sys_reg_params *p,
366                        const struct sys_reg_desc *r)
367 {
368         kvm_inject_undefined(vcpu);
369         return false;
370 }
371
372 /*
373  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
374  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
375  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
376  * treat it separately.
377  */
378 static bool trap_loregion(struct kvm_vcpu *vcpu,
379                           struct sys_reg_params *p,
380                           const struct sys_reg_desc *r)
381 {
382         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
383         u32 sr = reg_to_encoding(r);
384
385         if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
386                 kvm_inject_undefined(vcpu);
387                 return false;
388         }
389
390         if (p->is_write && sr == SYS_LORID_EL1)
391                 return write_to_read_only(vcpu, p, r);
392
393         return trap_raz_wi(vcpu, p, r);
394 }
395
396 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
397                            struct sys_reg_params *p,
398                            const struct sys_reg_desc *r)
399 {
400         u64 oslsr;
401
402         if (!p->is_write)
403                 return read_from_write_only(vcpu, p, r);
404
405         /* Forward the OSLK bit to OSLSR */
406         oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
407         if (p->regval & SYS_OSLAR_OSLK)
408                 oslsr |= SYS_OSLSR_OSLK;
409
410         __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
411         return true;
412 }
413
414 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
415                            struct sys_reg_params *p,
416                            const struct sys_reg_desc *r)
417 {
418         if (p->is_write)
419                 return write_to_read_only(vcpu, p, r);
420
421         p->regval = __vcpu_sys_reg(vcpu, r->reg);
422         return true;
423 }
424
425 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
426                          u64 val)
427 {
428         /*
429          * The only modifiable bit is the OSLK bit. Refuse the write if
430          * userspace attempts to change any other bit in the register.
431          */
432         if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
433                 return -EINVAL;
434
435         __vcpu_sys_reg(vcpu, rd->reg) = val;
436         return 0;
437 }
438
439 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
440                                    struct sys_reg_params *p,
441                                    const struct sys_reg_desc *r)
442 {
443         if (p->is_write) {
444                 return ignore_write(vcpu, p);
445         } else {
446                 p->regval = read_sysreg(dbgauthstatus_el1);
447                 return true;
448         }
449 }
450
451 /*
452  * We want to avoid world-switching all the DBG registers all the
453  * time:
454  *
455  * - If we've touched any debug register, it is likely that we're
456  *   going to touch more of them. It then makes sense to disable the
457  *   traps and start doing the save/restore dance
458  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
459  *   then mandatory to save/restore the registers, as the guest
460  *   depends on them.
461  *
462  * For this, we use a DIRTY bit, indicating the guest has modified the
463  * debug registers, used as follow:
464  *
465  * On guest entry:
466  * - If the dirty bit is set (because we're coming back from trapping),
467  *   disable the traps, save host registers, restore guest registers.
468  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
469  *   set the dirty bit, disable the traps, save host registers,
470  *   restore guest registers.
471  * - Otherwise, enable the traps
472  *
473  * On guest exit:
474  * - If the dirty bit is set, save guest registers, restore host
475  *   registers and clear the dirty bit. This ensure that the host can
476  *   now use the debug registers.
477  */
478 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
479                             struct sys_reg_params *p,
480                             const struct sys_reg_desc *r)
481 {
482         access_rw(vcpu, p, r);
483         if (p->is_write)
484                 vcpu_set_flag(vcpu, DEBUG_DIRTY);
485
486         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
487
488         return true;
489 }
490
491 /*
492  * reg_to_dbg/dbg_to_reg
493  *
494  * A 32 bit write to a debug register leave top bits alone
495  * A 32 bit read from a debug register only returns the bottom bits
496  *
497  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
498  * switches between host and guest values in future.
499  */
500 static void reg_to_dbg(struct kvm_vcpu *vcpu,
501                        struct sys_reg_params *p,
502                        const struct sys_reg_desc *rd,
503                        u64 *dbg_reg)
504 {
505         u64 mask, shift, val;
506
507         get_access_mask(rd, &mask, &shift);
508
509         val = *dbg_reg;
510         val &= ~mask;
511         val |= (p->regval & (mask >> shift)) << shift;
512         *dbg_reg = val;
513
514         vcpu_set_flag(vcpu, DEBUG_DIRTY);
515 }
516
517 static void dbg_to_reg(struct kvm_vcpu *vcpu,
518                        struct sys_reg_params *p,
519                        const struct sys_reg_desc *rd,
520                        u64 *dbg_reg)
521 {
522         u64 mask, shift;
523
524         get_access_mask(rd, &mask, &shift);
525         p->regval = (*dbg_reg & mask) >> shift;
526 }
527
528 static bool trap_bvr(struct kvm_vcpu *vcpu,
529                      struct sys_reg_params *p,
530                      const struct sys_reg_desc *rd)
531 {
532         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
533
534         if (p->is_write)
535                 reg_to_dbg(vcpu, p, rd, dbg_reg);
536         else
537                 dbg_to_reg(vcpu, p, rd, dbg_reg);
538
539         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
540
541         return true;
542 }
543
544 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545                    u64 val)
546 {
547         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
548         return 0;
549 }
550
551 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552                    u64 *val)
553 {
554         *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
555         return 0;
556 }
557
558 static u64 reset_bvr(struct kvm_vcpu *vcpu,
559                       const struct sys_reg_desc *rd)
560 {
561         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
562         return rd->val;
563 }
564
565 static bool trap_bcr(struct kvm_vcpu *vcpu,
566                      struct sys_reg_params *p,
567                      const struct sys_reg_desc *rd)
568 {
569         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
570
571         if (p->is_write)
572                 reg_to_dbg(vcpu, p, rd, dbg_reg);
573         else
574                 dbg_to_reg(vcpu, p, rd, dbg_reg);
575
576         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577
578         return true;
579 }
580
581 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582                    u64 val)
583 {
584         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
585         return 0;
586 }
587
588 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
589                    u64 *val)
590 {
591         *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
592         return 0;
593 }
594
595 static u64 reset_bcr(struct kvm_vcpu *vcpu,
596                       const struct sys_reg_desc *rd)
597 {
598         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
599         return rd->val;
600 }
601
602 static bool trap_wvr(struct kvm_vcpu *vcpu,
603                      struct sys_reg_params *p,
604                      const struct sys_reg_desc *rd)
605 {
606         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
607
608         if (p->is_write)
609                 reg_to_dbg(vcpu, p, rd, dbg_reg);
610         else
611                 dbg_to_reg(vcpu, p, rd, dbg_reg);
612
613         trace_trap_reg(__func__, rd->CRm, p->is_write,
614                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
615
616         return true;
617 }
618
619 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
620                    u64 val)
621 {
622         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
623         return 0;
624 }
625
626 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
627                    u64 *val)
628 {
629         *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
630         return 0;
631 }
632
633 static u64 reset_wvr(struct kvm_vcpu *vcpu,
634                       const struct sys_reg_desc *rd)
635 {
636         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
637         return rd->val;
638 }
639
640 static bool trap_wcr(struct kvm_vcpu *vcpu,
641                      struct sys_reg_params *p,
642                      const struct sys_reg_desc *rd)
643 {
644         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
645
646         if (p->is_write)
647                 reg_to_dbg(vcpu, p, rd, dbg_reg);
648         else
649                 dbg_to_reg(vcpu, p, rd, dbg_reg);
650
651         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
652
653         return true;
654 }
655
656 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
657                    u64 val)
658 {
659         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
660         return 0;
661 }
662
663 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
664                    u64 *val)
665 {
666         *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
667         return 0;
668 }
669
670 static u64 reset_wcr(struct kvm_vcpu *vcpu,
671                       const struct sys_reg_desc *rd)
672 {
673         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
674         return rd->val;
675 }
676
677 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
678 {
679         u64 amair = read_sysreg(amair_el1);
680         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
681         return amair;
682 }
683
684 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
685 {
686         u64 actlr = read_sysreg(actlr_el1);
687         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
688         return actlr;
689 }
690
691 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
692 {
693         u64 mpidr;
694
695         /*
696          * Map the vcpu_id into the first three affinity level fields of
697          * the MPIDR. We limit the number of VCPUs in level 0 due to a
698          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
699          * of the GICv3 to be able to address each CPU directly when
700          * sending IPIs.
701          */
702         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
703         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
704         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
705         mpidr |= (1ULL << 31);
706         vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
707
708         return mpidr;
709 }
710
711 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
712                                    const struct sys_reg_desc *r)
713 {
714         if (kvm_vcpu_has_pmu(vcpu))
715                 return 0;
716
717         return REG_HIDDEN;
718 }
719
720 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
721 {
722         u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
723
724         /* No PMU available, any PMU reg may UNDEF... */
725         if (!kvm_arm_support_pmu_v3())
726                 return 0;
727
728         n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
729         n &= ARMV8_PMU_PMCR_N_MASK;
730         if (n)
731                 mask |= GENMASK(n - 1, 0);
732
733         reset_unknown(vcpu, r);
734         __vcpu_sys_reg(vcpu, r->reg) &= mask;
735
736         return __vcpu_sys_reg(vcpu, r->reg);
737 }
738
739 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
740 {
741         reset_unknown(vcpu, r);
742         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
743
744         return __vcpu_sys_reg(vcpu, r->reg);
745 }
746
747 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
748 {
749         reset_unknown(vcpu, r);
750         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
751
752         return __vcpu_sys_reg(vcpu, r->reg);
753 }
754
755 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
756 {
757         reset_unknown(vcpu, r);
758         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
759
760         return __vcpu_sys_reg(vcpu, r->reg);
761 }
762
763 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
764 {
765         u64 pmcr;
766
767         /* No PMU available, PMCR_EL0 may UNDEF... */
768         if (!kvm_arm_support_pmu_v3())
769                 return 0;
770
771         /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
772         pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
773         if (!kvm_supports_32bit_el0())
774                 pmcr |= ARMV8_PMU_PMCR_LC;
775
776         __vcpu_sys_reg(vcpu, r->reg) = pmcr;
777
778         return __vcpu_sys_reg(vcpu, r->reg);
779 }
780
781 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
782 {
783         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
784         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
785
786         if (!enabled)
787                 kvm_inject_undefined(vcpu);
788
789         return !enabled;
790 }
791
792 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
793 {
794         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
795 }
796
797 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
798 {
799         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
800 }
801
802 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
803 {
804         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
805 }
806
807 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
808 {
809         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
810 }
811
812 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
813                         const struct sys_reg_desc *r)
814 {
815         u64 val;
816
817         if (pmu_access_el0_disabled(vcpu))
818                 return false;
819
820         if (p->is_write) {
821                 /*
822                  * Only update writeable bits of PMCR (continuing into
823                  * kvm_pmu_handle_pmcr() as well)
824                  */
825                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
826                 val &= ~ARMV8_PMU_PMCR_MASK;
827                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
828                 if (!kvm_supports_32bit_el0())
829                         val |= ARMV8_PMU_PMCR_LC;
830                 kvm_pmu_handle_pmcr(vcpu, val);
831         } else {
832                 /* PMCR.P & PMCR.C are RAZ */
833                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
834                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
835                 p->regval = val;
836         }
837
838         return true;
839 }
840
841 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
842                           const struct sys_reg_desc *r)
843 {
844         if (pmu_access_event_counter_el0_disabled(vcpu))
845                 return false;
846
847         if (p->is_write)
848                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
849         else
850                 /* return PMSELR.SEL field */
851                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
852                             & ARMV8_PMU_COUNTER_MASK;
853
854         return true;
855 }
856
857 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
858                           const struct sys_reg_desc *r)
859 {
860         u64 pmceid, mask, shift;
861
862         BUG_ON(p->is_write);
863
864         if (pmu_access_el0_disabled(vcpu))
865                 return false;
866
867         get_access_mask(r, &mask, &shift);
868
869         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
870         pmceid &= mask;
871         pmceid >>= shift;
872
873         p->regval = pmceid;
874
875         return true;
876 }
877
878 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
879 {
880         u64 pmcr, val;
881
882         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
883         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
884         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
885                 kvm_inject_undefined(vcpu);
886                 return false;
887         }
888
889         return true;
890 }
891
892 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
893                           u64 *val)
894 {
895         u64 idx;
896
897         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
898                 /* PMCCNTR_EL0 */
899                 idx = ARMV8_PMU_CYCLE_IDX;
900         else
901                 /* PMEVCNTRn_EL0 */
902                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
903
904         *val = kvm_pmu_get_counter_value(vcpu, idx);
905         return 0;
906 }
907
908 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
909                               struct sys_reg_params *p,
910                               const struct sys_reg_desc *r)
911 {
912         u64 idx = ~0UL;
913
914         if (r->CRn == 9 && r->CRm == 13) {
915                 if (r->Op2 == 2) {
916                         /* PMXEVCNTR_EL0 */
917                         if (pmu_access_event_counter_el0_disabled(vcpu))
918                                 return false;
919
920                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
921                               & ARMV8_PMU_COUNTER_MASK;
922                 } else if (r->Op2 == 0) {
923                         /* PMCCNTR_EL0 */
924                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
925                                 return false;
926
927                         idx = ARMV8_PMU_CYCLE_IDX;
928                 }
929         } else if (r->CRn == 0 && r->CRm == 9) {
930                 /* PMCCNTR */
931                 if (pmu_access_event_counter_el0_disabled(vcpu))
932                         return false;
933
934                 idx = ARMV8_PMU_CYCLE_IDX;
935         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
936                 /* PMEVCNTRn_EL0 */
937                 if (pmu_access_event_counter_el0_disabled(vcpu))
938                         return false;
939
940                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
941         }
942
943         /* Catch any decoding mistake */
944         WARN_ON(idx == ~0UL);
945
946         if (!pmu_counter_idx_valid(vcpu, idx))
947                 return false;
948
949         if (p->is_write) {
950                 if (pmu_access_el0_disabled(vcpu))
951                         return false;
952
953                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
954         } else {
955                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
956         }
957
958         return true;
959 }
960
961 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
962                                const struct sys_reg_desc *r)
963 {
964         u64 idx, reg;
965
966         if (pmu_access_el0_disabled(vcpu))
967                 return false;
968
969         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
970                 /* PMXEVTYPER_EL0 */
971                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
972                 reg = PMEVTYPER0_EL0 + idx;
973         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
974                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
975                 if (idx == ARMV8_PMU_CYCLE_IDX)
976                         reg = PMCCFILTR_EL0;
977                 else
978                         /* PMEVTYPERn_EL0 */
979                         reg = PMEVTYPER0_EL0 + idx;
980         } else {
981                 BUG();
982         }
983
984         if (!pmu_counter_idx_valid(vcpu, idx))
985                 return false;
986
987         if (p->is_write) {
988                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
989                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
990                 kvm_vcpu_pmu_restore_guest(vcpu);
991         } else {
992                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
993         }
994
995         return true;
996 }
997
998 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
999                            const struct sys_reg_desc *r)
1000 {
1001         u64 val, mask;
1002
1003         if (pmu_access_el0_disabled(vcpu))
1004                 return false;
1005
1006         mask = kvm_pmu_valid_counter_mask(vcpu);
1007         if (p->is_write) {
1008                 val = p->regval & mask;
1009                 if (r->Op2 & 0x1) {
1010                         /* accessing PMCNTENSET_EL0 */
1011                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1012                         kvm_pmu_enable_counter_mask(vcpu, val);
1013                         kvm_vcpu_pmu_restore_guest(vcpu);
1014                 } else {
1015                         /* accessing PMCNTENCLR_EL0 */
1016                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1017                         kvm_pmu_disable_counter_mask(vcpu, val);
1018                 }
1019         } else {
1020                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1021         }
1022
1023         return true;
1024 }
1025
1026 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1027                            const struct sys_reg_desc *r)
1028 {
1029         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1030
1031         if (check_pmu_access_disabled(vcpu, 0))
1032                 return false;
1033
1034         if (p->is_write) {
1035                 u64 val = p->regval & mask;
1036
1037                 if (r->Op2 & 0x1)
1038                         /* accessing PMINTENSET_EL1 */
1039                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1040                 else
1041                         /* accessing PMINTENCLR_EL1 */
1042                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1043         } else {
1044                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1045         }
1046
1047         return true;
1048 }
1049
1050 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1051                          const struct sys_reg_desc *r)
1052 {
1053         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1054
1055         if (pmu_access_el0_disabled(vcpu))
1056                 return false;
1057
1058         if (p->is_write) {
1059                 if (r->CRm & 0x2)
1060                         /* accessing PMOVSSET_EL0 */
1061                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1062                 else
1063                         /* accessing PMOVSCLR_EL0 */
1064                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1065         } else {
1066                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1067         }
1068
1069         return true;
1070 }
1071
1072 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1073                            const struct sys_reg_desc *r)
1074 {
1075         u64 mask;
1076
1077         if (!p->is_write)
1078                 return read_from_write_only(vcpu, p, r);
1079
1080         if (pmu_write_swinc_el0_disabled(vcpu))
1081                 return false;
1082
1083         mask = kvm_pmu_valid_counter_mask(vcpu);
1084         kvm_pmu_software_increment(vcpu, p->regval & mask);
1085         return true;
1086 }
1087
1088 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1089                              const struct sys_reg_desc *r)
1090 {
1091         if (p->is_write) {
1092                 if (!vcpu_mode_priv(vcpu)) {
1093                         kvm_inject_undefined(vcpu);
1094                         return false;
1095                 }
1096
1097                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1098                                p->regval & ARMV8_PMU_USERENR_MASK;
1099         } else {
1100                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1101                             & ARMV8_PMU_USERENR_MASK;
1102         }
1103
1104         return true;
1105 }
1106
1107 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1108 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1109         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1110           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1111         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1112           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1113         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1114           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1115         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1116           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1117
1118 #define PMU_SYS_REG(r)                                          \
1119         SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1120
1121 /* Macro to expand the PMEVCNTRn_EL0 register */
1122 #define PMU_PMEVCNTR_EL0(n)                                             \
1123         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
1124           .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,          \
1125           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1126
1127 /* Macro to expand the PMEVTYPERn_EL0 register */
1128 #define PMU_PMEVTYPER_EL0(n)                                            \
1129         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
1130           .reset = reset_pmevtyper,                                     \
1131           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1132
1133 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1134                          const struct sys_reg_desc *r)
1135 {
1136         kvm_inject_undefined(vcpu);
1137
1138         return false;
1139 }
1140
1141 /* Macro to expand the AMU counter and type registers*/
1142 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1143 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1144 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1145 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1146
1147 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1148                         const struct sys_reg_desc *rd)
1149 {
1150         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1151 }
1152
1153 /*
1154  * If we land here on a PtrAuth access, that is because we didn't
1155  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1156  * way this happens is when the guest does not have PtrAuth support
1157  * enabled.
1158  */
1159 #define __PTRAUTH_KEY(k)                                                \
1160         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1161         .visibility = ptrauth_visibility}
1162
1163 #define PTRAUTH_KEY(k)                                                  \
1164         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1165         __PTRAUTH_KEY(k ## KEYHI_EL1)
1166
1167 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1168                               struct sys_reg_params *p,
1169                               const struct sys_reg_desc *r)
1170 {
1171         enum kvm_arch_timers tmr;
1172         enum kvm_arch_timer_regs treg;
1173         u64 reg = reg_to_encoding(r);
1174
1175         switch (reg) {
1176         case SYS_CNTP_TVAL_EL0:
1177         case SYS_AARCH32_CNTP_TVAL:
1178                 tmr = TIMER_PTIMER;
1179                 treg = TIMER_REG_TVAL;
1180                 break;
1181         case SYS_CNTP_CTL_EL0:
1182         case SYS_AARCH32_CNTP_CTL:
1183                 tmr = TIMER_PTIMER;
1184                 treg = TIMER_REG_CTL;
1185                 break;
1186         case SYS_CNTP_CVAL_EL0:
1187         case SYS_AARCH32_CNTP_CVAL:
1188                 tmr = TIMER_PTIMER;
1189                 treg = TIMER_REG_CVAL;
1190                 break;
1191         case SYS_CNTPCT_EL0:
1192         case SYS_CNTPCTSS_EL0:
1193         case SYS_AARCH32_CNTPCT:
1194                 tmr = TIMER_PTIMER;
1195                 treg = TIMER_REG_CNT;
1196                 break;
1197         default:
1198                 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1199                 kvm_inject_undefined(vcpu);
1200                 return false;
1201         }
1202
1203         if (p->is_write)
1204                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1205         else
1206                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1207
1208         return true;
1209 }
1210
1211 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1212                                     s64 new, s64 cur)
1213 {
1214         struct arm64_ftr_bits kvm_ftr = *ftrp;
1215
1216         /* Some features have different safe value type in KVM than host features */
1217         switch (id) {
1218         case SYS_ID_AA64DFR0_EL1:
1219                 if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
1220                         kvm_ftr.type = FTR_LOWER_SAFE;
1221                 break;
1222         case SYS_ID_DFR0_EL1:
1223                 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1224                         kvm_ftr.type = FTR_LOWER_SAFE;
1225                 break;
1226         }
1227
1228         return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1229 }
1230
1231 /**
1232  * arm64_check_features() - Check if a feature register value constitutes
1233  * a subset of features indicated by the idreg's KVM sanitised limit.
1234  *
1235  * This function will check if each feature field of @val is the "safe" value
1236  * against idreg's KVM sanitised limit return from reset() callback.
1237  * If a field value in @val is the same as the one in limit, it is always
1238  * considered the safe value regardless For register fields that are not in
1239  * writable, only the value in limit is considered the safe value.
1240  *
1241  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1242  */
1243 static int arm64_check_features(struct kvm_vcpu *vcpu,
1244                                 const struct sys_reg_desc *rd,
1245                                 u64 val)
1246 {
1247         const struct arm64_ftr_reg *ftr_reg;
1248         const struct arm64_ftr_bits *ftrp = NULL;
1249         u32 id = reg_to_encoding(rd);
1250         u64 writable_mask = rd->val;
1251         u64 limit = rd->reset(vcpu, rd);
1252         u64 mask = 0;
1253
1254         /*
1255          * Hidden and unallocated ID registers may not have a corresponding
1256          * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1257          * only safe value is 0.
1258          */
1259         if (sysreg_visible_as_raz(vcpu, rd))
1260                 return val ? -E2BIG : 0;
1261
1262         ftr_reg = get_arm64_ftr_reg(id);
1263         if (!ftr_reg)
1264                 return -EINVAL;
1265
1266         ftrp = ftr_reg->ftr_bits;
1267
1268         for (; ftrp && ftrp->width; ftrp++) {
1269                 s64 f_val, f_lim, safe_val;
1270                 u64 ftr_mask;
1271
1272                 ftr_mask = arm64_ftr_mask(ftrp);
1273                 if ((ftr_mask & writable_mask) != ftr_mask)
1274                         continue;
1275
1276                 f_val = arm64_ftr_value(ftrp, val);
1277                 f_lim = arm64_ftr_value(ftrp, limit);
1278                 mask |= ftr_mask;
1279
1280                 if (f_val == f_lim)
1281                         safe_val = f_val;
1282                 else
1283                         safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1284
1285                 if (safe_val != f_val)
1286                         return -E2BIG;
1287         }
1288
1289         /* For fields that are not writable, values in limit are the safe values. */
1290         if ((val & ~mask) != (limit & ~mask))
1291                 return -E2BIG;
1292
1293         return 0;
1294 }
1295
1296 static u8 pmuver_to_perfmon(u8 pmuver)
1297 {
1298         switch (pmuver) {
1299         case ID_AA64DFR0_EL1_PMUVer_IMP:
1300                 return ID_DFR0_EL1_PerfMon_PMUv3;
1301         case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1302                 return ID_DFR0_EL1_PerfMon_IMPDEF;
1303         default:
1304                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1305                 return pmuver;
1306         }
1307 }
1308
1309 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1310 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1311                                        const struct sys_reg_desc *r)
1312 {
1313         u32 id = reg_to_encoding(r);
1314         u64 val;
1315
1316         if (sysreg_visible_as_raz(vcpu, r))
1317                 return 0;
1318
1319         val = read_sanitised_ftr_reg(id);
1320
1321         switch (id) {
1322         case SYS_ID_AA64PFR1_EL1:
1323                 if (!kvm_has_mte(vcpu->kvm))
1324                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1325
1326                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1327                 break;
1328         case SYS_ID_AA64ISAR1_EL1:
1329                 if (!vcpu_has_ptrauth(vcpu))
1330                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1331                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1332                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1333                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1334                 break;
1335         case SYS_ID_AA64ISAR2_EL1:
1336                 if (!vcpu_has_ptrauth(vcpu))
1337                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1338                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1339                 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1340                         val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1341                 break;
1342         case SYS_ID_AA64MMFR2_EL1:
1343                 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1344                 break;
1345         case SYS_ID_MMFR4_EL1:
1346                 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1347                 break;
1348         }
1349
1350         return val;
1351 }
1352
1353 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1354                                      const struct sys_reg_desc *r)
1355 {
1356         return __kvm_read_sanitised_id_reg(vcpu, r);
1357 }
1358
1359 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1360 {
1361         return IDREG(vcpu->kvm, reg_to_encoding(r));
1362 }
1363
1364 /*
1365  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1366  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1367  */
1368 static inline bool is_id_reg(u32 id)
1369 {
1370         return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1371                 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1372                 sys_reg_CRm(id) < 8);
1373 }
1374
1375 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1376                                   const struct sys_reg_desc *r)
1377 {
1378         u32 id = reg_to_encoding(r);
1379
1380         switch (id) {
1381         case SYS_ID_AA64ZFR0_EL1:
1382                 if (!vcpu_has_sve(vcpu))
1383                         return REG_RAZ;
1384                 break;
1385         }
1386
1387         return 0;
1388 }
1389
1390 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1391                                        const struct sys_reg_desc *r)
1392 {
1393         /*
1394          * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1395          * EL. Promote to RAZ/WI in order to guarantee consistency between
1396          * systems.
1397          */
1398         if (!kvm_supports_32bit_el0())
1399                 return REG_RAZ | REG_USER_WI;
1400
1401         return id_visibility(vcpu, r);
1402 }
1403
1404 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1405                                    const struct sys_reg_desc *r)
1406 {
1407         return REG_RAZ;
1408 }
1409
1410 /* cpufeature ID register access trap handlers */
1411
1412 static bool access_id_reg(struct kvm_vcpu *vcpu,
1413                           struct sys_reg_params *p,
1414                           const struct sys_reg_desc *r)
1415 {
1416         if (p->is_write)
1417                 return write_to_read_only(vcpu, p, r);
1418
1419         p->regval = read_id_reg(vcpu, r);
1420         if (vcpu_has_nv(vcpu))
1421                 access_nested_id_reg(vcpu, p, r);
1422
1423         return true;
1424 }
1425
1426 /* Visibility overrides for SVE-specific control registers */
1427 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1428                                    const struct sys_reg_desc *rd)
1429 {
1430         if (vcpu_has_sve(vcpu))
1431                 return 0;
1432
1433         return REG_HIDDEN;
1434 }
1435
1436 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1437                                           const struct sys_reg_desc *rd)
1438 {
1439         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1440
1441         if (!vcpu_has_sve(vcpu))
1442                 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1443
1444         /*
1445          * The default is to expose CSV2 == 1 if the HW isn't affected.
1446          * Although this is a per-CPU feature, we make it global because
1447          * asymmetric systems are just a nuisance.
1448          *
1449          * Userspace can override this as long as it doesn't promise
1450          * the impossible.
1451          */
1452         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1453                 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1454                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1455         }
1456         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1457                 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1458                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1459         }
1460
1461         if (kvm_vgic_global_state.type == VGIC_V3) {
1462                 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1463                 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1464         }
1465
1466         val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1467
1468         return val;
1469 }
1470
1471 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1472                                           const struct sys_reg_desc *rd)
1473 {
1474         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1475
1476         /* Limit debug to ARMv8.0 */
1477         val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
1478         val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
1479
1480         /*
1481          * Only initialize the PMU version if the vCPU was configured with one.
1482          */
1483         val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1484         if (kvm_vcpu_has_pmu(vcpu))
1485                 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1486                                       kvm_arm_pmu_get_pmuver_limit());
1487
1488         /* Hide SPE from guests */
1489         val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1490
1491         return val;
1492 }
1493
1494 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1495                                const struct sys_reg_desc *rd,
1496                                u64 val)
1497 {
1498         u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1499
1500         /*
1501          * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1502          * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1503          * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1504          * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1505          * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1506          *
1507          * At minimum, we're on the hook to allow values that were given to
1508          * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1509          * with a more sensible NI. The value of an ID register changing under
1510          * the nose of the guest is unfortunate, but is certainly no more
1511          * surprising than an ill-guided PMU driver poking at impdef system
1512          * registers that end in an UNDEF...
1513          */
1514         if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1515                 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1516
1517         return set_id_reg(vcpu, rd, val);
1518 }
1519
1520 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1521                                       const struct sys_reg_desc *rd)
1522 {
1523         u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1524         u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1525
1526         val &= ~ID_DFR0_EL1_PerfMon_MASK;
1527         if (kvm_vcpu_has_pmu(vcpu))
1528                 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1529
1530         return val;
1531 }
1532
1533 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1534                            const struct sys_reg_desc *rd,
1535                            u64 val)
1536 {
1537         u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1538
1539         if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1540                 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1541                 perfmon = 0;
1542         }
1543
1544         /*
1545          * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1546          * it doesn't promise more than what the HW gives us on the
1547          * AArch64 side (as everything is emulated with that), and
1548          * that this is a PMUv3.
1549          */
1550         if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1551                 return -EINVAL;
1552
1553         return set_id_reg(vcpu, rd, val);
1554 }
1555
1556 /*
1557  * cpufeature ID register user accessors
1558  *
1559  * For now, these registers are immutable for userspace, so no values
1560  * are stored, and for set_id_reg() we don't allow the effective value
1561  * to be changed.
1562  */
1563 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1564                       u64 *val)
1565 {
1566         /*
1567          * Avoid locking if the VM has already started, as the ID registers are
1568          * guaranteed to be invariant at that point.
1569          */
1570         if (kvm_vm_has_ran_once(vcpu->kvm)) {
1571                 *val = read_id_reg(vcpu, rd);
1572                 return 0;
1573         }
1574
1575         mutex_lock(&vcpu->kvm->arch.config_lock);
1576         *val = read_id_reg(vcpu, rd);
1577         mutex_unlock(&vcpu->kvm->arch.config_lock);
1578
1579         return 0;
1580 }
1581
1582 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1583                       u64 val)
1584 {
1585         u32 id = reg_to_encoding(rd);
1586         int ret;
1587
1588         mutex_lock(&vcpu->kvm->arch.config_lock);
1589
1590         /*
1591          * Once the VM has started the ID registers are immutable. Reject any
1592          * write that does not match the final register value.
1593          */
1594         if (kvm_vm_has_ran_once(vcpu->kvm)) {
1595                 if (val != read_id_reg(vcpu, rd))
1596                         ret = -EBUSY;
1597                 else
1598                         ret = 0;
1599
1600                 mutex_unlock(&vcpu->kvm->arch.config_lock);
1601                 return ret;
1602         }
1603
1604         ret = arm64_check_features(vcpu, rd, val);
1605         if (!ret)
1606                 IDREG(vcpu->kvm, id) = val;
1607
1608         mutex_unlock(&vcpu->kvm->arch.config_lock);
1609
1610         /*
1611          * arm64_check_features() returns -E2BIG to indicate the register's
1612          * feature set is a superset of the maximally-allowed register value.
1613          * While it would be nice to precisely describe this to userspace, the
1614          * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1615          * writes return -EINVAL.
1616          */
1617         if (ret == -E2BIG)
1618                 ret = -EINVAL;
1619         return ret;
1620 }
1621
1622 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1623                        u64 *val)
1624 {
1625         *val = 0;
1626         return 0;
1627 }
1628
1629 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1630                       u64 val)
1631 {
1632         return 0;
1633 }
1634
1635 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1636                        const struct sys_reg_desc *r)
1637 {
1638         if (p->is_write)
1639                 return write_to_read_only(vcpu, p, r);
1640
1641         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1642         return true;
1643 }
1644
1645 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1646                          const struct sys_reg_desc *r)
1647 {
1648         if (p->is_write)
1649                 return write_to_read_only(vcpu, p, r);
1650
1651         p->regval = __vcpu_sys_reg(vcpu, r->reg);
1652         return true;
1653 }
1654
1655 /*
1656  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1657  * by the physical CPU which the vcpu currently resides in.
1658  */
1659 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1660 {
1661         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1662         u64 clidr;
1663         u8 loc;
1664
1665         if ((ctr_el0 & CTR_EL0_IDC)) {
1666                 /*
1667                  * Data cache clean to the PoU is not required so LoUU and LoUIS
1668                  * will not be set and a unified cache, which will be marked as
1669                  * LoC, will be added.
1670                  *
1671                  * If not DIC, let the unified cache L2 so that an instruction
1672                  * cache can be added as L1 later.
1673                  */
1674                 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1675                 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1676         } else {
1677                 /*
1678                  * Data cache clean to the PoU is required so let L1 have a data
1679                  * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1680                  * it can be marked as LoC too.
1681                  */
1682                 loc = 1;
1683                 clidr = 1 << CLIDR_LOUU_SHIFT;
1684                 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1685                 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1686         }
1687
1688         /*
1689          * Instruction cache invalidation to the PoU is required so let L1 have
1690          * an instruction cache. If L1 already has a data cache, it will be
1691          * CACHE_TYPE_SEPARATE.
1692          */
1693         if (!(ctr_el0 & CTR_EL0_DIC))
1694                 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1695
1696         clidr |= loc << CLIDR_LOC_SHIFT;
1697
1698         /*
1699          * Add tag cache unified to data cache. Allocation tags and data are
1700          * unified in a cache line so that it looks valid even if there is only
1701          * one cache line.
1702          */
1703         if (kvm_has_mte(vcpu->kvm))
1704                 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1705
1706         __vcpu_sys_reg(vcpu, r->reg) = clidr;
1707
1708         return __vcpu_sys_reg(vcpu, r->reg);
1709 }
1710
1711 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1712                       u64 val)
1713 {
1714         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1715         u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1716
1717         if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1718                 return -EINVAL;
1719
1720         __vcpu_sys_reg(vcpu, rd->reg) = val;
1721
1722         return 0;
1723 }
1724
1725 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1726                           const struct sys_reg_desc *r)
1727 {
1728         int reg = r->reg;
1729
1730         if (p->is_write)
1731                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1732         else
1733                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1734         return true;
1735 }
1736
1737 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1738                           const struct sys_reg_desc *r)
1739 {
1740         u32 csselr;
1741
1742         if (p->is_write)
1743                 return write_to_read_only(vcpu, p, r);
1744
1745         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1746         csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1747         if (csselr < CSSELR_MAX)
1748                 p->regval = get_ccsidr(vcpu, csselr);
1749
1750         return true;
1751 }
1752
1753 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1754                                    const struct sys_reg_desc *rd)
1755 {
1756         if (kvm_has_mte(vcpu->kvm))
1757                 return 0;
1758
1759         return REG_HIDDEN;
1760 }
1761
1762 #define MTE_REG(name) {                         \
1763         SYS_DESC(SYS_##name),                   \
1764         .access = undef_access,                 \
1765         .reset = reset_unknown,                 \
1766         .reg = name,                            \
1767         .visibility = mte_visibility,           \
1768 }
1769
1770 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1771                                    const struct sys_reg_desc *rd)
1772 {
1773         if (vcpu_has_nv(vcpu))
1774                 return 0;
1775
1776         return REG_HIDDEN;
1777 }
1778
1779 #define EL2_REG(name, acc, rst, v) {            \
1780         SYS_DESC(SYS_##name),                   \
1781         .access = acc,                          \
1782         .reset = rst,                           \
1783         .reg = name,                            \
1784         .visibility = el2_visibility,           \
1785         .val = v,                               \
1786 }
1787
1788 /*
1789  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1790  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1791  * handling traps. Given that, they are always hidden from userspace.
1792  */
1793 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1794                                     const struct sys_reg_desc *rd)
1795 {
1796         return REG_HIDDEN_USER;
1797 }
1798
1799 #define EL12_REG(name, acc, rst, v) {           \
1800         SYS_DESC(SYS_##name##_EL12),            \
1801         .access = acc,                          \
1802         .reset = rst,                           \
1803         .reg = name##_EL1,                      \
1804         .val = v,                               \
1805         .visibility = elx2_visibility,          \
1806 }
1807
1808 /*
1809  * Since reset() callback and field val are not used for idregs, they will be
1810  * used for specific purposes for idregs.
1811  * The reset() would return KVM sanitised register value. The value would be the
1812  * same as the host kernel sanitised value if there is no KVM sanitisation.
1813  * The val would be used as a mask indicating writable fields for the idreg.
1814  * Only bits with 1 are writable from userspace. This mask might not be
1815  * necessary in the future whenever all ID registers are enabled as writable
1816  * from userspace.
1817  */
1818
1819 /* sys_reg_desc initialiser for known cpufeature ID registers */
1820 #define ID_SANITISED(name) {                    \
1821         SYS_DESC(SYS_##name),                   \
1822         .access = access_id_reg,                \
1823         .get_user = get_id_reg,                 \
1824         .set_user = set_id_reg,                 \
1825         .visibility = id_visibility,            \
1826         .reset = kvm_read_sanitised_id_reg,     \
1827         .val = 0,                               \
1828 }
1829
1830 /* sys_reg_desc initialiser for known cpufeature ID registers */
1831 #define AA32_ID_SANITISED(name) {               \
1832         SYS_DESC(SYS_##name),                   \
1833         .access = access_id_reg,                \
1834         .get_user = get_id_reg,                 \
1835         .set_user = set_id_reg,                 \
1836         .visibility = aa32_id_visibility,       \
1837         .reset = kvm_read_sanitised_id_reg,     \
1838         .val = 0,                               \
1839 }
1840
1841 /*
1842  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1843  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1844  * (1 <= crm < 8, 0 <= Op2 < 8).
1845  */
1846 #define ID_UNALLOCATED(crm, op2) {                      \
1847         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1848         .access = access_id_reg,                        \
1849         .get_user = get_id_reg,                         \
1850         .set_user = set_id_reg,                         \
1851         .visibility = raz_visibility,                   \
1852         .reset = kvm_read_sanitised_id_reg,             \
1853         .val = 0,                                       \
1854 }
1855
1856 /*
1857  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1858  * For now, these are exposed just like unallocated ID regs: they appear
1859  * RAZ for the guest.
1860  */
1861 #define ID_HIDDEN(name) {                       \
1862         SYS_DESC(SYS_##name),                   \
1863         .access = access_id_reg,                \
1864         .get_user = get_id_reg,                 \
1865         .set_user = set_id_reg,                 \
1866         .visibility = raz_visibility,           \
1867         .reset = kvm_read_sanitised_id_reg,     \
1868         .val = 0,                               \
1869 }
1870
1871 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1872                           struct sys_reg_params *p,
1873                           const struct sys_reg_desc *r)
1874 {
1875         if (p->is_write)
1876                 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1877         else
1878                 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1879
1880         return true;
1881 }
1882
1883 static bool access_elr(struct kvm_vcpu *vcpu,
1884                        struct sys_reg_params *p,
1885                        const struct sys_reg_desc *r)
1886 {
1887         if (p->is_write)
1888                 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1889         else
1890                 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1891
1892         return true;
1893 }
1894
1895 static bool access_spsr(struct kvm_vcpu *vcpu,
1896                         struct sys_reg_params *p,
1897                         const struct sys_reg_desc *r)
1898 {
1899         if (p->is_write)
1900                 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1901         else
1902                 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1903
1904         return true;
1905 }
1906
1907 /*
1908  * Architected system registers.
1909  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1910  *
1911  * Debug handling: We do trap most, if not all debug related system
1912  * registers. The implementation is good enough to ensure that a guest
1913  * can use these with minimal performance degradation. The drawback is
1914  * that we don't implement any of the external debug architecture.
1915  * This should be revisited if we ever encounter a more demanding
1916  * guest...
1917  */
1918 static const struct sys_reg_desc sys_reg_descs[] = {
1919         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1920         { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
1921         { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
1922         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1923         { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
1924         { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
1925         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1926         { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
1927         { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
1928
1929         DBG_BCR_BVR_WCR_WVR_EL1(0),
1930         DBG_BCR_BVR_WCR_WVR_EL1(1),
1931         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1932         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1933         DBG_BCR_BVR_WCR_WVR_EL1(2),
1934         DBG_BCR_BVR_WCR_WVR_EL1(3),
1935         DBG_BCR_BVR_WCR_WVR_EL1(4),
1936         DBG_BCR_BVR_WCR_WVR_EL1(5),
1937         DBG_BCR_BVR_WCR_WVR_EL1(6),
1938         DBG_BCR_BVR_WCR_WVR_EL1(7),
1939         DBG_BCR_BVR_WCR_WVR_EL1(8),
1940         DBG_BCR_BVR_WCR_WVR_EL1(9),
1941         DBG_BCR_BVR_WCR_WVR_EL1(10),
1942         DBG_BCR_BVR_WCR_WVR_EL1(11),
1943         DBG_BCR_BVR_WCR_WVR_EL1(12),
1944         DBG_BCR_BVR_WCR_WVR_EL1(13),
1945         DBG_BCR_BVR_WCR_WVR_EL1(14),
1946         DBG_BCR_BVR_WCR_WVR_EL1(15),
1947
1948         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1949         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1950         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1951                 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1952         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1953         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1954         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1955         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1956         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1957
1958         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1959         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1960         // DBGDTR[TR]X_EL0 share the same encoding
1961         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1962
1963         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1964
1965         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1966
1967         /*
1968          * ID regs: all ID_SANITISED() entries here must have corresponding
1969          * entries in arm64_ftr_regs[].
1970          */
1971
1972         /* AArch64 mappings of the AArch32 ID registers */
1973         /* CRm=1 */
1974         AA32_ID_SANITISED(ID_PFR0_EL1),
1975         AA32_ID_SANITISED(ID_PFR1_EL1),
1976         { SYS_DESC(SYS_ID_DFR0_EL1),
1977           .access = access_id_reg,
1978           .get_user = get_id_reg,
1979           .set_user = set_id_dfr0_el1,
1980           .visibility = aa32_id_visibility,
1981           .reset = read_sanitised_id_dfr0_el1,
1982           .val = ID_DFR0_EL1_PerfMon_MASK, },
1983         ID_HIDDEN(ID_AFR0_EL1),
1984         AA32_ID_SANITISED(ID_MMFR0_EL1),
1985         AA32_ID_SANITISED(ID_MMFR1_EL1),
1986         AA32_ID_SANITISED(ID_MMFR2_EL1),
1987         AA32_ID_SANITISED(ID_MMFR3_EL1),
1988
1989         /* CRm=2 */
1990         AA32_ID_SANITISED(ID_ISAR0_EL1),
1991         AA32_ID_SANITISED(ID_ISAR1_EL1),
1992         AA32_ID_SANITISED(ID_ISAR2_EL1),
1993         AA32_ID_SANITISED(ID_ISAR3_EL1),
1994         AA32_ID_SANITISED(ID_ISAR4_EL1),
1995         AA32_ID_SANITISED(ID_ISAR5_EL1),
1996         AA32_ID_SANITISED(ID_MMFR4_EL1),
1997         AA32_ID_SANITISED(ID_ISAR6_EL1),
1998
1999         /* CRm=3 */
2000         AA32_ID_SANITISED(MVFR0_EL1),
2001         AA32_ID_SANITISED(MVFR1_EL1),
2002         AA32_ID_SANITISED(MVFR2_EL1),
2003         ID_UNALLOCATED(3,3),
2004         AA32_ID_SANITISED(ID_PFR2_EL1),
2005         ID_HIDDEN(ID_DFR1_EL1),
2006         AA32_ID_SANITISED(ID_MMFR5_EL1),
2007         ID_UNALLOCATED(3,7),
2008
2009         /* AArch64 ID registers */
2010         /* CRm=4 */
2011         { SYS_DESC(SYS_ID_AA64PFR0_EL1),
2012           .access = access_id_reg,
2013           .get_user = get_id_reg,
2014           .set_user = set_id_reg,
2015           .reset = read_sanitised_id_aa64pfr0_el1,
2016           .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
2017         ID_SANITISED(ID_AA64PFR1_EL1),
2018         ID_UNALLOCATED(4,2),
2019         ID_UNALLOCATED(4,3),
2020         ID_SANITISED(ID_AA64ZFR0_EL1),
2021         ID_HIDDEN(ID_AA64SMFR0_EL1),
2022         ID_UNALLOCATED(4,6),
2023         ID_UNALLOCATED(4,7),
2024
2025         /* CRm=5 */
2026         { SYS_DESC(SYS_ID_AA64DFR0_EL1),
2027           .access = access_id_reg,
2028           .get_user = get_id_reg,
2029           .set_user = set_id_aa64dfr0_el1,
2030           .reset = read_sanitised_id_aa64dfr0_el1,
2031           .val = ID_AA64DFR0_EL1_PMUVer_MASK, },
2032         ID_SANITISED(ID_AA64DFR1_EL1),
2033         ID_UNALLOCATED(5,2),
2034         ID_UNALLOCATED(5,3),
2035         ID_HIDDEN(ID_AA64AFR0_EL1),
2036         ID_HIDDEN(ID_AA64AFR1_EL1),
2037         ID_UNALLOCATED(5,6),
2038         ID_UNALLOCATED(5,7),
2039
2040         /* CRm=6 */
2041         ID_SANITISED(ID_AA64ISAR0_EL1),
2042         ID_SANITISED(ID_AA64ISAR1_EL1),
2043         ID_SANITISED(ID_AA64ISAR2_EL1),
2044         ID_UNALLOCATED(6,3),
2045         ID_UNALLOCATED(6,4),
2046         ID_UNALLOCATED(6,5),
2047         ID_UNALLOCATED(6,6),
2048         ID_UNALLOCATED(6,7),
2049
2050         /* CRm=7 */
2051         ID_SANITISED(ID_AA64MMFR0_EL1),
2052         ID_SANITISED(ID_AA64MMFR1_EL1),
2053         ID_SANITISED(ID_AA64MMFR2_EL1),
2054         ID_UNALLOCATED(7,3),
2055         ID_UNALLOCATED(7,4),
2056         ID_UNALLOCATED(7,5),
2057         ID_UNALLOCATED(7,6),
2058         ID_UNALLOCATED(7,7),
2059
2060         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2061         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2062         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2063
2064         MTE_REG(RGSR_EL1),
2065         MTE_REG(GCR_EL1),
2066
2067         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2068         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
2069         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2070         { SYS_DESC(SYS_SMCR_EL1), undef_access },
2071         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2072         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2073         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2074
2075         PTRAUTH_KEY(APIA),
2076         PTRAUTH_KEY(APIB),
2077         PTRAUTH_KEY(APDA),
2078         PTRAUTH_KEY(APDB),
2079         PTRAUTH_KEY(APGA),
2080
2081         { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2082         { SYS_DESC(SYS_ELR_EL1), access_elr},
2083
2084         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2085         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2086         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2087
2088         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2089         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2090         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2091         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2092         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2093         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2094         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2095         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2096
2097         MTE_REG(TFSR_EL1),
2098         MTE_REG(TFSRE0_EL1),
2099
2100         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2101         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2102
2103         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
2104         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2105         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
2106         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2107         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2108         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2109         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2110         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2111         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2112         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2113         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
2114         /* PMBIDR_EL1 is not trapped */
2115
2116         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
2117           .access = access_pminten, .reg = PMINTENSET_EL1 },
2118         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
2119           .access = access_pminten, .reg = PMINTENSET_EL1 },
2120         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2121
2122         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2123         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2124
2125         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2126         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2127         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
2128         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
2129         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
2130
2131         { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2132         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2133
2134         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2135         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2136         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2137         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2138         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2139         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2140         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2141         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2142         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2143         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2144         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2145         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2146
2147         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2148         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2149
2150         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2151
2152         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2153
2154         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2155         { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2156           .set_user = set_clidr },
2157         { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2158         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
2159         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2160         { SYS_DESC(SYS_CTR_EL0), access_ctr },
2161         { SYS_DESC(SYS_SVCR), undef_access },
2162
2163         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
2164           .reset = reset_pmcr, .reg = PMCR_EL0 },
2165         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
2166           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2167         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
2168           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2169         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
2170           .access = access_pmovs, .reg = PMOVSSET_EL0 },
2171         /*
2172          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2173          * previously (and pointlessly) advertised in the past...
2174          */
2175         { PMU_SYS_REG(SYS_PMSWINC_EL0),
2176           .get_user = get_raz_reg, .set_user = set_wi_reg,
2177           .access = access_pmswinc, .reset = NULL },
2178         { PMU_SYS_REG(SYS_PMSELR_EL0),
2179           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2180         { PMU_SYS_REG(SYS_PMCEID0_EL0),
2181           .access = access_pmceid, .reset = NULL },
2182         { PMU_SYS_REG(SYS_PMCEID1_EL0),
2183           .access = access_pmceid, .reset = NULL },
2184         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
2185           .access = access_pmu_evcntr, .reset = reset_unknown,
2186           .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2187         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
2188           .access = access_pmu_evtyper, .reset = NULL },
2189         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
2190           .access = access_pmu_evcntr, .reset = NULL },
2191         /*
2192          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2193          * in 32bit mode. Here we choose to reset it as zero for consistency.
2194          */
2195         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
2196           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2197         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
2198           .access = access_pmovs, .reg = PMOVSSET_EL0 },
2199
2200         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2201         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2202         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2203
2204         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2205
2206         { SYS_DESC(SYS_AMCR_EL0), undef_access },
2207         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2208         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2209         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2210         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2211         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2212         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2213         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2214         AMU_AMEVCNTR0_EL0(0),
2215         AMU_AMEVCNTR0_EL0(1),
2216         AMU_AMEVCNTR0_EL0(2),
2217         AMU_AMEVCNTR0_EL0(3),
2218         AMU_AMEVCNTR0_EL0(4),
2219         AMU_AMEVCNTR0_EL0(5),
2220         AMU_AMEVCNTR0_EL0(6),
2221         AMU_AMEVCNTR0_EL0(7),
2222         AMU_AMEVCNTR0_EL0(8),
2223         AMU_AMEVCNTR0_EL0(9),
2224         AMU_AMEVCNTR0_EL0(10),
2225         AMU_AMEVCNTR0_EL0(11),
2226         AMU_AMEVCNTR0_EL0(12),
2227         AMU_AMEVCNTR0_EL0(13),
2228         AMU_AMEVCNTR0_EL0(14),
2229         AMU_AMEVCNTR0_EL0(15),
2230         AMU_AMEVTYPER0_EL0(0),
2231         AMU_AMEVTYPER0_EL0(1),
2232         AMU_AMEVTYPER0_EL0(2),
2233         AMU_AMEVTYPER0_EL0(3),
2234         AMU_AMEVTYPER0_EL0(4),
2235         AMU_AMEVTYPER0_EL0(5),
2236         AMU_AMEVTYPER0_EL0(6),
2237         AMU_AMEVTYPER0_EL0(7),
2238         AMU_AMEVTYPER0_EL0(8),
2239         AMU_AMEVTYPER0_EL0(9),
2240         AMU_AMEVTYPER0_EL0(10),
2241         AMU_AMEVTYPER0_EL0(11),
2242         AMU_AMEVTYPER0_EL0(12),
2243         AMU_AMEVTYPER0_EL0(13),
2244         AMU_AMEVTYPER0_EL0(14),
2245         AMU_AMEVTYPER0_EL0(15),
2246         AMU_AMEVCNTR1_EL0(0),
2247         AMU_AMEVCNTR1_EL0(1),
2248         AMU_AMEVCNTR1_EL0(2),
2249         AMU_AMEVCNTR1_EL0(3),
2250         AMU_AMEVCNTR1_EL0(4),
2251         AMU_AMEVCNTR1_EL0(5),
2252         AMU_AMEVCNTR1_EL0(6),
2253         AMU_AMEVCNTR1_EL0(7),
2254         AMU_AMEVCNTR1_EL0(8),
2255         AMU_AMEVCNTR1_EL0(9),
2256         AMU_AMEVCNTR1_EL0(10),
2257         AMU_AMEVCNTR1_EL0(11),
2258         AMU_AMEVCNTR1_EL0(12),
2259         AMU_AMEVCNTR1_EL0(13),
2260         AMU_AMEVCNTR1_EL0(14),
2261         AMU_AMEVCNTR1_EL0(15),
2262         AMU_AMEVTYPER1_EL0(0),
2263         AMU_AMEVTYPER1_EL0(1),
2264         AMU_AMEVTYPER1_EL0(2),
2265         AMU_AMEVTYPER1_EL0(3),
2266         AMU_AMEVTYPER1_EL0(4),
2267         AMU_AMEVTYPER1_EL0(5),
2268         AMU_AMEVTYPER1_EL0(6),
2269         AMU_AMEVTYPER1_EL0(7),
2270         AMU_AMEVTYPER1_EL0(8),
2271         AMU_AMEVTYPER1_EL0(9),
2272         AMU_AMEVTYPER1_EL0(10),
2273         AMU_AMEVTYPER1_EL0(11),
2274         AMU_AMEVTYPER1_EL0(12),
2275         AMU_AMEVTYPER1_EL0(13),
2276         AMU_AMEVTYPER1_EL0(14),
2277         AMU_AMEVTYPER1_EL0(15),
2278
2279         { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2280         { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2281         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2282         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2283         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2284
2285         /* PMEVCNTRn_EL0 */
2286         PMU_PMEVCNTR_EL0(0),
2287         PMU_PMEVCNTR_EL0(1),
2288         PMU_PMEVCNTR_EL0(2),
2289         PMU_PMEVCNTR_EL0(3),
2290         PMU_PMEVCNTR_EL0(4),
2291         PMU_PMEVCNTR_EL0(5),
2292         PMU_PMEVCNTR_EL0(6),
2293         PMU_PMEVCNTR_EL0(7),
2294         PMU_PMEVCNTR_EL0(8),
2295         PMU_PMEVCNTR_EL0(9),
2296         PMU_PMEVCNTR_EL0(10),
2297         PMU_PMEVCNTR_EL0(11),
2298         PMU_PMEVCNTR_EL0(12),
2299         PMU_PMEVCNTR_EL0(13),
2300         PMU_PMEVCNTR_EL0(14),
2301         PMU_PMEVCNTR_EL0(15),
2302         PMU_PMEVCNTR_EL0(16),
2303         PMU_PMEVCNTR_EL0(17),
2304         PMU_PMEVCNTR_EL0(18),
2305         PMU_PMEVCNTR_EL0(19),
2306         PMU_PMEVCNTR_EL0(20),
2307         PMU_PMEVCNTR_EL0(21),
2308         PMU_PMEVCNTR_EL0(22),
2309         PMU_PMEVCNTR_EL0(23),
2310         PMU_PMEVCNTR_EL0(24),
2311         PMU_PMEVCNTR_EL0(25),
2312         PMU_PMEVCNTR_EL0(26),
2313         PMU_PMEVCNTR_EL0(27),
2314         PMU_PMEVCNTR_EL0(28),
2315         PMU_PMEVCNTR_EL0(29),
2316         PMU_PMEVCNTR_EL0(30),
2317         /* PMEVTYPERn_EL0 */
2318         PMU_PMEVTYPER_EL0(0),
2319         PMU_PMEVTYPER_EL0(1),
2320         PMU_PMEVTYPER_EL0(2),
2321         PMU_PMEVTYPER_EL0(3),
2322         PMU_PMEVTYPER_EL0(4),
2323         PMU_PMEVTYPER_EL0(5),
2324         PMU_PMEVTYPER_EL0(6),
2325         PMU_PMEVTYPER_EL0(7),
2326         PMU_PMEVTYPER_EL0(8),
2327         PMU_PMEVTYPER_EL0(9),
2328         PMU_PMEVTYPER_EL0(10),
2329         PMU_PMEVTYPER_EL0(11),
2330         PMU_PMEVTYPER_EL0(12),
2331         PMU_PMEVTYPER_EL0(13),
2332         PMU_PMEVTYPER_EL0(14),
2333         PMU_PMEVTYPER_EL0(15),
2334         PMU_PMEVTYPER_EL0(16),
2335         PMU_PMEVTYPER_EL0(17),
2336         PMU_PMEVTYPER_EL0(18),
2337         PMU_PMEVTYPER_EL0(19),
2338         PMU_PMEVTYPER_EL0(20),
2339         PMU_PMEVTYPER_EL0(21),
2340         PMU_PMEVTYPER_EL0(22),
2341         PMU_PMEVTYPER_EL0(23),
2342         PMU_PMEVTYPER_EL0(24),
2343         PMU_PMEVTYPER_EL0(25),
2344         PMU_PMEVTYPER_EL0(26),
2345         PMU_PMEVTYPER_EL0(27),
2346         PMU_PMEVTYPER_EL0(28),
2347         PMU_PMEVTYPER_EL0(29),
2348         PMU_PMEVTYPER_EL0(30),
2349         /*
2350          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2351          * in 32bit mode. Here we choose to reset it as zero for consistency.
2352          */
2353         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
2354           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2355
2356         EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2357         EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2358         EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2359         EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2360         EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2361         EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2362         EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2363         EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2364         EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2365
2366         EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2367         EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2368         EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2369         EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2370         EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2371
2372         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2373         EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2374         EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2375         { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2376
2377         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2378         EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2379         EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2380         EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2381         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2382
2383         EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2384         EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2385
2386         EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2387         EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2388
2389         EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2390         EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2391         { SYS_DESC(SYS_RMR_EL2), trap_undef },
2392
2393         EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2394         EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2395
2396         EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2397         EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2398
2399         EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2400         EL12_REG(CPACR, access_rw, reset_val, 0),
2401         EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2402         EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2403         EL12_REG(TCR, access_vm_reg, reset_val, 0),
2404         { SYS_DESC(SYS_SPSR_EL12), access_spsr},
2405         { SYS_DESC(SYS_ELR_EL12), access_elr},
2406         EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2407         EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2408         EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2409         EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2410         EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2411         EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2412         EL12_REG(VBAR, access_rw, reset_val, 0),
2413         EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2414         EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2415
2416         EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2417 };
2418
2419 static const struct sys_reg_desc *first_idreg;
2420
2421 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2422                         struct sys_reg_params *p,
2423                         const struct sys_reg_desc *r)
2424 {
2425         if (p->is_write) {
2426                 return ignore_write(vcpu, p);
2427         } else {
2428                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2429                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2430                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2431
2432                 p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2433                              (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2434                              (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2435                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2436                 return true;
2437         }
2438 }
2439
2440 /*
2441  * AArch32 debug register mappings
2442  *
2443  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2444  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2445  *
2446  * None of the other registers share their location, so treat them as
2447  * if they were 64bit.
2448  */
2449 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
2450         /* DBGBVRn */                                                         \
2451         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2452         /* DBGBCRn */                                                         \
2453         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
2454         /* DBGWVRn */                                                         \
2455         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
2456         /* DBGWCRn */                                                         \
2457         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2458
2459 #define DBGBXVR(n)                                                            \
2460         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2461
2462 /*
2463  * Trapped cp14 registers. We generally ignore most of the external
2464  * debug, on the principle that they don't really make sense to a
2465  * guest. Revisit this one day, would this principle change.
2466  */
2467 static const struct sys_reg_desc cp14_regs[] = {
2468         /* DBGDIDR */
2469         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2470         /* DBGDTRRXext */
2471         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2472
2473         DBG_BCR_BVR_WCR_WVR(0),
2474         /* DBGDSCRint */
2475         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2476         DBG_BCR_BVR_WCR_WVR(1),
2477         /* DBGDCCINT */
2478         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2479         /* DBGDSCRext */
2480         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2481         DBG_BCR_BVR_WCR_WVR(2),
2482         /* DBGDTR[RT]Xint */
2483         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2484         /* DBGDTR[RT]Xext */
2485         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2486         DBG_BCR_BVR_WCR_WVR(3),
2487         DBG_BCR_BVR_WCR_WVR(4),
2488         DBG_BCR_BVR_WCR_WVR(5),
2489         /* DBGWFAR */
2490         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2491         /* DBGOSECCR */
2492         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2493         DBG_BCR_BVR_WCR_WVR(6),
2494         /* DBGVCR */
2495         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2496         DBG_BCR_BVR_WCR_WVR(7),
2497         DBG_BCR_BVR_WCR_WVR(8),
2498         DBG_BCR_BVR_WCR_WVR(9),
2499         DBG_BCR_BVR_WCR_WVR(10),
2500         DBG_BCR_BVR_WCR_WVR(11),
2501         DBG_BCR_BVR_WCR_WVR(12),
2502         DBG_BCR_BVR_WCR_WVR(13),
2503         DBG_BCR_BVR_WCR_WVR(14),
2504         DBG_BCR_BVR_WCR_WVR(15),
2505
2506         /* DBGDRAR (32bit) */
2507         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2508
2509         DBGBXVR(0),
2510         /* DBGOSLAR */
2511         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2512         DBGBXVR(1),
2513         /* DBGOSLSR */
2514         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2515         DBGBXVR(2),
2516         DBGBXVR(3),
2517         /* DBGOSDLR */
2518         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2519         DBGBXVR(4),
2520         /* DBGPRCR */
2521         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2522         DBGBXVR(5),
2523         DBGBXVR(6),
2524         DBGBXVR(7),
2525         DBGBXVR(8),
2526         DBGBXVR(9),
2527         DBGBXVR(10),
2528         DBGBXVR(11),
2529         DBGBXVR(12),
2530         DBGBXVR(13),
2531         DBGBXVR(14),
2532         DBGBXVR(15),
2533
2534         /* DBGDSAR (32bit) */
2535         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2536
2537         /* DBGDEVID2 */
2538         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2539         /* DBGDEVID1 */
2540         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2541         /* DBGDEVID */
2542         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2543         /* DBGCLAIMSET */
2544         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2545         /* DBGCLAIMCLR */
2546         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2547         /* DBGAUTHSTATUS */
2548         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2549 };
2550
2551 /* Trapped cp14 64bit registers */
2552 static const struct sys_reg_desc cp14_64_regs[] = {
2553         /* DBGDRAR (64bit) */
2554         { Op1( 0), CRm( 1), .access = trap_raz_wi },
2555
2556         /* DBGDSAR (64bit) */
2557         { Op1( 0), CRm( 2), .access = trap_raz_wi },
2558 };
2559
2560 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)                  \
2561         AA32(_map),                                                     \
2562         Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),                     \
2563         .visibility = pmu_visibility
2564
2565 /* Macro to expand the PMEVCNTRn register */
2566 #define PMU_PMEVCNTR(n)                                                 \
2567         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2568           (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2569           .access = access_pmu_evcntr }
2570
2571 /* Macro to expand the PMEVTYPERn register */
2572 #define PMU_PMEVTYPER(n)                                                \
2573         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2574           (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2575           .access = access_pmu_evtyper }
2576 /*
2577  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2578  * depending on the way they are accessed (as a 32bit or a 64bit
2579  * register).
2580  */
2581 static const struct sys_reg_desc cp15_regs[] = {
2582         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2583         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2584         /* ACTLR */
2585         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2586         /* ACTLR2 */
2587         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2588         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2589         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2590         /* TTBCR */
2591         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2592         /* TTBCR2 */
2593         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2594         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2595         /* DFSR */
2596         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2597         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2598         /* ADFSR */
2599         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2600         /* AIFSR */
2601         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2602         /* DFAR */
2603         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2604         /* IFAR */
2605         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2606
2607         /*
2608          * DC{C,I,CI}SW operations:
2609          */
2610         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2611         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2612         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2613
2614         /* PMU */
2615         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2616         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2617         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2618         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2619         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2620         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2621         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2622         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2623         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2624         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2625         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2626         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2627         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2628         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2629         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2630         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2631         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2632         /* PMMIR */
2633         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2634
2635         /* PRRR/MAIR0 */
2636         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2637         /* NMRR/MAIR1 */
2638         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2639         /* AMAIR0 */
2640         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2641         /* AMAIR1 */
2642         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2643
2644         /* ICC_SRE */
2645         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2646
2647         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2648
2649         /* Arch Tmers */
2650         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2651         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2652
2653         /* PMEVCNTRn */
2654         PMU_PMEVCNTR(0),
2655         PMU_PMEVCNTR(1),
2656         PMU_PMEVCNTR(2),
2657         PMU_PMEVCNTR(3),
2658         PMU_PMEVCNTR(4),
2659         PMU_PMEVCNTR(5),
2660         PMU_PMEVCNTR(6),
2661         PMU_PMEVCNTR(7),
2662         PMU_PMEVCNTR(8),
2663         PMU_PMEVCNTR(9),
2664         PMU_PMEVCNTR(10),
2665         PMU_PMEVCNTR(11),
2666         PMU_PMEVCNTR(12),
2667         PMU_PMEVCNTR(13),
2668         PMU_PMEVCNTR(14),
2669         PMU_PMEVCNTR(15),
2670         PMU_PMEVCNTR(16),
2671         PMU_PMEVCNTR(17),
2672         PMU_PMEVCNTR(18),
2673         PMU_PMEVCNTR(19),
2674         PMU_PMEVCNTR(20),
2675         PMU_PMEVCNTR(21),
2676         PMU_PMEVCNTR(22),
2677         PMU_PMEVCNTR(23),
2678         PMU_PMEVCNTR(24),
2679         PMU_PMEVCNTR(25),
2680         PMU_PMEVCNTR(26),
2681         PMU_PMEVCNTR(27),
2682         PMU_PMEVCNTR(28),
2683         PMU_PMEVCNTR(29),
2684         PMU_PMEVCNTR(30),
2685         /* PMEVTYPERn */
2686         PMU_PMEVTYPER(0),
2687         PMU_PMEVTYPER(1),
2688         PMU_PMEVTYPER(2),
2689         PMU_PMEVTYPER(3),
2690         PMU_PMEVTYPER(4),
2691         PMU_PMEVTYPER(5),
2692         PMU_PMEVTYPER(6),
2693         PMU_PMEVTYPER(7),
2694         PMU_PMEVTYPER(8),
2695         PMU_PMEVTYPER(9),
2696         PMU_PMEVTYPER(10),
2697         PMU_PMEVTYPER(11),
2698         PMU_PMEVTYPER(12),
2699         PMU_PMEVTYPER(13),
2700         PMU_PMEVTYPER(14),
2701         PMU_PMEVTYPER(15),
2702         PMU_PMEVTYPER(16),
2703         PMU_PMEVTYPER(17),
2704         PMU_PMEVTYPER(18),
2705         PMU_PMEVTYPER(19),
2706         PMU_PMEVTYPER(20),
2707         PMU_PMEVTYPER(21),
2708         PMU_PMEVTYPER(22),
2709         PMU_PMEVTYPER(23),
2710         PMU_PMEVTYPER(24),
2711         PMU_PMEVTYPER(25),
2712         PMU_PMEVTYPER(26),
2713         PMU_PMEVTYPER(27),
2714         PMU_PMEVTYPER(28),
2715         PMU_PMEVTYPER(29),
2716         PMU_PMEVTYPER(30),
2717         /* PMCCFILTR */
2718         { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2719
2720         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2721         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2722
2723         /* CCSIDR2 */
2724         { Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2725
2726         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2727 };
2728
2729 static const struct sys_reg_desc cp15_64_regs[] = {
2730         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2731         { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2732         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2733         { SYS_DESC(SYS_AARCH32_CNTPCT),       access_arch_timer },
2734         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2735         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2736         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2737         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2738         { SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
2739 };
2740
2741 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2742                                bool is_32)
2743 {
2744         unsigned int i;
2745
2746         for (i = 0; i < n; i++) {
2747                 if (!is_32 && table[i].reg && !table[i].reset) {
2748                         kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2749                         return false;
2750                 }
2751
2752                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2753                         kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2754                         return false;
2755                 }
2756         }
2757
2758         return true;
2759 }
2760
2761 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2762 {
2763         kvm_inject_undefined(vcpu);
2764         return 1;
2765 }
2766
2767 static void perform_access(struct kvm_vcpu *vcpu,
2768                            struct sys_reg_params *params,
2769                            const struct sys_reg_desc *r)
2770 {
2771         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2772
2773         /* Check for regs disabled by runtime config */
2774         if (sysreg_hidden(vcpu, r)) {
2775                 kvm_inject_undefined(vcpu);
2776                 return;
2777         }
2778
2779         /*
2780          * Not having an accessor means that we have configured a trap
2781          * that we don't know how to handle. This certainly qualifies
2782          * as a gross bug that should be fixed right away.
2783          */
2784         BUG_ON(!r->access);
2785
2786         /* Skip instruction if instructed so */
2787         if (likely(r->access(vcpu, params, r)))
2788                 kvm_incr_pc(vcpu);
2789 }
2790
2791 /*
2792  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2793  *                call the corresponding trap handler.
2794  *
2795  * @params: pointer to the descriptor of the access
2796  * @table: array of trap descriptors
2797  * @num: size of the trap descriptor array
2798  *
2799  * Return true if the access has been handled, false if not.
2800  */
2801 static bool emulate_cp(struct kvm_vcpu *vcpu,
2802                        struct sys_reg_params *params,
2803                        const struct sys_reg_desc *table,
2804                        size_t num)
2805 {
2806         const struct sys_reg_desc *r;
2807
2808         if (!table)
2809                 return false;   /* Not handled */
2810
2811         r = find_reg(params, table, num);
2812
2813         if (r) {
2814                 perform_access(vcpu, params, r);
2815                 return true;
2816         }
2817
2818         /* Not handled */
2819         return false;
2820 }
2821
2822 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2823                                 struct sys_reg_params *params)
2824 {
2825         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2826         int cp = -1;
2827
2828         switch (esr_ec) {
2829         case ESR_ELx_EC_CP15_32:
2830         case ESR_ELx_EC_CP15_64:
2831                 cp = 15;
2832                 break;
2833         case ESR_ELx_EC_CP14_MR:
2834         case ESR_ELx_EC_CP14_64:
2835                 cp = 14;
2836                 break;
2837         default:
2838                 WARN_ON(1);
2839         }
2840
2841         print_sys_reg_msg(params,
2842                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2843                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2844         kvm_inject_undefined(vcpu);
2845 }
2846
2847 /**
2848  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2849  * @vcpu: The VCPU pointer
2850  * @run:  The kvm_run struct
2851  */
2852 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2853                             const struct sys_reg_desc *global,
2854                             size_t nr_global)
2855 {
2856         struct sys_reg_params params;
2857         u64 esr = kvm_vcpu_get_esr(vcpu);
2858         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2859         int Rt2 = (esr >> 10) & 0x1f;
2860
2861         params.CRm = (esr >> 1) & 0xf;
2862         params.is_write = ((esr & 1) == 0);
2863
2864         params.Op0 = 0;
2865         params.Op1 = (esr >> 16) & 0xf;
2866         params.Op2 = 0;
2867         params.CRn = 0;
2868
2869         /*
2870          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2871          * backends between AArch32 and AArch64, we get away with it.
2872          */
2873         if (params.is_write) {
2874                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2875                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2876         }
2877
2878         /*
2879          * If the table contains a handler, handle the
2880          * potential register operation in the case of a read and return
2881          * with success.
2882          */
2883         if (emulate_cp(vcpu, &params, global, nr_global)) {
2884                 /* Split up the value between registers for the read side */
2885                 if (!params.is_write) {
2886                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2887                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2888                 }
2889
2890                 return 1;
2891         }
2892
2893         unhandled_cp_access(vcpu, &params);
2894         return 1;
2895 }
2896
2897 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2898
2899 /*
2900  * The CP10 ID registers are architecturally mapped to AArch64 feature
2901  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2902  * from AArch32.
2903  */
2904 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2905 {
2906         u8 reg_id = (esr >> 10) & 0xf;
2907         bool valid;
2908
2909         params->is_write = ((esr & 1) == 0);
2910         params->Op0 = 3;
2911         params->Op1 = 0;
2912         params->CRn = 0;
2913         params->CRm = 3;
2914
2915         /* CP10 ID registers are read-only */
2916         valid = !params->is_write;
2917
2918         switch (reg_id) {
2919         /* MVFR0 */
2920         case 0b0111:
2921                 params->Op2 = 0;
2922                 break;
2923         /* MVFR1 */
2924         case 0b0110:
2925                 params->Op2 = 1;
2926                 break;
2927         /* MVFR2 */
2928         case 0b0101:
2929                 params->Op2 = 2;
2930                 break;
2931         default:
2932                 valid = false;
2933         }
2934
2935         if (valid)
2936                 return true;
2937
2938         kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2939                       params->is_write ? "write" : "read", reg_id);
2940         return false;
2941 }
2942
2943 /**
2944  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2945  *                        VFP Register' from AArch32.
2946  * @vcpu: The vCPU pointer
2947  *
2948  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2949  * Work out the correct AArch64 system register encoding and reroute to the
2950  * AArch64 system register emulation.
2951  */
2952 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2953 {
2954         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2955         u64 esr = kvm_vcpu_get_esr(vcpu);
2956         struct sys_reg_params params;
2957
2958         /* UNDEF on any unhandled register access */
2959         if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2960                 kvm_inject_undefined(vcpu);
2961                 return 1;
2962         }
2963
2964         if (emulate_sys_reg(vcpu, &params))
2965                 vcpu_set_reg(vcpu, Rt, params.regval);
2966
2967         return 1;
2968 }
2969
2970 /**
2971  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2972  *                             CRn=0, which corresponds to the AArch32 feature
2973  *                             registers.
2974  * @vcpu: the vCPU pointer
2975  * @params: the system register access parameters.
2976  *
2977  * Our cp15 system register tables do not enumerate the AArch32 feature
2978  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2979  * register encoding can be trivially remapped into the AArch64 for the feature
2980  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2981  *
2982  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2983  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2984  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2985  * treat undefined registers in this range as RAZ.
2986  */
2987 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2988                                    struct sys_reg_params *params)
2989 {
2990         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2991
2992         /* Treat impossible writes to RO registers as UNDEFINED */
2993         if (params->is_write) {
2994                 unhandled_cp_access(vcpu, params);
2995                 return 1;
2996         }
2997
2998         params->Op0 = 3;
2999
3000         /*
3001          * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3002          * Avoid conflicting with future expansion of AArch64 feature registers
3003          * and simply treat them as RAZ here.
3004          */
3005         if (params->CRm > 3)
3006                 params->regval = 0;
3007         else if (!emulate_sys_reg(vcpu, params))
3008                 return 1;
3009
3010         vcpu_set_reg(vcpu, Rt, params->regval);
3011         return 1;
3012 }
3013
3014 /**
3015  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3016  * @vcpu: The VCPU pointer
3017  * @run:  The kvm_run struct
3018  */
3019 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3020                             struct sys_reg_params *params,
3021                             const struct sys_reg_desc *global,
3022                             size_t nr_global)
3023 {
3024         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3025
3026         params->regval = vcpu_get_reg(vcpu, Rt);
3027
3028         if (emulate_cp(vcpu, params, global, nr_global)) {
3029                 if (!params->is_write)
3030                         vcpu_set_reg(vcpu, Rt, params->regval);
3031                 return 1;
3032         }
3033
3034         unhandled_cp_access(vcpu, params);
3035         return 1;
3036 }
3037
3038 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3039 {
3040         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3041 }
3042
3043 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3044 {
3045         struct sys_reg_params params;
3046
3047         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3048
3049         /*
3050          * Certain AArch32 ID registers are handled by rerouting to the AArch64
3051          * system register table. Registers in the ID range where CRm=0 are
3052          * excluded from this scheme as they do not trivially map into AArch64
3053          * system register encodings.
3054          */
3055         if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3056                 return kvm_emulate_cp15_id_reg(vcpu, &params);
3057
3058         return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3059 }
3060
3061 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3062 {
3063         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3064 }
3065
3066 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3067 {
3068         struct sys_reg_params params;
3069
3070         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3071
3072         return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3073 }
3074
3075 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3076 {
3077         // See ARM DDI 0487E.a, section D12.3.2
3078         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3079 }
3080
3081 /**
3082  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3083  * @vcpu: The VCPU pointer
3084  * @params: Decoded system register parameters
3085  *
3086  * Return: true if the system register access was successful, false otherwise.
3087  */
3088 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3089                            struct sys_reg_params *params)
3090 {
3091         const struct sys_reg_desc *r;
3092
3093         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3094
3095         if (likely(r)) {
3096                 perform_access(vcpu, params, r);
3097                 return true;
3098         }
3099
3100         if (is_imp_def_sys_reg(params)) {
3101                 kvm_inject_undefined(vcpu);
3102         } else {
3103                 print_sys_reg_msg(params,
3104                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3105                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3106                 kvm_inject_undefined(vcpu);
3107         }
3108         return false;
3109 }
3110
3111 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3112 {
3113         const struct sys_reg_desc *idreg = first_idreg;
3114         u32 id = reg_to_encoding(idreg);
3115         struct kvm *kvm = vcpu->kvm;
3116
3117         if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3118                 return;
3119
3120         lockdep_assert_held(&kvm->arch.config_lock);
3121
3122         /* Initialize all idregs */
3123         while (is_id_reg(id)) {
3124                 IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3125
3126                 idreg++;
3127                 id = reg_to_encoding(idreg);
3128         }
3129
3130         set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3131 }
3132
3133 /**
3134  * kvm_reset_sys_regs - sets system registers to reset value
3135  * @vcpu: The VCPU pointer
3136  *
3137  * This function finds the right table above and sets the registers on the
3138  * virtual CPU struct to their architecturally defined reset values.
3139  */
3140 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3141 {
3142         unsigned long i;
3143
3144         kvm_reset_id_regs(vcpu);
3145
3146         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3147                 const struct sys_reg_desc *r = &sys_reg_descs[i];
3148
3149                 if (is_id_reg(reg_to_encoding(r)))
3150                         continue;
3151
3152                 if (r->reset)
3153                         r->reset(vcpu, r);
3154         }
3155 }
3156
3157 /**
3158  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3159  * @vcpu: The VCPU pointer
3160  */
3161 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3162 {
3163         struct sys_reg_params params;
3164         unsigned long esr = kvm_vcpu_get_esr(vcpu);
3165         int Rt = kvm_vcpu_sys_get_rt(vcpu);
3166
3167         trace_kvm_handle_sys_reg(esr);
3168
3169         params = esr_sys64_to_params(esr);
3170         params.regval = vcpu_get_reg(vcpu, Rt);
3171
3172         if (!emulate_sys_reg(vcpu, &params))
3173                 return 1;
3174
3175         if (!params.is_write)
3176                 vcpu_set_reg(vcpu, Rt, params.regval);
3177         return 1;
3178 }
3179
3180 /******************************************************************************
3181  * Userspace API
3182  *****************************************************************************/
3183
3184 static bool index_to_params(u64 id, struct sys_reg_params *params)
3185 {
3186         switch (id & KVM_REG_SIZE_MASK) {
3187         case KVM_REG_SIZE_U64:
3188                 /* Any unused index bits means it's not valid. */
3189                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3190                               | KVM_REG_ARM_COPROC_MASK
3191                               | KVM_REG_ARM64_SYSREG_OP0_MASK
3192                               | KVM_REG_ARM64_SYSREG_OP1_MASK
3193                               | KVM_REG_ARM64_SYSREG_CRN_MASK
3194                               | KVM_REG_ARM64_SYSREG_CRM_MASK
3195                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
3196                         return false;
3197                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3198                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3199                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3200                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3201                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3202                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3203                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3204                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3205                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3206                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3207                 return true;
3208         default:
3209                 return false;
3210         }
3211 }
3212
3213 const struct sys_reg_desc *get_reg_by_id(u64 id,
3214                                          const struct sys_reg_desc table[],
3215                                          unsigned int num)
3216 {
3217         struct sys_reg_params params;
3218
3219         if (!index_to_params(id, &params))
3220                 return NULL;
3221
3222         return find_reg(&params, table, num);
3223 }
3224
3225 /* Decode an index value, and find the sys_reg_desc entry. */
3226 static const struct sys_reg_desc *
3227 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3228                    const struct sys_reg_desc table[], unsigned int num)
3229
3230 {
3231         const struct sys_reg_desc *r;
3232
3233         /* We only do sys_reg for now. */
3234         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3235                 return NULL;
3236
3237         r = get_reg_by_id(id, table, num);
3238
3239         /* Not saved in the sys_reg array and not otherwise accessible? */
3240         if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3241                 r = NULL;
3242
3243         return r;
3244 }
3245
3246 /*
3247  * These are the invariant sys_reg registers: we let the guest see the
3248  * host versions of these, so they're part of the guest state.
3249  *
3250  * A future CPU may provide a mechanism to present different values to
3251  * the guest, or a future kvm may trap them.
3252  */
3253
3254 #define FUNCTION_INVARIANT(reg)                                         \
3255         static u64 get_##reg(struct kvm_vcpu *v,                        \
3256                               const struct sys_reg_desc *r)             \
3257         {                                                               \
3258                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
3259                 return ((struct sys_reg_desc *)r)->val;                 \
3260         }
3261
3262 FUNCTION_INVARIANT(midr_el1)
3263 FUNCTION_INVARIANT(revidr_el1)
3264 FUNCTION_INVARIANT(aidr_el1)
3265
3266 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3267 {
3268         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3269         return ((struct sys_reg_desc *)r)->val;
3270 }
3271
3272 /* ->val is filled in by kvm_sys_reg_table_init() */
3273 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3274         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3275         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3276         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3277         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3278 };
3279
3280 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3281 {
3282         const struct sys_reg_desc *r;
3283
3284         r = get_reg_by_id(id, invariant_sys_regs,
3285                           ARRAY_SIZE(invariant_sys_regs));
3286         if (!r)
3287                 return -ENOENT;
3288
3289         return put_user(r->val, uaddr);
3290 }
3291
3292 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3293 {
3294         const struct sys_reg_desc *r;
3295         u64 val;
3296
3297         r = get_reg_by_id(id, invariant_sys_regs,
3298                           ARRAY_SIZE(invariant_sys_regs));
3299         if (!r)
3300                 return -ENOENT;
3301
3302         if (get_user(val, uaddr))
3303                 return -EFAULT;
3304
3305         /* This is what we mean by invariant: you can't change it. */
3306         if (r->val != val)
3307                 return -EINVAL;
3308
3309         return 0;
3310 }
3311
3312 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3313 {
3314         u32 val;
3315         u32 __user *uval = uaddr;
3316
3317         /* Fail if we have unknown bits set. */
3318         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3319                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3320                 return -ENOENT;
3321
3322         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3323         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3324                 if (KVM_REG_SIZE(id) != 4)
3325                         return -ENOENT;
3326                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3327                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3328                 if (val >= CSSELR_MAX)
3329                         return -ENOENT;
3330
3331                 return put_user(get_ccsidr(vcpu, val), uval);
3332         default:
3333                 return -ENOENT;
3334         }
3335 }
3336
3337 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3338 {
3339         u32 val, newval;
3340         u32 __user *uval = uaddr;
3341
3342         /* Fail if we have unknown bits set. */
3343         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3344                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3345                 return -ENOENT;
3346
3347         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3348         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3349                 if (KVM_REG_SIZE(id) != 4)
3350                         return -ENOENT;
3351                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3352                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3353                 if (val >= CSSELR_MAX)
3354                         return -ENOENT;
3355
3356                 if (get_user(newval, uval))
3357                         return -EFAULT;
3358
3359                 return set_ccsidr(vcpu, val, newval);
3360         default:
3361                 return -ENOENT;
3362         }
3363 }
3364
3365 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3366                          const struct sys_reg_desc table[], unsigned int num)
3367 {
3368         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3369         const struct sys_reg_desc *r;
3370         u64 val;
3371         int ret;
3372
3373         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3374         if (!r || sysreg_hidden_user(vcpu, r))
3375                 return -ENOENT;
3376
3377         if (r->get_user) {
3378                 ret = (r->get_user)(vcpu, r, &val);
3379         } else {
3380                 val = __vcpu_sys_reg(vcpu, r->reg);
3381                 ret = 0;
3382         }
3383
3384         if (!ret)
3385                 ret = put_user(val, uaddr);
3386
3387         return ret;
3388 }
3389
3390 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3391 {
3392         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3393         int err;
3394
3395         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3396                 return demux_c15_get(vcpu, reg->id, uaddr);
3397
3398         err = get_invariant_sys_reg(reg->id, uaddr);
3399         if (err != -ENOENT)
3400                 return err;
3401
3402         return kvm_sys_reg_get_user(vcpu, reg,
3403                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3404 }
3405
3406 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3407                          const struct sys_reg_desc table[], unsigned int num)
3408 {
3409         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3410         const struct sys_reg_desc *r;
3411         u64 val;
3412         int ret;
3413
3414         if (get_user(val, uaddr))
3415                 return -EFAULT;
3416
3417         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3418         if (!r || sysreg_hidden_user(vcpu, r))
3419                 return -ENOENT;
3420
3421         if (sysreg_user_write_ignore(vcpu, r))
3422                 return 0;
3423
3424         if (r->set_user) {
3425                 ret = (r->set_user)(vcpu, r, val);
3426         } else {
3427                 __vcpu_sys_reg(vcpu, r->reg) = val;
3428                 ret = 0;
3429         }
3430
3431         return ret;
3432 }
3433
3434 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3435 {
3436         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3437         int err;
3438
3439         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3440                 return demux_c15_set(vcpu, reg->id, uaddr);
3441
3442         err = set_invariant_sys_reg(reg->id, uaddr);
3443         if (err != -ENOENT)
3444                 return err;
3445
3446         return kvm_sys_reg_set_user(vcpu, reg,
3447                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3448 }
3449
3450 static unsigned int num_demux_regs(void)
3451 {
3452         return CSSELR_MAX;
3453 }
3454
3455 static int write_demux_regids(u64 __user *uindices)
3456 {
3457         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3458         unsigned int i;
3459
3460         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3461         for (i = 0; i < CSSELR_MAX; i++) {
3462                 if (put_user(val | i, uindices))
3463                         return -EFAULT;
3464                 uindices++;
3465         }
3466         return 0;
3467 }
3468
3469 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3470 {
3471         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3472                 KVM_REG_ARM64_SYSREG |
3473                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3474                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3475                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3476                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3477                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3478 }
3479
3480 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3481 {
3482         if (!*uind)
3483                 return true;
3484
3485         if (put_user(sys_reg_to_index(reg), *uind))
3486                 return false;
3487
3488         (*uind)++;
3489         return true;
3490 }
3491
3492 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3493                             const struct sys_reg_desc *rd,
3494                             u64 __user **uind,
3495                             unsigned int *total)
3496 {
3497         /*
3498          * Ignore registers we trap but don't save,
3499          * and for which no custom user accessor is provided.
3500          */
3501         if (!(rd->reg || rd->get_user))
3502                 return 0;
3503
3504         if (sysreg_hidden_user(vcpu, rd))
3505                 return 0;
3506
3507         if (!copy_reg_to_user(rd, uind))
3508                 return -EFAULT;
3509
3510         (*total)++;
3511         return 0;
3512 }
3513
3514 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3515 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3516 {
3517         const struct sys_reg_desc *i2, *end2;
3518         unsigned int total = 0;
3519         int err;
3520
3521         i2 = sys_reg_descs;
3522         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3523
3524         while (i2 != end2) {
3525                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3526                 if (err)
3527                         return err;
3528         }
3529         return total;
3530 }
3531
3532 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3533 {
3534         return ARRAY_SIZE(invariant_sys_regs)
3535                 + num_demux_regs()
3536                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3537 }
3538
3539 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3540 {
3541         unsigned int i;
3542         int err;
3543
3544         /* Then give them all the invariant registers' indices. */
3545         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3546                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3547                         return -EFAULT;
3548                 uindices++;
3549         }
3550
3551         err = walk_sys_regs(vcpu, uindices);
3552         if (err < 0)
3553                 return err;
3554         uindices += err;
3555
3556         return write_demux_regids(uindices);
3557 }
3558
3559 int __init kvm_sys_reg_table_init(void)
3560 {
3561         struct sys_reg_params params;
3562         bool valid = true;
3563         unsigned int i;
3564
3565         /* Make sure tables are unique and in order. */
3566         valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3567         valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3568         valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3569         valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3570         valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3571         valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3572
3573         if (!valid)
3574                 return -EINVAL;
3575
3576         /* We abuse the reset function to overwrite the table itself. */
3577         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3578                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3579
3580         /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3581         params = encoding_to_params(SYS_ID_PFR0_EL1);
3582         first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3583         if (!first_idreg)
3584                 return -EINVAL;
3585
3586         return 0;
3587 }