KVM: arm64: Rework CPTR_EL2 programming for HVHE configuration
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31
32 #include <trace/events/kvm.h>
33
34 #include "sys_regs.h"
35
36 #include "trace.h"
37
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45
46 static bool read_from_write_only(struct kvm_vcpu *vcpu,
47                                  struct sys_reg_params *params,
48                                  const struct sys_reg_desc *r)
49 {
50         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
51         print_sys_reg_instr(params);
52         kvm_inject_undefined(vcpu);
53         return false;
54 }
55
56 static bool write_to_read_only(struct kvm_vcpu *vcpu,
57                                struct sys_reg_params *params,
58                                const struct sys_reg_desc *r)
59 {
60         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
61         print_sys_reg_instr(params);
62         kvm_inject_undefined(vcpu);
63         return false;
64 }
65
66 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
67 {
68         u64 val = 0x8badf00d8badf00d;
69
70         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
71             __vcpu_read_sys_reg_from_cpu(reg, &val))
72                 return val;
73
74         return __vcpu_sys_reg(vcpu, reg);
75 }
76
77 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
78 {
79         if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
80             __vcpu_write_sys_reg_to_cpu(val, reg))
81                 return;
82
83         __vcpu_sys_reg(vcpu, reg) = val;
84 }
85
86 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
87 #define CSSELR_MAX 14
88
89 /*
90  * Returns the minimum line size for the selected cache, expressed as
91  * Log2(bytes).
92  */
93 static u8 get_min_cache_line_size(bool icache)
94 {
95         u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
96         u8 field;
97
98         if (icache)
99                 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
100         else
101                 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
102
103         /*
104          * Cache line size is represented as Log2(words) in CTR_EL0.
105          * Log2(bytes) can be derived with the following:
106          *
107          * Log2(words) + 2 = Log2(bytes / 4) + 2
108          *                 = Log2(bytes) - 2 + 2
109          *                 = Log2(bytes)
110          */
111         return field + 2;
112 }
113
114 /* Which cache CCSIDR represents depends on CSSELR value. */
115 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
116 {
117         u8 line_size;
118
119         if (vcpu->arch.ccsidr)
120                 return vcpu->arch.ccsidr[csselr];
121
122         line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
123
124         /*
125          * Fabricate a CCSIDR value as the overriding value does not exist.
126          * The real CCSIDR value will not be used as it can vary by the
127          * physical CPU which the vcpu currently resides in.
128          *
129          * The line size is determined with get_min_cache_line_size(), which
130          * should be valid for all CPUs even if they have different cache
131          * configuration.
132          *
133          * The associativity bits are cleared, meaning the geometry of all data
134          * and unified caches (which are guaranteed to be PIPT and thus
135          * non-aliasing) are 1 set and 1 way.
136          * Guests should not be doing cache operations by set/way at all, and
137          * for this reason, we trap them and attempt to infer the intent, so
138          * that we can flush the entire guest's address space at the appropriate
139          * time. The exposed geometry minimizes the number of the traps.
140          * [If guests should attempt to infer aliasing properties from the
141          * geometry (which is not permitted by the architecture), they would
142          * only do so for virtually indexed caches.]
143          *
144          * We don't check if the cache level exists as it is allowed to return
145          * an UNKNOWN value if not.
146          */
147         return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
148 }
149
150 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
151 {
152         u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
153         u32 *ccsidr = vcpu->arch.ccsidr;
154         u32 i;
155
156         if ((val & CCSIDR_EL1_RES0) ||
157             line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
158                 return -EINVAL;
159
160         if (!ccsidr) {
161                 if (val == get_ccsidr(vcpu, csselr))
162                         return 0;
163
164                 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
165                 if (!ccsidr)
166                         return -ENOMEM;
167
168                 for (i = 0; i < CSSELR_MAX; i++)
169                         ccsidr[i] = get_ccsidr(vcpu, i);
170
171                 vcpu->arch.ccsidr = ccsidr;
172         }
173
174         ccsidr[csselr] = val;
175
176         return 0;
177 }
178
179 static bool access_rw(struct kvm_vcpu *vcpu,
180                       struct sys_reg_params *p,
181                       const struct sys_reg_desc *r)
182 {
183         if (p->is_write)
184                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
185         else
186                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
187
188         return true;
189 }
190
191 /*
192  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
193  */
194 static bool access_dcsw(struct kvm_vcpu *vcpu,
195                         struct sys_reg_params *p,
196                         const struct sys_reg_desc *r)
197 {
198         if (!p->is_write)
199                 return read_from_write_only(vcpu, p, r);
200
201         /*
202          * Only track S/W ops if we don't have FWB. It still indicates
203          * that the guest is a bit broken (S/W operations should only
204          * be done by firmware, knowing that there is only a single
205          * CPU left in the system, and certainly not from non-secure
206          * software).
207          */
208         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
209                 kvm_set_way_flush(vcpu);
210
211         return true;
212 }
213
214 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
215 {
216         switch (r->aarch32_map) {
217         case AA32_LO:
218                 *mask = GENMASK_ULL(31, 0);
219                 *shift = 0;
220                 break;
221         case AA32_HI:
222                 *mask = GENMASK_ULL(63, 32);
223                 *shift = 32;
224                 break;
225         default:
226                 *mask = GENMASK_ULL(63, 0);
227                 *shift = 0;
228                 break;
229         }
230 }
231
232 /*
233  * Generic accessor for VM registers. Only called as long as HCR_TVM
234  * is set. If the guest enables the MMU, we stop trapping the VM
235  * sys_regs and leave it in complete control of the caches.
236  */
237 static bool access_vm_reg(struct kvm_vcpu *vcpu,
238                           struct sys_reg_params *p,
239                           const struct sys_reg_desc *r)
240 {
241         bool was_enabled = vcpu_has_cache_enabled(vcpu);
242         u64 val, mask, shift;
243
244         BUG_ON(!p->is_write);
245
246         get_access_mask(r, &mask, &shift);
247
248         if (~mask) {
249                 val = vcpu_read_sys_reg(vcpu, r->reg);
250                 val &= ~mask;
251         } else {
252                 val = 0;
253         }
254
255         val |= (p->regval & (mask >> shift)) << shift;
256         vcpu_write_sys_reg(vcpu, val, r->reg);
257
258         kvm_toggle_cache(vcpu, was_enabled);
259         return true;
260 }
261
262 static bool access_actlr(struct kvm_vcpu *vcpu,
263                          struct sys_reg_params *p,
264                          const struct sys_reg_desc *r)
265 {
266         u64 mask, shift;
267
268         if (p->is_write)
269                 return ignore_write(vcpu, p);
270
271         get_access_mask(r, &mask, &shift);
272         p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
273
274         return true;
275 }
276
277 /*
278  * Trap handler for the GICv3 SGI generation system register.
279  * Forward the request to the VGIC emulation.
280  * The cp15_64 code makes sure this automatically works
281  * for both AArch64 and AArch32 accesses.
282  */
283 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
284                            struct sys_reg_params *p,
285                            const struct sys_reg_desc *r)
286 {
287         bool g1;
288
289         if (!p->is_write)
290                 return read_from_write_only(vcpu, p, r);
291
292         /*
293          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
294          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
295          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
296          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
297          * group.
298          */
299         if (p->Op0 == 0) {              /* AArch32 */
300                 switch (p->Op1) {
301                 default:                /* Keep GCC quiet */
302                 case 0:                 /* ICC_SGI1R */
303                         g1 = true;
304                         break;
305                 case 1:                 /* ICC_ASGI1R */
306                 case 2:                 /* ICC_SGI0R */
307                         g1 = false;
308                         break;
309                 }
310         } else {                        /* AArch64 */
311                 switch (p->Op2) {
312                 default:                /* Keep GCC quiet */
313                 case 5:                 /* ICC_SGI1R_EL1 */
314                         g1 = true;
315                         break;
316                 case 6:                 /* ICC_ASGI1R_EL1 */
317                 case 7:                 /* ICC_SGI0R_EL1 */
318                         g1 = false;
319                         break;
320                 }
321         }
322
323         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
324
325         return true;
326 }
327
328 static bool access_gic_sre(struct kvm_vcpu *vcpu,
329                            struct sys_reg_params *p,
330                            const struct sys_reg_desc *r)
331 {
332         if (p->is_write)
333                 return ignore_write(vcpu, p);
334
335         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
336         return true;
337 }
338
339 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
340                         struct sys_reg_params *p,
341                         const struct sys_reg_desc *r)
342 {
343         if (p->is_write)
344                 return ignore_write(vcpu, p);
345         else
346                 return read_zero(vcpu, p);
347 }
348
349 static bool trap_undef(struct kvm_vcpu *vcpu,
350                        struct sys_reg_params *p,
351                        const struct sys_reg_desc *r)
352 {
353         kvm_inject_undefined(vcpu);
354         return false;
355 }
356
357 /*
358  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
359  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
360  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
361  * treat it separately.
362  */
363 static bool trap_loregion(struct kvm_vcpu *vcpu,
364                           struct sys_reg_params *p,
365                           const struct sys_reg_desc *r)
366 {
367         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
368         u32 sr = reg_to_encoding(r);
369
370         if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
371                 kvm_inject_undefined(vcpu);
372                 return false;
373         }
374
375         if (p->is_write && sr == SYS_LORID_EL1)
376                 return write_to_read_only(vcpu, p, r);
377
378         return trap_raz_wi(vcpu, p, r);
379 }
380
381 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
382                            struct sys_reg_params *p,
383                            const struct sys_reg_desc *r)
384 {
385         u64 oslsr;
386
387         if (!p->is_write)
388                 return read_from_write_only(vcpu, p, r);
389
390         /* Forward the OSLK bit to OSLSR */
391         oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
392         if (p->regval & SYS_OSLAR_OSLK)
393                 oslsr |= SYS_OSLSR_OSLK;
394
395         __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
396         return true;
397 }
398
399 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
400                            struct sys_reg_params *p,
401                            const struct sys_reg_desc *r)
402 {
403         if (p->is_write)
404                 return write_to_read_only(vcpu, p, r);
405
406         p->regval = __vcpu_sys_reg(vcpu, r->reg);
407         return true;
408 }
409
410 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
411                          u64 val)
412 {
413         /*
414          * The only modifiable bit is the OSLK bit. Refuse the write if
415          * userspace attempts to change any other bit in the register.
416          */
417         if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
418                 return -EINVAL;
419
420         __vcpu_sys_reg(vcpu, rd->reg) = val;
421         return 0;
422 }
423
424 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
425                                    struct sys_reg_params *p,
426                                    const struct sys_reg_desc *r)
427 {
428         if (p->is_write) {
429                 return ignore_write(vcpu, p);
430         } else {
431                 p->regval = read_sysreg(dbgauthstatus_el1);
432                 return true;
433         }
434 }
435
436 /*
437  * We want to avoid world-switching all the DBG registers all the
438  * time:
439  *
440  * - If we've touched any debug register, it is likely that we're
441  *   going to touch more of them. It then makes sense to disable the
442  *   traps and start doing the save/restore dance
443  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
444  *   then mandatory to save/restore the registers, as the guest
445  *   depends on them.
446  *
447  * For this, we use a DIRTY bit, indicating the guest has modified the
448  * debug registers, used as follow:
449  *
450  * On guest entry:
451  * - If the dirty bit is set (because we're coming back from trapping),
452  *   disable the traps, save host registers, restore guest registers.
453  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
454  *   set the dirty bit, disable the traps, save host registers,
455  *   restore guest registers.
456  * - Otherwise, enable the traps
457  *
458  * On guest exit:
459  * - If the dirty bit is set, save guest registers, restore host
460  *   registers and clear the dirty bit. This ensure that the host can
461  *   now use the debug registers.
462  */
463 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
464                             struct sys_reg_params *p,
465                             const struct sys_reg_desc *r)
466 {
467         access_rw(vcpu, p, r);
468         if (p->is_write)
469                 vcpu_set_flag(vcpu, DEBUG_DIRTY);
470
471         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
472
473         return true;
474 }
475
476 /*
477  * reg_to_dbg/dbg_to_reg
478  *
479  * A 32 bit write to a debug register leave top bits alone
480  * A 32 bit read from a debug register only returns the bottom bits
481  *
482  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
483  * switches between host and guest values in future.
484  */
485 static void reg_to_dbg(struct kvm_vcpu *vcpu,
486                        struct sys_reg_params *p,
487                        const struct sys_reg_desc *rd,
488                        u64 *dbg_reg)
489 {
490         u64 mask, shift, val;
491
492         get_access_mask(rd, &mask, &shift);
493
494         val = *dbg_reg;
495         val &= ~mask;
496         val |= (p->regval & (mask >> shift)) << shift;
497         *dbg_reg = val;
498
499         vcpu_set_flag(vcpu, DEBUG_DIRTY);
500 }
501
502 static void dbg_to_reg(struct kvm_vcpu *vcpu,
503                        struct sys_reg_params *p,
504                        const struct sys_reg_desc *rd,
505                        u64 *dbg_reg)
506 {
507         u64 mask, shift;
508
509         get_access_mask(rd, &mask, &shift);
510         p->regval = (*dbg_reg & mask) >> shift;
511 }
512
513 static bool trap_bvr(struct kvm_vcpu *vcpu,
514                      struct sys_reg_params *p,
515                      const struct sys_reg_desc *rd)
516 {
517         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
518
519         if (p->is_write)
520                 reg_to_dbg(vcpu, p, rd, dbg_reg);
521         else
522                 dbg_to_reg(vcpu, p, rd, dbg_reg);
523
524         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
525
526         return true;
527 }
528
529 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
530                    u64 val)
531 {
532         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
533         return 0;
534 }
535
536 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
537                    u64 *val)
538 {
539         *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
540         return 0;
541 }
542
543 static void reset_bvr(struct kvm_vcpu *vcpu,
544                       const struct sys_reg_desc *rd)
545 {
546         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
547 }
548
549 static bool trap_bcr(struct kvm_vcpu *vcpu,
550                      struct sys_reg_params *p,
551                      const struct sys_reg_desc *rd)
552 {
553         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
554
555         if (p->is_write)
556                 reg_to_dbg(vcpu, p, rd, dbg_reg);
557         else
558                 dbg_to_reg(vcpu, p, rd, dbg_reg);
559
560         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
561
562         return true;
563 }
564
565 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
566                    u64 val)
567 {
568         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
569         return 0;
570 }
571
572 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
573                    u64 *val)
574 {
575         *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
576         return 0;
577 }
578
579 static void reset_bcr(struct kvm_vcpu *vcpu,
580                       const struct sys_reg_desc *rd)
581 {
582         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
583 }
584
585 static bool trap_wvr(struct kvm_vcpu *vcpu,
586                      struct sys_reg_params *p,
587                      const struct sys_reg_desc *rd)
588 {
589         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
590
591         if (p->is_write)
592                 reg_to_dbg(vcpu, p, rd, dbg_reg);
593         else
594                 dbg_to_reg(vcpu, p, rd, dbg_reg);
595
596         trace_trap_reg(__func__, rd->CRm, p->is_write,
597                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
598
599         return true;
600 }
601
602 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
603                    u64 val)
604 {
605         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
606         return 0;
607 }
608
609 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
610                    u64 *val)
611 {
612         *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
613         return 0;
614 }
615
616 static void reset_wvr(struct kvm_vcpu *vcpu,
617                       const struct sys_reg_desc *rd)
618 {
619         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
620 }
621
622 static bool trap_wcr(struct kvm_vcpu *vcpu,
623                      struct sys_reg_params *p,
624                      const struct sys_reg_desc *rd)
625 {
626         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
627
628         if (p->is_write)
629                 reg_to_dbg(vcpu, p, rd, dbg_reg);
630         else
631                 dbg_to_reg(vcpu, p, rd, dbg_reg);
632
633         trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
634
635         return true;
636 }
637
638 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
639                    u64 val)
640 {
641         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
642         return 0;
643 }
644
645 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
646                    u64 *val)
647 {
648         *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
649         return 0;
650 }
651
652 static void reset_wcr(struct kvm_vcpu *vcpu,
653                       const struct sys_reg_desc *rd)
654 {
655         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
656 }
657
658 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
659 {
660         u64 amair = read_sysreg(amair_el1);
661         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
662 }
663
664 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
665 {
666         u64 actlr = read_sysreg(actlr_el1);
667         vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
668 }
669
670 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
671 {
672         u64 mpidr;
673
674         /*
675          * Map the vcpu_id into the first three affinity level fields of
676          * the MPIDR. We limit the number of VCPUs in level 0 due to a
677          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
678          * of the GICv3 to be able to address each CPU directly when
679          * sending IPIs.
680          */
681         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
682         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
683         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
684         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
685 }
686
687 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
688                                    const struct sys_reg_desc *r)
689 {
690         if (kvm_vcpu_has_pmu(vcpu))
691                 return 0;
692
693         return REG_HIDDEN;
694 }
695
696 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
697 {
698         u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
699
700         /* No PMU available, any PMU reg may UNDEF... */
701         if (!kvm_arm_support_pmu_v3())
702                 return;
703
704         n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
705         n &= ARMV8_PMU_PMCR_N_MASK;
706         if (n)
707                 mask |= GENMASK(n - 1, 0);
708
709         reset_unknown(vcpu, r);
710         __vcpu_sys_reg(vcpu, r->reg) &= mask;
711 }
712
713 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
714 {
715         reset_unknown(vcpu, r);
716         __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
717 }
718
719 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
720 {
721         reset_unknown(vcpu, r);
722         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
723 }
724
725 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
726 {
727         reset_unknown(vcpu, r);
728         __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
729 }
730
731 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
732 {
733         u64 pmcr;
734
735         /* No PMU available, PMCR_EL0 may UNDEF... */
736         if (!kvm_arm_support_pmu_v3())
737                 return;
738
739         /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
740         pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
741         if (!kvm_supports_32bit_el0())
742                 pmcr |= ARMV8_PMU_PMCR_LC;
743
744         __vcpu_sys_reg(vcpu, r->reg) = pmcr;
745 }
746
747 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
748 {
749         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
750         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
751
752         if (!enabled)
753                 kvm_inject_undefined(vcpu);
754
755         return !enabled;
756 }
757
758 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
759 {
760         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
761 }
762
763 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
764 {
765         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
766 }
767
768 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
769 {
770         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
771 }
772
773 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
774 {
775         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
776 }
777
778 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
779                         const struct sys_reg_desc *r)
780 {
781         u64 val;
782
783         if (pmu_access_el0_disabled(vcpu))
784                 return false;
785
786         if (p->is_write) {
787                 /*
788                  * Only update writeable bits of PMCR (continuing into
789                  * kvm_pmu_handle_pmcr() as well)
790                  */
791                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
792                 val &= ~ARMV8_PMU_PMCR_MASK;
793                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
794                 if (!kvm_supports_32bit_el0())
795                         val |= ARMV8_PMU_PMCR_LC;
796                 kvm_pmu_handle_pmcr(vcpu, val);
797         } else {
798                 /* PMCR.P & PMCR.C are RAZ */
799                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
800                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
801                 p->regval = val;
802         }
803
804         return true;
805 }
806
807 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
808                           const struct sys_reg_desc *r)
809 {
810         if (pmu_access_event_counter_el0_disabled(vcpu))
811                 return false;
812
813         if (p->is_write)
814                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
815         else
816                 /* return PMSELR.SEL field */
817                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
818                             & ARMV8_PMU_COUNTER_MASK;
819
820         return true;
821 }
822
823 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
824                           const struct sys_reg_desc *r)
825 {
826         u64 pmceid, mask, shift;
827
828         BUG_ON(p->is_write);
829
830         if (pmu_access_el0_disabled(vcpu))
831                 return false;
832
833         get_access_mask(r, &mask, &shift);
834
835         pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
836         pmceid &= mask;
837         pmceid >>= shift;
838
839         p->regval = pmceid;
840
841         return true;
842 }
843
844 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
845 {
846         u64 pmcr, val;
847
848         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
849         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
850         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
851                 kvm_inject_undefined(vcpu);
852                 return false;
853         }
854
855         return true;
856 }
857
858 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
859                           u64 *val)
860 {
861         u64 idx;
862
863         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
864                 /* PMCCNTR_EL0 */
865                 idx = ARMV8_PMU_CYCLE_IDX;
866         else
867                 /* PMEVCNTRn_EL0 */
868                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
869
870         *val = kvm_pmu_get_counter_value(vcpu, idx);
871         return 0;
872 }
873
874 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
875                               struct sys_reg_params *p,
876                               const struct sys_reg_desc *r)
877 {
878         u64 idx = ~0UL;
879
880         if (r->CRn == 9 && r->CRm == 13) {
881                 if (r->Op2 == 2) {
882                         /* PMXEVCNTR_EL0 */
883                         if (pmu_access_event_counter_el0_disabled(vcpu))
884                                 return false;
885
886                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
887                               & ARMV8_PMU_COUNTER_MASK;
888                 } else if (r->Op2 == 0) {
889                         /* PMCCNTR_EL0 */
890                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
891                                 return false;
892
893                         idx = ARMV8_PMU_CYCLE_IDX;
894                 }
895         } else if (r->CRn == 0 && r->CRm == 9) {
896                 /* PMCCNTR */
897                 if (pmu_access_event_counter_el0_disabled(vcpu))
898                         return false;
899
900                 idx = ARMV8_PMU_CYCLE_IDX;
901         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
902                 /* PMEVCNTRn_EL0 */
903                 if (pmu_access_event_counter_el0_disabled(vcpu))
904                         return false;
905
906                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
907         }
908
909         /* Catch any decoding mistake */
910         WARN_ON(idx == ~0UL);
911
912         if (!pmu_counter_idx_valid(vcpu, idx))
913                 return false;
914
915         if (p->is_write) {
916                 if (pmu_access_el0_disabled(vcpu))
917                         return false;
918
919                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
920         } else {
921                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
922         }
923
924         return true;
925 }
926
927 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
928                                const struct sys_reg_desc *r)
929 {
930         u64 idx, reg;
931
932         if (pmu_access_el0_disabled(vcpu))
933                 return false;
934
935         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
936                 /* PMXEVTYPER_EL0 */
937                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
938                 reg = PMEVTYPER0_EL0 + idx;
939         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
940                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
941                 if (idx == ARMV8_PMU_CYCLE_IDX)
942                         reg = PMCCFILTR_EL0;
943                 else
944                         /* PMEVTYPERn_EL0 */
945                         reg = PMEVTYPER0_EL0 + idx;
946         } else {
947                 BUG();
948         }
949
950         if (!pmu_counter_idx_valid(vcpu, idx))
951                 return false;
952
953         if (p->is_write) {
954                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
955                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
956                 kvm_vcpu_pmu_restore_guest(vcpu);
957         } else {
958                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
959         }
960
961         return true;
962 }
963
964 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965                            const struct sys_reg_desc *r)
966 {
967         u64 val, mask;
968
969         if (pmu_access_el0_disabled(vcpu))
970                 return false;
971
972         mask = kvm_pmu_valid_counter_mask(vcpu);
973         if (p->is_write) {
974                 val = p->regval & mask;
975                 if (r->Op2 & 0x1) {
976                         /* accessing PMCNTENSET_EL0 */
977                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
978                         kvm_pmu_enable_counter_mask(vcpu, val);
979                         kvm_vcpu_pmu_restore_guest(vcpu);
980                 } else {
981                         /* accessing PMCNTENCLR_EL0 */
982                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
983                         kvm_pmu_disable_counter_mask(vcpu, val);
984                 }
985         } else {
986                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
987         }
988
989         return true;
990 }
991
992 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
993                            const struct sys_reg_desc *r)
994 {
995         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
996
997         if (check_pmu_access_disabled(vcpu, 0))
998                 return false;
999
1000         if (p->is_write) {
1001                 u64 val = p->regval & mask;
1002
1003                 if (r->Op2 & 0x1)
1004                         /* accessing PMINTENSET_EL1 */
1005                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1006                 else
1007                         /* accessing PMINTENCLR_EL1 */
1008                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1009         } else {
1010                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1011         }
1012
1013         return true;
1014 }
1015
1016 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1017                          const struct sys_reg_desc *r)
1018 {
1019         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1020
1021         if (pmu_access_el0_disabled(vcpu))
1022                 return false;
1023
1024         if (p->is_write) {
1025                 if (r->CRm & 0x2)
1026                         /* accessing PMOVSSET_EL0 */
1027                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1028                 else
1029                         /* accessing PMOVSCLR_EL0 */
1030                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1031         } else {
1032                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1033         }
1034
1035         return true;
1036 }
1037
1038 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1039                            const struct sys_reg_desc *r)
1040 {
1041         u64 mask;
1042
1043         if (!p->is_write)
1044                 return read_from_write_only(vcpu, p, r);
1045
1046         if (pmu_write_swinc_el0_disabled(vcpu))
1047                 return false;
1048
1049         mask = kvm_pmu_valid_counter_mask(vcpu);
1050         kvm_pmu_software_increment(vcpu, p->regval & mask);
1051         return true;
1052 }
1053
1054 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1055                              const struct sys_reg_desc *r)
1056 {
1057         if (p->is_write) {
1058                 if (!vcpu_mode_priv(vcpu)) {
1059                         kvm_inject_undefined(vcpu);
1060                         return false;
1061                 }
1062
1063                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1064                                p->regval & ARMV8_PMU_USERENR_MASK;
1065         } else {
1066                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1067                             & ARMV8_PMU_USERENR_MASK;
1068         }
1069
1070         return true;
1071 }
1072
1073 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1074 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
1075         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
1076           trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
1077         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
1078           trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
1079         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
1080           trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
1081         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
1082           trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1083
1084 #define PMU_SYS_REG(r)                                          \
1085         SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1086
1087 /* Macro to expand the PMEVCNTRn_EL0 register */
1088 #define PMU_PMEVCNTR_EL0(n)                                             \
1089         { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
1090           .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,          \
1091           .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1092
1093 /* Macro to expand the PMEVTYPERn_EL0 register */
1094 #define PMU_PMEVTYPER_EL0(n)                                            \
1095         { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
1096           .reset = reset_pmevtyper,                                     \
1097           .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1098
1099 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1100                          const struct sys_reg_desc *r)
1101 {
1102         kvm_inject_undefined(vcpu);
1103
1104         return false;
1105 }
1106
1107 /* Macro to expand the AMU counter and type registers*/
1108 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1109 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1110 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1111 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1112
1113 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1114                         const struct sys_reg_desc *rd)
1115 {
1116         return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1117 }
1118
1119 /*
1120  * If we land here on a PtrAuth access, that is because we didn't
1121  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1122  * way this happens is when the guest does not have PtrAuth support
1123  * enabled.
1124  */
1125 #define __PTRAUTH_KEY(k)                                                \
1126         { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
1127         .visibility = ptrauth_visibility}
1128
1129 #define PTRAUTH_KEY(k)                                                  \
1130         __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
1131         __PTRAUTH_KEY(k ## KEYHI_EL1)
1132
1133 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1134                               struct sys_reg_params *p,
1135                               const struct sys_reg_desc *r)
1136 {
1137         enum kvm_arch_timers tmr;
1138         enum kvm_arch_timer_regs treg;
1139         u64 reg = reg_to_encoding(r);
1140
1141         switch (reg) {
1142         case SYS_CNTP_TVAL_EL0:
1143         case SYS_AARCH32_CNTP_TVAL:
1144                 tmr = TIMER_PTIMER;
1145                 treg = TIMER_REG_TVAL;
1146                 break;
1147         case SYS_CNTP_CTL_EL0:
1148         case SYS_AARCH32_CNTP_CTL:
1149                 tmr = TIMER_PTIMER;
1150                 treg = TIMER_REG_CTL;
1151                 break;
1152         case SYS_CNTP_CVAL_EL0:
1153         case SYS_AARCH32_CNTP_CVAL:
1154                 tmr = TIMER_PTIMER;
1155                 treg = TIMER_REG_CVAL;
1156                 break;
1157         case SYS_CNTPCT_EL0:
1158         case SYS_CNTPCTSS_EL0:
1159         case SYS_AARCH32_CNTPCT:
1160                 tmr = TIMER_PTIMER;
1161                 treg = TIMER_REG_CNT;
1162                 break;
1163         default:
1164                 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1165                 kvm_inject_undefined(vcpu);
1166                 return false;
1167         }
1168
1169         if (p->is_write)
1170                 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1171         else
1172                 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1173
1174         return true;
1175 }
1176
1177 static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu)
1178 {
1179         if (kvm_vcpu_has_pmu(vcpu))
1180                 return vcpu->kvm->arch.dfr0_pmuver.imp;
1181
1182         return vcpu->kvm->arch.dfr0_pmuver.unimp;
1183 }
1184
1185 static u8 perfmon_to_pmuver(u8 perfmon)
1186 {
1187         switch (perfmon) {
1188         case ID_DFR0_EL1_PerfMon_PMUv3:
1189                 return ID_AA64DFR0_EL1_PMUVer_IMP;
1190         case ID_DFR0_EL1_PerfMon_IMPDEF:
1191                 return ID_AA64DFR0_EL1_PMUVer_IMP_DEF;
1192         default:
1193                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1194                 return perfmon;
1195         }
1196 }
1197
1198 static u8 pmuver_to_perfmon(u8 pmuver)
1199 {
1200         switch (pmuver) {
1201         case ID_AA64DFR0_EL1_PMUVer_IMP:
1202                 return ID_DFR0_EL1_PerfMon_PMUv3;
1203         case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1204                 return ID_DFR0_EL1_PerfMon_IMPDEF;
1205         default:
1206                 /* Anything ARMv8.1+ and NI have the same value. For now. */
1207                 return pmuver;
1208         }
1209 }
1210
1211 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1212 static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r)
1213 {
1214         u32 id = reg_to_encoding(r);
1215         u64 val;
1216
1217         if (sysreg_visible_as_raz(vcpu, r))
1218                 return 0;
1219
1220         val = read_sanitised_ftr_reg(id);
1221
1222         switch (id) {
1223         case SYS_ID_AA64PFR0_EL1:
1224                 if (!vcpu_has_sve(vcpu))
1225                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
1226                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
1227                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
1228                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1229                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
1230                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1231                 if (kvm_vgic_global_state.type == VGIC_V3) {
1232                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
1233                         val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
1234                 }
1235                 break;
1236         case SYS_ID_AA64PFR1_EL1:
1237                 if (!kvm_has_mte(vcpu->kvm))
1238                         val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1239
1240                 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1241                 break;
1242         case SYS_ID_AA64ISAR1_EL1:
1243                 if (!vcpu_has_ptrauth(vcpu))
1244                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1245                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1246                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1247                                  ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1248                 break;
1249         case SYS_ID_AA64ISAR2_EL1:
1250                 if (!vcpu_has_ptrauth(vcpu))
1251                         val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1252                                  ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1253                 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1254                         val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1255                 break;
1256         case SYS_ID_AA64DFR0_EL1:
1257                 /* Limit debug to ARMv8.0 */
1258                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
1259                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
1260                 /* Set PMUver to the required version */
1261                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1262                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
1263                                   vcpu_pmuver(vcpu));
1264                 /* Hide SPE from guests */
1265                 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
1266                 break;
1267         case SYS_ID_DFR0_EL1:
1268                 val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1269                 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon),
1270                                   pmuver_to_perfmon(vcpu_pmuver(vcpu)));
1271                 break;
1272         case SYS_ID_AA64MMFR2_EL1:
1273                 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1274                 break;
1275         case SYS_ID_MMFR4_EL1:
1276                 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1277                 break;
1278         }
1279
1280         return val;
1281 }
1282
1283 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1284                                   const struct sys_reg_desc *r)
1285 {
1286         u32 id = reg_to_encoding(r);
1287
1288         switch (id) {
1289         case SYS_ID_AA64ZFR0_EL1:
1290                 if (!vcpu_has_sve(vcpu))
1291                         return REG_RAZ;
1292                 break;
1293         }
1294
1295         return 0;
1296 }
1297
1298 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1299                                        const struct sys_reg_desc *r)
1300 {
1301         /*
1302          * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1303          * EL. Promote to RAZ/WI in order to guarantee consistency between
1304          * systems.
1305          */
1306         if (!kvm_supports_32bit_el0())
1307                 return REG_RAZ | REG_USER_WI;
1308
1309         return id_visibility(vcpu, r);
1310 }
1311
1312 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1313                                    const struct sys_reg_desc *r)
1314 {
1315         return REG_RAZ;
1316 }
1317
1318 /* cpufeature ID register access trap handlers */
1319
1320 static bool access_id_reg(struct kvm_vcpu *vcpu,
1321                           struct sys_reg_params *p,
1322                           const struct sys_reg_desc *r)
1323 {
1324         if (p->is_write)
1325                 return write_to_read_only(vcpu, p, r);
1326
1327         p->regval = read_id_reg(vcpu, r);
1328         if (vcpu_has_nv(vcpu))
1329                 access_nested_id_reg(vcpu, p, r);
1330
1331         return true;
1332 }
1333
1334 /* Visibility overrides for SVE-specific control registers */
1335 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1336                                    const struct sys_reg_desc *rd)
1337 {
1338         if (vcpu_has_sve(vcpu))
1339                 return 0;
1340
1341         return REG_HIDDEN;
1342 }
1343
1344 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1345                                const struct sys_reg_desc *rd,
1346                                u64 val)
1347 {
1348         u8 csv2, csv3;
1349
1350         /*
1351          * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1352          * it doesn't promise more than what is actually provided (the
1353          * guest could otherwise be covered in ectoplasmic residue).
1354          */
1355         csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT);
1356         if (csv2 > 1 ||
1357             (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1358                 return -EINVAL;
1359
1360         /* Same thing for CSV3 */
1361         csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT);
1362         if (csv3 > 1 ||
1363             (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1364                 return -EINVAL;
1365
1366         /* We can only differ with CSV[23], and anything else is an error */
1367         val ^= read_id_reg(vcpu, rd);
1368         val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
1369                  ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
1370         if (val)
1371                 return -EINVAL;
1372
1373         vcpu->kvm->arch.pfr0_csv2 = csv2;
1374         vcpu->kvm->arch.pfr0_csv3 = csv3;
1375
1376         return 0;
1377 }
1378
1379 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1380                                const struct sys_reg_desc *rd,
1381                                u64 val)
1382 {
1383         u8 pmuver, host_pmuver;
1384         bool valid_pmu;
1385
1386         host_pmuver = kvm_arm_pmu_get_pmuver_limit();
1387
1388         /*
1389          * Allow AA64DFR0_EL1.PMUver to be set from userspace as long
1390          * as it doesn't promise more than what the HW gives us. We
1391          * allow an IMPDEF PMU though, only if no PMU is supported
1392          * (KVM backward compatibility handling).
1393          */
1394         pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val);
1395         if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver))
1396                 return -EINVAL;
1397
1398         valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF);
1399
1400         /* Make sure view register and PMU support do match */
1401         if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1402                 return -EINVAL;
1403
1404         /* We can only differ with PMUver, and anything else is an error */
1405         val ^= read_id_reg(vcpu, rd);
1406         val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1407         if (val)
1408                 return -EINVAL;
1409
1410         if (valid_pmu)
1411                 vcpu->kvm->arch.dfr0_pmuver.imp = pmuver;
1412         else
1413                 vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver;
1414
1415         return 0;
1416 }
1417
1418 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1419                            const struct sys_reg_desc *rd,
1420                            u64 val)
1421 {
1422         u8 perfmon, host_perfmon;
1423         bool valid_pmu;
1424
1425         host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1426
1427         /*
1428          * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1429          * it doesn't promise more than what the HW gives us on the
1430          * AArch64 side (as everything is emulated with that), and
1431          * that this is a PMUv3.
1432          */
1433         perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val);
1434         if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) ||
1435             (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3))
1436                 return -EINVAL;
1437
1438         valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF);
1439
1440         /* Make sure view register and PMU support do match */
1441         if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1442                 return -EINVAL;
1443
1444         /* We can only differ with PerfMon, and anything else is an error */
1445         val ^= read_id_reg(vcpu, rd);
1446         val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1447         if (val)
1448                 return -EINVAL;
1449
1450         if (valid_pmu)
1451                 vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon);
1452         else
1453                 vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon);
1454
1455         return 0;
1456 }
1457
1458 /*
1459  * cpufeature ID register user accessors
1460  *
1461  * For now, these registers are immutable for userspace, so no values
1462  * are stored, and for set_id_reg() we don't allow the effective value
1463  * to be changed.
1464  */
1465 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1466                       u64 *val)
1467 {
1468         *val = read_id_reg(vcpu, rd);
1469         return 0;
1470 }
1471
1472 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1473                       u64 val)
1474 {
1475         /* This is what we mean by invariant: you can't change it. */
1476         if (val != read_id_reg(vcpu, rd))
1477                 return -EINVAL;
1478
1479         return 0;
1480 }
1481
1482 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1483                        u64 *val)
1484 {
1485         *val = 0;
1486         return 0;
1487 }
1488
1489 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1490                       u64 val)
1491 {
1492         return 0;
1493 }
1494
1495 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1496                        const struct sys_reg_desc *r)
1497 {
1498         if (p->is_write)
1499                 return write_to_read_only(vcpu, p, r);
1500
1501         p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1502         return true;
1503 }
1504
1505 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1506                          const struct sys_reg_desc *r)
1507 {
1508         if (p->is_write)
1509                 return write_to_read_only(vcpu, p, r);
1510
1511         p->regval = __vcpu_sys_reg(vcpu, r->reg);
1512         return true;
1513 }
1514
1515 /*
1516  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1517  * by the physical CPU which the vcpu currently resides in.
1518  */
1519 static void reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1520 {
1521         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1522         u64 clidr;
1523         u8 loc;
1524
1525         if ((ctr_el0 & CTR_EL0_IDC)) {
1526                 /*
1527                  * Data cache clean to the PoU is not required so LoUU and LoUIS
1528                  * will not be set and a unified cache, which will be marked as
1529                  * LoC, will be added.
1530                  *
1531                  * If not DIC, let the unified cache L2 so that an instruction
1532                  * cache can be added as L1 later.
1533                  */
1534                 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1535                 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1536         } else {
1537                 /*
1538                  * Data cache clean to the PoU is required so let L1 have a data
1539                  * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1540                  * it can be marked as LoC too.
1541                  */
1542                 loc = 1;
1543                 clidr = 1 << CLIDR_LOUU_SHIFT;
1544                 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1545                 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1546         }
1547
1548         /*
1549          * Instruction cache invalidation to the PoU is required so let L1 have
1550          * an instruction cache. If L1 already has a data cache, it will be
1551          * CACHE_TYPE_SEPARATE.
1552          */
1553         if (!(ctr_el0 & CTR_EL0_DIC))
1554                 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1555
1556         clidr |= loc << CLIDR_LOC_SHIFT;
1557
1558         /*
1559          * Add tag cache unified to data cache. Allocation tags and data are
1560          * unified in a cache line so that it looks valid even if there is only
1561          * one cache line.
1562          */
1563         if (kvm_has_mte(vcpu->kvm))
1564                 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1565
1566         __vcpu_sys_reg(vcpu, r->reg) = clidr;
1567 }
1568
1569 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1570                       u64 val)
1571 {
1572         u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1573         u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1574
1575         if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1576                 return -EINVAL;
1577
1578         __vcpu_sys_reg(vcpu, rd->reg) = val;
1579
1580         return 0;
1581 }
1582
1583 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1584                           const struct sys_reg_desc *r)
1585 {
1586         int reg = r->reg;
1587
1588         if (p->is_write)
1589                 vcpu_write_sys_reg(vcpu, p->regval, reg);
1590         else
1591                 p->regval = vcpu_read_sys_reg(vcpu, reg);
1592         return true;
1593 }
1594
1595 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1596                           const struct sys_reg_desc *r)
1597 {
1598         u32 csselr;
1599
1600         if (p->is_write)
1601                 return write_to_read_only(vcpu, p, r);
1602
1603         csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1604         csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1605         if (csselr < CSSELR_MAX)
1606                 p->regval = get_ccsidr(vcpu, csselr);
1607
1608         return true;
1609 }
1610
1611 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1612                                    const struct sys_reg_desc *rd)
1613 {
1614         if (kvm_has_mte(vcpu->kvm))
1615                 return 0;
1616
1617         return REG_HIDDEN;
1618 }
1619
1620 #define MTE_REG(name) {                         \
1621         SYS_DESC(SYS_##name),                   \
1622         .access = undef_access,                 \
1623         .reset = reset_unknown,                 \
1624         .reg = name,                            \
1625         .visibility = mte_visibility,           \
1626 }
1627
1628 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1629                                    const struct sys_reg_desc *rd)
1630 {
1631         if (vcpu_has_nv(vcpu))
1632                 return 0;
1633
1634         return REG_HIDDEN;
1635 }
1636
1637 #define EL2_REG(name, acc, rst, v) {            \
1638         SYS_DESC(SYS_##name),                   \
1639         .access = acc,                          \
1640         .reset = rst,                           \
1641         .reg = name,                            \
1642         .visibility = el2_visibility,           \
1643         .val = v,                               \
1644 }
1645
1646 /*
1647  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1648  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1649  * handling traps. Given that, they are always hidden from userspace.
1650  */
1651 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1652                                     const struct sys_reg_desc *rd)
1653 {
1654         return REG_HIDDEN_USER;
1655 }
1656
1657 #define EL12_REG(name, acc, rst, v) {           \
1658         SYS_DESC(SYS_##name##_EL12),            \
1659         .access = acc,                          \
1660         .reset = rst,                           \
1661         .reg = name##_EL1,                      \
1662         .val = v,                               \
1663         .visibility = elx2_visibility,          \
1664 }
1665
1666 /* sys_reg_desc initialiser for known cpufeature ID registers */
1667 #define ID_SANITISED(name) {                    \
1668         SYS_DESC(SYS_##name),                   \
1669         .access = access_id_reg,                \
1670         .get_user = get_id_reg,                 \
1671         .set_user = set_id_reg,                 \
1672         .visibility = id_visibility,            \
1673 }
1674
1675 /* sys_reg_desc initialiser for known cpufeature ID registers */
1676 #define AA32_ID_SANITISED(name) {               \
1677         SYS_DESC(SYS_##name),                   \
1678         .access = access_id_reg,                \
1679         .get_user = get_id_reg,                 \
1680         .set_user = set_id_reg,                 \
1681         .visibility = aa32_id_visibility,       \
1682 }
1683
1684 /*
1685  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1686  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1687  * (1 <= crm < 8, 0 <= Op2 < 8).
1688  */
1689 #define ID_UNALLOCATED(crm, op2) {                      \
1690         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1691         .access = access_id_reg,                        \
1692         .get_user = get_id_reg,                         \
1693         .set_user = set_id_reg,                         \
1694         .visibility = raz_visibility                    \
1695 }
1696
1697 /*
1698  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1699  * For now, these are exposed just like unallocated ID regs: they appear
1700  * RAZ for the guest.
1701  */
1702 #define ID_HIDDEN(name) {                       \
1703         SYS_DESC(SYS_##name),                   \
1704         .access = access_id_reg,                \
1705         .get_user = get_id_reg,                 \
1706         .set_user = set_id_reg,                 \
1707         .visibility = raz_visibility,           \
1708 }
1709
1710 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1711                           struct sys_reg_params *p,
1712                           const struct sys_reg_desc *r)
1713 {
1714         if (p->is_write)
1715                 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1716         else
1717                 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1718
1719         return true;
1720 }
1721
1722 static bool access_elr(struct kvm_vcpu *vcpu,
1723                        struct sys_reg_params *p,
1724                        const struct sys_reg_desc *r)
1725 {
1726         if (p->is_write)
1727                 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1728         else
1729                 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1730
1731         return true;
1732 }
1733
1734 static bool access_spsr(struct kvm_vcpu *vcpu,
1735                         struct sys_reg_params *p,
1736                         const struct sys_reg_desc *r)
1737 {
1738         if (p->is_write)
1739                 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1740         else
1741                 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1742
1743         return true;
1744 }
1745
1746 /*
1747  * Architected system registers.
1748  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1749  *
1750  * Debug handling: We do trap most, if not all debug related system
1751  * registers. The implementation is good enough to ensure that a guest
1752  * can use these with minimal performance degradation. The drawback is
1753  * that we don't implement any of the external debug architecture.
1754  * This should be revisited if we ever encounter a more demanding
1755  * guest...
1756  */
1757 static const struct sys_reg_desc sys_reg_descs[] = {
1758         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1759         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1760         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1761
1762         DBG_BCR_BVR_WCR_WVR_EL1(0),
1763         DBG_BCR_BVR_WCR_WVR_EL1(1),
1764         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1765         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1766         DBG_BCR_BVR_WCR_WVR_EL1(2),
1767         DBG_BCR_BVR_WCR_WVR_EL1(3),
1768         DBG_BCR_BVR_WCR_WVR_EL1(4),
1769         DBG_BCR_BVR_WCR_WVR_EL1(5),
1770         DBG_BCR_BVR_WCR_WVR_EL1(6),
1771         DBG_BCR_BVR_WCR_WVR_EL1(7),
1772         DBG_BCR_BVR_WCR_WVR_EL1(8),
1773         DBG_BCR_BVR_WCR_WVR_EL1(9),
1774         DBG_BCR_BVR_WCR_WVR_EL1(10),
1775         DBG_BCR_BVR_WCR_WVR_EL1(11),
1776         DBG_BCR_BVR_WCR_WVR_EL1(12),
1777         DBG_BCR_BVR_WCR_WVR_EL1(13),
1778         DBG_BCR_BVR_WCR_WVR_EL1(14),
1779         DBG_BCR_BVR_WCR_WVR_EL1(15),
1780
1781         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1782         { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1783         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1784                 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1785         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1786         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1787         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1788         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1789         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1790
1791         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1792         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1793         // DBGDTR[TR]X_EL0 share the same encoding
1794         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1795
1796         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1797
1798         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1799
1800         /*
1801          * ID regs: all ID_SANITISED() entries here must have corresponding
1802          * entries in arm64_ftr_regs[].
1803          */
1804
1805         /* AArch64 mappings of the AArch32 ID registers */
1806         /* CRm=1 */
1807         AA32_ID_SANITISED(ID_PFR0_EL1),
1808         AA32_ID_SANITISED(ID_PFR1_EL1),
1809         { SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg,
1810           .get_user = get_id_reg, .set_user = set_id_dfr0_el1,
1811           .visibility = aa32_id_visibility, },
1812         ID_HIDDEN(ID_AFR0_EL1),
1813         AA32_ID_SANITISED(ID_MMFR0_EL1),
1814         AA32_ID_SANITISED(ID_MMFR1_EL1),
1815         AA32_ID_SANITISED(ID_MMFR2_EL1),
1816         AA32_ID_SANITISED(ID_MMFR3_EL1),
1817
1818         /* CRm=2 */
1819         AA32_ID_SANITISED(ID_ISAR0_EL1),
1820         AA32_ID_SANITISED(ID_ISAR1_EL1),
1821         AA32_ID_SANITISED(ID_ISAR2_EL1),
1822         AA32_ID_SANITISED(ID_ISAR3_EL1),
1823         AA32_ID_SANITISED(ID_ISAR4_EL1),
1824         AA32_ID_SANITISED(ID_ISAR5_EL1),
1825         AA32_ID_SANITISED(ID_MMFR4_EL1),
1826         AA32_ID_SANITISED(ID_ISAR6_EL1),
1827
1828         /* CRm=3 */
1829         AA32_ID_SANITISED(MVFR0_EL1),
1830         AA32_ID_SANITISED(MVFR1_EL1),
1831         AA32_ID_SANITISED(MVFR2_EL1),
1832         ID_UNALLOCATED(3,3),
1833         AA32_ID_SANITISED(ID_PFR2_EL1),
1834         ID_HIDDEN(ID_DFR1_EL1),
1835         AA32_ID_SANITISED(ID_MMFR5_EL1),
1836         ID_UNALLOCATED(3,7),
1837
1838         /* AArch64 ID registers */
1839         /* CRm=4 */
1840         { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1841           .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1842         ID_SANITISED(ID_AA64PFR1_EL1),
1843         ID_UNALLOCATED(4,2),
1844         ID_UNALLOCATED(4,3),
1845         ID_SANITISED(ID_AA64ZFR0_EL1),
1846         ID_HIDDEN(ID_AA64SMFR0_EL1),
1847         ID_UNALLOCATED(4,6),
1848         ID_UNALLOCATED(4,7),
1849
1850         /* CRm=5 */
1851         { SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg,
1852           .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, },
1853         ID_SANITISED(ID_AA64DFR1_EL1),
1854         ID_UNALLOCATED(5,2),
1855         ID_UNALLOCATED(5,3),
1856         ID_HIDDEN(ID_AA64AFR0_EL1),
1857         ID_HIDDEN(ID_AA64AFR1_EL1),
1858         ID_UNALLOCATED(5,6),
1859         ID_UNALLOCATED(5,7),
1860
1861         /* CRm=6 */
1862         ID_SANITISED(ID_AA64ISAR0_EL1),
1863         ID_SANITISED(ID_AA64ISAR1_EL1),
1864         ID_SANITISED(ID_AA64ISAR2_EL1),
1865         ID_UNALLOCATED(6,3),
1866         ID_UNALLOCATED(6,4),
1867         ID_UNALLOCATED(6,5),
1868         ID_UNALLOCATED(6,6),
1869         ID_UNALLOCATED(6,7),
1870
1871         /* CRm=7 */
1872         ID_SANITISED(ID_AA64MMFR0_EL1),
1873         ID_SANITISED(ID_AA64MMFR1_EL1),
1874         ID_SANITISED(ID_AA64MMFR2_EL1),
1875         ID_UNALLOCATED(7,3),
1876         ID_UNALLOCATED(7,4),
1877         ID_UNALLOCATED(7,5),
1878         ID_UNALLOCATED(7,6),
1879         ID_UNALLOCATED(7,7),
1880
1881         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1882         { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1883         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1884
1885         MTE_REG(RGSR_EL1),
1886         MTE_REG(GCR_EL1),
1887
1888         { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1889         { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1890         { SYS_DESC(SYS_SMPRI_EL1), undef_access },
1891         { SYS_DESC(SYS_SMCR_EL1), undef_access },
1892         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1893         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1894         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1895
1896         PTRAUTH_KEY(APIA),
1897         PTRAUTH_KEY(APIB),
1898         PTRAUTH_KEY(APDA),
1899         PTRAUTH_KEY(APDB),
1900         PTRAUTH_KEY(APGA),
1901
1902         { SYS_DESC(SYS_SPSR_EL1), access_spsr},
1903         { SYS_DESC(SYS_ELR_EL1), access_elr},
1904
1905         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1906         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1907         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1908
1909         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1910         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1911         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1912         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1913         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1914         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1915         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1916         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1917
1918         MTE_REG(TFSR_EL1),
1919         MTE_REG(TFSRE0_EL1),
1920
1921         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1922         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1923
1924         { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1925         { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1926         { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1927         { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1928         { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1929         { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1930         { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1931         { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1932         { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1933         { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1934         { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1935         /* PMBIDR_EL1 is not trapped */
1936
1937         { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1938           .access = access_pminten, .reg = PMINTENSET_EL1 },
1939         { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1940           .access = access_pminten, .reg = PMINTENSET_EL1 },
1941         { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1942
1943         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1944         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1945
1946         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1947         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1948         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1949         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1950         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1951
1952         { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
1953         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1954
1955         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1956         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1957         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1958         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1959         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1960         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1961         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1962         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1963         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1964         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1965         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1966         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1967
1968         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1969         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1970
1971         { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1972
1973         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1974
1975         { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1976         { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
1977           .set_user = set_clidr },
1978         { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
1979         { SYS_DESC(SYS_SMIDR_EL1), undef_access },
1980         { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1981         { SYS_DESC(SYS_CTR_EL0), access_ctr },
1982         { SYS_DESC(SYS_SVCR), undef_access },
1983
1984         { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1985           .reset = reset_pmcr, .reg = PMCR_EL0 },
1986         { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1987           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1988         { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1989           .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1990         { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1991           .access = access_pmovs, .reg = PMOVSSET_EL0 },
1992         /*
1993          * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1994          * previously (and pointlessly) advertised in the past...
1995          */
1996         { PMU_SYS_REG(SYS_PMSWINC_EL0),
1997           .get_user = get_raz_reg, .set_user = set_wi_reg,
1998           .access = access_pmswinc, .reset = NULL },
1999         { PMU_SYS_REG(SYS_PMSELR_EL0),
2000           .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2001         { PMU_SYS_REG(SYS_PMCEID0_EL0),
2002           .access = access_pmceid, .reset = NULL },
2003         { PMU_SYS_REG(SYS_PMCEID1_EL0),
2004           .access = access_pmceid, .reset = NULL },
2005         { PMU_SYS_REG(SYS_PMCCNTR_EL0),
2006           .access = access_pmu_evcntr, .reset = reset_unknown,
2007           .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2008         { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
2009           .access = access_pmu_evtyper, .reset = NULL },
2010         { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
2011           .access = access_pmu_evcntr, .reset = NULL },
2012         /*
2013          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2014          * in 32bit mode. Here we choose to reset it as zero for consistency.
2015          */
2016         { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
2017           .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2018         { PMU_SYS_REG(SYS_PMOVSSET_EL0),
2019           .access = access_pmovs, .reg = PMOVSSET_EL0 },
2020
2021         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2022         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2023         { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2024
2025         { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2026
2027         { SYS_DESC(SYS_AMCR_EL0), undef_access },
2028         { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2029         { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2030         { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2031         { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2032         { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2033         { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2034         { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2035         AMU_AMEVCNTR0_EL0(0),
2036         AMU_AMEVCNTR0_EL0(1),
2037         AMU_AMEVCNTR0_EL0(2),
2038         AMU_AMEVCNTR0_EL0(3),
2039         AMU_AMEVCNTR0_EL0(4),
2040         AMU_AMEVCNTR0_EL0(5),
2041         AMU_AMEVCNTR0_EL0(6),
2042         AMU_AMEVCNTR0_EL0(7),
2043         AMU_AMEVCNTR0_EL0(8),
2044         AMU_AMEVCNTR0_EL0(9),
2045         AMU_AMEVCNTR0_EL0(10),
2046         AMU_AMEVCNTR0_EL0(11),
2047         AMU_AMEVCNTR0_EL0(12),
2048         AMU_AMEVCNTR0_EL0(13),
2049         AMU_AMEVCNTR0_EL0(14),
2050         AMU_AMEVCNTR0_EL0(15),
2051         AMU_AMEVTYPER0_EL0(0),
2052         AMU_AMEVTYPER0_EL0(1),
2053         AMU_AMEVTYPER0_EL0(2),
2054         AMU_AMEVTYPER0_EL0(3),
2055         AMU_AMEVTYPER0_EL0(4),
2056         AMU_AMEVTYPER0_EL0(5),
2057         AMU_AMEVTYPER0_EL0(6),
2058         AMU_AMEVTYPER0_EL0(7),
2059         AMU_AMEVTYPER0_EL0(8),
2060         AMU_AMEVTYPER0_EL0(9),
2061         AMU_AMEVTYPER0_EL0(10),
2062         AMU_AMEVTYPER0_EL0(11),
2063         AMU_AMEVTYPER0_EL0(12),
2064         AMU_AMEVTYPER0_EL0(13),
2065         AMU_AMEVTYPER0_EL0(14),
2066         AMU_AMEVTYPER0_EL0(15),
2067         AMU_AMEVCNTR1_EL0(0),
2068         AMU_AMEVCNTR1_EL0(1),
2069         AMU_AMEVCNTR1_EL0(2),
2070         AMU_AMEVCNTR1_EL0(3),
2071         AMU_AMEVCNTR1_EL0(4),
2072         AMU_AMEVCNTR1_EL0(5),
2073         AMU_AMEVCNTR1_EL0(6),
2074         AMU_AMEVCNTR1_EL0(7),
2075         AMU_AMEVCNTR1_EL0(8),
2076         AMU_AMEVCNTR1_EL0(9),
2077         AMU_AMEVCNTR1_EL0(10),
2078         AMU_AMEVCNTR1_EL0(11),
2079         AMU_AMEVCNTR1_EL0(12),
2080         AMU_AMEVCNTR1_EL0(13),
2081         AMU_AMEVCNTR1_EL0(14),
2082         AMU_AMEVCNTR1_EL0(15),
2083         AMU_AMEVTYPER1_EL0(0),
2084         AMU_AMEVTYPER1_EL0(1),
2085         AMU_AMEVTYPER1_EL0(2),
2086         AMU_AMEVTYPER1_EL0(3),
2087         AMU_AMEVTYPER1_EL0(4),
2088         AMU_AMEVTYPER1_EL0(5),
2089         AMU_AMEVTYPER1_EL0(6),
2090         AMU_AMEVTYPER1_EL0(7),
2091         AMU_AMEVTYPER1_EL0(8),
2092         AMU_AMEVTYPER1_EL0(9),
2093         AMU_AMEVTYPER1_EL0(10),
2094         AMU_AMEVTYPER1_EL0(11),
2095         AMU_AMEVTYPER1_EL0(12),
2096         AMU_AMEVTYPER1_EL0(13),
2097         AMU_AMEVTYPER1_EL0(14),
2098         AMU_AMEVTYPER1_EL0(15),
2099
2100         { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2101         { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2102         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2103         { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2104         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2105
2106         /* PMEVCNTRn_EL0 */
2107         PMU_PMEVCNTR_EL0(0),
2108         PMU_PMEVCNTR_EL0(1),
2109         PMU_PMEVCNTR_EL0(2),
2110         PMU_PMEVCNTR_EL0(3),
2111         PMU_PMEVCNTR_EL0(4),
2112         PMU_PMEVCNTR_EL0(5),
2113         PMU_PMEVCNTR_EL0(6),
2114         PMU_PMEVCNTR_EL0(7),
2115         PMU_PMEVCNTR_EL0(8),
2116         PMU_PMEVCNTR_EL0(9),
2117         PMU_PMEVCNTR_EL0(10),
2118         PMU_PMEVCNTR_EL0(11),
2119         PMU_PMEVCNTR_EL0(12),
2120         PMU_PMEVCNTR_EL0(13),
2121         PMU_PMEVCNTR_EL0(14),
2122         PMU_PMEVCNTR_EL0(15),
2123         PMU_PMEVCNTR_EL0(16),
2124         PMU_PMEVCNTR_EL0(17),
2125         PMU_PMEVCNTR_EL0(18),
2126         PMU_PMEVCNTR_EL0(19),
2127         PMU_PMEVCNTR_EL0(20),
2128         PMU_PMEVCNTR_EL0(21),
2129         PMU_PMEVCNTR_EL0(22),
2130         PMU_PMEVCNTR_EL0(23),
2131         PMU_PMEVCNTR_EL0(24),
2132         PMU_PMEVCNTR_EL0(25),
2133         PMU_PMEVCNTR_EL0(26),
2134         PMU_PMEVCNTR_EL0(27),
2135         PMU_PMEVCNTR_EL0(28),
2136         PMU_PMEVCNTR_EL0(29),
2137         PMU_PMEVCNTR_EL0(30),
2138         /* PMEVTYPERn_EL0 */
2139         PMU_PMEVTYPER_EL0(0),
2140         PMU_PMEVTYPER_EL0(1),
2141         PMU_PMEVTYPER_EL0(2),
2142         PMU_PMEVTYPER_EL0(3),
2143         PMU_PMEVTYPER_EL0(4),
2144         PMU_PMEVTYPER_EL0(5),
2145         PMU_PMEVTYPER_EL0(6),
2146         PMU_PMEVTYPER_EL0(7),
2147         PMU_PMEVTYPER_EL0(8),
2148         PMU_PMEVTYPER_EL0(9),
2149         PMU_PMEVTYPER_EL0(10),
2150         PMU_PMEVTYPER_EL0(11),
2151         PMU_PMEVTYPER_EL0(12),
2152         PMU_PMEVTYPER_EL0(13),
2153         PMU_PMEVTYPER_EL0(14),
2154         PMU_PMEVTYPER_EL0(15),
2155         PMU_PMEVTYPER_EL0(16),
2156         PMU_PMEVTYPER_EL0(17),
2157         PMU_PMEVTYPER_EL0(18),
2158         PMU_PMEVTYPER_EL0(19),
2159         PMU_PMEVTYPER_EL0(20),
2160         PMU_PMEVTYPER_EL0(21),
2161         PMU_PMEVTYPER_EL0(22),
2162         PMU_PMEVTYPER_EL0(23),
2163         PMU_PMEVTYPER_EL0(24),
2164         PMU_PMEVTYPER_EL0(25),
2165         PMU_PMEVTYPER_EL0(26),
2166         PMU_PMEVTYPER_EL0(27),
2167         PMU_PMEVTYPER_EL0(28),
2168         PMU_PMEVTYPER_EL0(29),
2169         PMU_PMEVTYPER_EL0(30),
2170         /*
2171          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2172          * in 32bit mode. Here we choose to reset it as zero for consistency.
2173          */
2174         { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
2175           .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2176
2177         EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2178         EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2179         EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2180         EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2181         EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2182         EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2183         EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2184         EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2185         EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2186
2187         EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2188         EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2189         EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2190         EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2191         EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2192
2193         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2194         EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2195         EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2196         { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2197
2198         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2199         EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2200         EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2201         EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2202         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2203
2204         EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2205         EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2206
2207         EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2208         EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2209
2210         EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2211         EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2212         { SYS_DESC(SYS_RMR_EL2), trap_undef },
2213
2214         EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2215         EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2216
2217         EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2218         EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2219
2220         EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2221         EL12_REG(CPACR, access_rw, reset_val, 0),
2222         EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2223         EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2224         EL12_REG(TCR, access_vm_reg, reset_val, 0),
2225         { SYS_DESC(SYS_SPSR_EL12), access_spsr},
2226         { SYS_DESC(SYS_ELR_EL12), access_elr},
2227         EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2228         EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2229         EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2230         EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2231         EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2232         EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2233         EL12_REG(VBAR, access_rw, reset_val, 0),
2234         EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2235         EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2236
2237         EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2238 };
2239
2240 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2241                         struct sys_reg_params *p,
2242                         const struct sys_reg_desc *r)
2243 {
2244         if (p->is_write) {
2245                 return ignore_write(vcpu, p);
2246         } else {
2247                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2248                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2249                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2250
2251                 p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2252                              (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2253                              (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2254                              | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2255                 return true;
2256         }
2257 }
2258
2259 /*
2260  * AArch32 debug register mappings
2261  *
2262  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2263  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2264  *
2265  * None of the other registers share their location, so treat them as
2266  * if they were 64bit.
2267  */
2268 #define DBG_BCR_BVR_WCR_WVR(n)                                                \
2269         /* DBGBVRn */                                                         \
2270         { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2271         /* DBGBCRn */                                                         \
2272         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
2273         /* DBGWVRn */                                                         \
2274         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
2275         /* DBGWCRn */                                                         \
2276         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2277
2278 #define DBGBXVR(n)                                                            \
2279         { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2280
2281 /*
2282  * Trapped cp14 registers. We generally ignore most of the external
2283  * debug, on the principle that they don't really make sense to a
2284  * guest. Revisit this one day, would this principle change.
2285  */
2286 static const struct sys_reg_desc cp14_regs[] = {
2287         /* DBGDIDR */
2288         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2289         /* DBGDTRRXext */
2290         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2291
2292         DBG_BCR_BVR_WCR_WVR(0),
2293         /* DBGDSCRint */
2294         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2295         DBG_BCR_BVR_WCR_WVR(1),
2296         /* DBGDCCINT */
2297         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2298         /* DBGDSCRext */
2299         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2300         DBG_BCR_BVR_WCR_WVR(2),
2301         /* DBGDTR[RT]Xint */
2302         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2303         /* DBGDTR[RT]Xext */
2304         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2305         DBG_BCR_BVR_WCR_WVR(3),
2306         DBG_BCR_BVR_WCR_WVR(4),
2307         DBG_BCR_BVR_WCR_WVR(5),
2308         /* DBGWFAR */
2309         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2310         /* DBGOSECCR */
2311         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2312         DBG_BCR_BVR_WCR_WVR(6),
2313         /* DBGVCR */
2314         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2315         DBG_BCR_BVR_WCR_WVR(7),
2316         DBG_BCR_BVR_WCR_WVR(8),
2317         DBG_BCR_BVR_WCR_WVR(9),
2318         DBG_BCR_BVR_WCR_WVR(10),
2319         DBG_BCR_BVR_WCR_WVR(11),
2320         DBG_BCR_BVR_WCR_WVR(12),
2321         DBG_BCR_BVR_WCR_WVR(13),
2322         DBG_BCR_BVR_WCR_WVR(14),
2323         DBG_BCR_BVR_WCR_WVR(15),
2324
2325         /* DBGDRAR (32bit) */
2326         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2327
2328         DBGBXVR(0),
2329         /* DBGOSLAR */
2330         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2331         DBGBXVR(1),
2332         /* DBGOSLSR */
2333         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2334         DBGBXVR(2),
2335         DBGBXVR(3),
2336         /* DBGOSDLR */
2337         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2338         DBGBXVR(4),
2339         /* DBGPRCR */
2340         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2341         DBGBXVR(5),
2342         DBGBXVR(6),
2343         DBGBXVR(7),
2344         DBGBXVR(8),
2345         DBGBXVR(9),
2346         DBGBXVR(10),
2347         DBGBXVR(11),
2348         DBGBXVR(12),
2349         DBGBXVR(13),
2350         DBGBXVR(14),
2351         DBGBXVR(15),
2352
2353         /* DBGDSAR (32bit) */
2354         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2355
2356         /* DBGDEVID2 */
2357         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2358         /* DBGDEVID1 */
2359         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2360         /* DBGDEVID */
2361         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2362         /* DBGCLAIMSET */
2363         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2364         /* DBGCLAIMCLR */
2365         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2366         /* DBGAUTHSTATUS */
2367         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2368 };
2369
2370 /* Trapped cp14 64bit registers */
2371 static const struct sys_reg_desc cp14_64_regs[] = {
2372         /* DBGDRAR (64bit) */
2373         { Op1( 0), CRm( 1), .access = trap_raz_wi },
2374
2375         /* DBGDSAR (64bit) */
2376         { Op1( 0), CRm( 2), .access = trap_raz_wi },
2377 };
2378
2379 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)                  \
2380         AA32(_map),                                                     \
2381         Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),                     \
2382         .visibility = pmu_visibility
2383
2384 /* Macro to expand the PMEVCNTRn register */
2385 #define PMU_PMEVCNTR(n)                                                 \
2386         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2387           (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2388           .access = access_pmu_evcntr }
2389
2390 /* Macro to expand the PMEVTYPERn register */
2391 #define PMU_PMEVTYPER(n)                                                \
2392         { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,                           \
2393           (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),                  \
2394           .access = access_pmu_evtyper }
2395 /*
2396  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2397  * depending on the way they are accessed (as a 32bit or a 64bit
2398  * register).
2399  */
2400 static const struct sys_reg_desc cp15_regs[] = {
2401         { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2402         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2403         /* ACTLR */
2404         { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2405         /* ACTLR2 */
2406         { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2407         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2408         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2409         /* TTBCR */
2410         { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2411         /* TTBCR2 */
2412         { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2413         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2414         /* DFSR */
2415         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2416         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2417         /* ADFSR */
2418         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2419         /* AIFSR */
2420         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2421         /* DFAR */
2422         { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2423         /* IFAR */
2424         { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2425
2426         /*
2427          * DC{C,I,CI}SW operations:
2428          */
2429         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2430         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2431         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2432
2433         /* PMU */
2434         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2435         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2436         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2437         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2438         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2439         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2440         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2441         { CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2442         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2443         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2444         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2445         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2446         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2447         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2448         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2449         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2450         { CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2451         /* PMMIR */
2452         { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2453
2454         /* PRRR/MAIR0 */
2455         { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2456         /* NMRR/MAIR1 */
2457         { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2458         /* AMAIR0 */
2459         { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2460         /* AMAIR1 */
2461         { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2462
2463         /* ICC_SRE */
2464         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2465
2466         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2467
2468         /* Arch Tmers */
2469         { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2470         { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2471
2472         /* PMEVCNTRn */
2473         PMU_PMEVCNTR(0),
2474         PMU_PMEVCNTR(1),
2475         PMU_PMEVCNTR(2),
2476         PMU_PMEVCNTR(3),
2477         PMU_PMEVCNTR(4),
2478         PMU_PMEVCNTR(5),
2479         PMU_PMEVCNTR(6),
2480         PMU_PMEVCNTR(7),
2481         PMU_PMEVCNTR(8),
2482         PMU_PMEVCNTR(9),
2483         PMU_PMEVCNTR(10),
2484         PMU_PMEVCNTR(11),
2485         PMU_PMEVCNTR(12),
2486         PMU_PMEVCNTR(13),
2487         PMU_PMEVCNTR(14),
2488         PMU_PMEVCNTR(15),
2489         PMU_PMEVCNTR(16),
2490         PMU_PMEVCNTR(17),
2491         PMU_PMEVCNTR(18),
2492         PMU_PMEVCNTR(19),
2493         PMU_PMEVCNTR(20),
2494         PMU_PMEVCNTR(21),
2495         PMU_PMEVCNTR(22),
2496         PMU_PMEVCNTR(23),
2497         PMU_PMEVCNTR(24),
2498         PMU_PMEVCNTR(25),
2499         PMU_PMEVCNTR(26),
2500         PMU_PMEVCNTR(27),
2501         PMU_PMEVCNTR(28),
2502         PMU_PMEVCNTR(29),
2503         PMU_PMEVCNTR(30),
2504         /* PMEVTYPERn */
2505         PMU_PMEVTYPER(0),
2506         PMU_PMEVTYPER(1),
2507         PMU_PMEVTYPER(2),
2508         PMU_PMEVTYPER(3),
2509         PMU_PMEVTYPER(4),
2510         PMU_PMEVTYPER(5),
2511         PMU_PMEVTYPER(6),
2512         PMU_PMEVTYPER(7),
2513         PMU_PMEVTYPER(8),
2514         PMU_PMEVTYPER(9),
2515         PMU_PMEVTYPER(10),
2516         PMU_PMEVTYPER(11),
2517         PMU_PMEVTYPER(12),
2518         PMU_PMEVTYPER(13),
2519         PMU_PMEVTYPER(14),
2520         PMU_PMEVTYPER(15),
2521         PMU_PMEVTYPER(16),
2522         PMU_PMEVTYPER(17),
2523         PMU_PMEVTYPER(18),
2524         PMU_PMEVTYPER(19),
2525         PMU_PMEVTYPER(20),
2526         PMU_PMEVTYPER(21),
2527         PMU_PMEVTYPER(22),
2528         PMU_PMEVTYPER(23),
2529         PMU_PMEVTYPER(24),
2530         PMU_PMEVTYPER(25),
2531         PMU_PMEVTYPER(26),
2532         PMU_PMEVTYPER(27),
2533         PMU_PMEVTYPER(28),
2534         PMU_PMEVTYPER(29),
2535         PMU_PMEVTYPER(30),
2536         /* PMCCFILTR */
2537         { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2538
2539         { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2540         { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2541
2542         /* CCSIDR2 */
2543         { Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2544
2545         { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2546 };
2547
2548 static const struct sys_reg_desc cp15_64_regs[] = {
2549         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2550         { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2551         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2552         { SYS_DESC(SYS_AARCH32_CNTPCT),       access_arch_timer },
2553         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2554         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2555         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2556         { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2557         { SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
2558 };
2559
2560 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2561                                bool is_32)
2562 {
2563         unsigned int i;
2564
2565         for (i = 0; i < n; i++) {
2566                 if (!is_32 && table[i].reg && !table[i].reset) {
2567                         kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2568                         return false;
2569                 }
2570
2571                 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2572                         kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2573                         return false;
2574                 }
2575         }
2576
2577         return true;
2578 }
2579
2580 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2581 {
2582         kvm_inject_undefined(vcpu);
2583         return 1;
2584 }
2585
2586 static void perform_access(struct kvm_vcpu *vcpu,
2587                            struct sys_reg_params *params,
2588                            const struct sys_reg_desc *r)
2589 {
2590         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2591
2592         /* Check for regs disabled by runtime config */
2593         if (sysreg_hidden(vcpu, r)) {
2594                 kvm_inject_undefined(vcpu);
2595                 return;
2596         }
2597
2598         /*
2599          * Not having an accessor means that we have configured a trap
2600          * that we don't know how to handle. This certainly qualifies
2601          * as a gross bug that should be fixed right away.
2602          */
2603         BUG_ON(!r->access);
2604
2605         /* Skip instruction if instructed so */
2606         if (likely(r->access(vcpu, params, r)))
2607                 kvm_incr_pc(vcpu);
2608 }
2609
2610 /*
2611  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2612  *                call the corresponding trap handler.
2613  *
2614  * @params: pointer to the descriptor of the access
2615  * @table: array of trap descriptors
2616  * @num: size of the trap descriptor array
2617  *
2618  * Return true if the access has been handled, false if not.
2619  */
2620 static bool emulate_cp(struct kvm_vcpu *vcpu,
2621                        struct sys_reg_params *params,
2622                        const struct sys_reg_desc *table,
2623                        size_t num)
2624 {
2625         const struct sys_reg_desc *r;
2626
2627         if (!table)
2628                 return false;   /* Not handled */
2629
2630         r = find_reg(params, table, num);
2631
2632         if (r) {
2633                 perform_access(vcpu, params, r);
2634                 return true;
2635         }
2636
2637         /* Not handled */
2638         return false;
2639 }
2640
2641 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2642                                 struct sys_reg_params *params)
2643 {
2644         u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2645         int cp = -1;
2646
2647         switch (esr_ec) {
2648         case ESR_ELx_EC_CP15_32:
2649         case ESR_ELx_EC_CP15_64:
2650                 cp = 15;
2651                 break;
2652         case ESR_ELx_EC_CP14_MR:
2653         case ESR_ELx_EC_CP14_64:
2654                 cp = 14;
2655                 break;
2656         default:
2657                 WARN_ON(1);
2658         }
2659
2660         print_sys_reg_msg(params,
2661                           "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2662                           cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2663         kvm_inject_undefined(vcpu);
2664 }
2665
2666 /**
2667  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2668  * @vcpu: The VCPU pointer
2669  * @run:  The kvm_run struct
2670  */
2671 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2672                             const struct sys_reg_desc *global,
2673                             size_t nr_global)
2674 {
2675         struct sys_reg_params params;
2676         u64 esr = kvm_vcpu_get_esr(vcpu);
2677         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2678         int Rt2 = (esr >> 10) & 0x1f;
2679
2680         params.CRm = (esr >> 1) & 0xf;
2681         params.is_write = ((esr & 1) == 0);
2682
2683         params.Op0 = 0;
2684         params.Op1 = (esr >> 16) & 0xf;
2685         params.Op2 = 0;
2686         params.CRn = 0;
2687
2688         /*
2689          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2690          * backends between AArch32 and AArch64, we get away with it.
2691          */
2692         if (params.is_write) {
2693                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2694                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2695         }
2696
2697         /*
2698          * If the table contains a handler, handle the
2699          * potential register operation in the case of a read and return
2700          * with success.
2701          */
2702         if (emulate_cp(vcpu, &params, global, nr_global)) {
2703                 /* Split up the value between registers for the read side */
2704                 if (!params.is_write) {
2705                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2706                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2707                 }
2708
2709                 return 1;
2710         }
2711
2712         unhandled_cp_access(vcpu, &params);
2713         return 1;
2714 }
2715
2716 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2717
2718 /*
2719  * The CP10 ID registers are architecturally mapped to AArch64 feature
2720  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2721  * from AArch32.
2722  */
2723 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2724 {
2725         u8 reg_id = (esr >> 10) & 0xf;
2726         bool valid;
2727
2728         params->is_write = ((esr & 1) == 0);
2729         params->Op0 = 3;
2730         params->Op1 = 0;
2731         params->CRn = 0;
2732         params->CRm = 3;
2733
2734         /* CP10 ID registers are read-only */
2735         valid = !params->is_write;
2736
2737         switch (reg_id) {
2738         /* MVFR0 */
2739         case 0b0111:
2740                 params->Op2 = 0;
2741                 break;
2742         /* MVFR1 */
2743         case 0b0110:
2744                 params->Op2 = 1;
2745                 break;
2746         /* MVFR2 */
2747         case 0b0101:
2748                 params->Op2 = 2;
2749                 break;
2750         default:
2751                 valid = false;
2752         }
2753
2754         if (valid)
2755                 return true;
2756
2757         kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2758                       params->is_write ? "write" : "read", reg_id);
2759         return false;
2760 }
2761
2762 /**
2763  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2764  *                        VFP Register' from AArch32.
2765  * @vcpu: The vCPU pointer
2766  *
2767  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2768  * Work out the correct AArch64 system register encoding and reroute to the
2769  * AArch64 system register emulation.
2770  */
2771 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2772 {
2773         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2774         u64 esr = kvm_vcpu_get_esr(vcpu);
2775         struct sys_reg_params params;
2776
2777         /* UNDEF on any unhandled register access */
2778         if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2779                 kvm_inject_undefined(vcpu);
2780                 return 1;
2781         }
2782
2783         if (emulate_sys_reg(vcpu, &params))
2784                 vcpu_set_reg(vcpu, Rt, params.regval);
2785
2786         return 1;
2787 }
2788
2789 /**
2790  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2791  *                             CRn=0, which corresponds to the AArch32 feature
2792  *                             registers.
2793  * @vcpu: the vCPU pointer
2794  * @params: the system register access parameters.
2795  *
2796  * Our cp15 system register tables do not enumerate the AArch32 feature
2797  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2798  * register encoding can be trivially remapped into the AArch64 for the feature
2799  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2800  *
2801  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2802  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2803  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2804  * treat undefined registers in this range as RAZ.
2805  */
2806 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2807                                    struct sys_reg_params *params)
2808 {
2809         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2810
2811         /* Treat impossible writes to RO registers as UNDEFINED */
2812         if (params->is_write) {
2813                 unhandled_cp_access(vcpu, params);
2814                 return 1;
2815         }
2816
2817         params->Op0 = 3;
2818
2819         /*
2820          * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2821          * Avoid conflicting with future expansion of AArch64 feature registers
2822          * and simply treat them as RAZ here.
2823          */
2824         if (params->CRm > 3)
2825                 params->regval = 0;
2826         else if (!emulate_sys_reg(vcpu, params))
2827                 return 1;
2828
2829         vcpu_set_reg(vcpu, Rt, params->regval);
2830         return 1;
2831 }
2832
2833 /**
2834  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2835  * @vcpu: The VCPU pointer
2836  * @run:  The kvm_run struct
2837  */
2838 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2839                             struct sys_reg_params *params,
2840                             const struct sys_reg_desc *global,
2841                             size_t nr_global)
2842 {
2843         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2844
2845         params->regval = vcpu_get_reg(vcpu, Rt);
2846
2847         if (emulate_cp(vcpu, params, global, nr_global)) {
2848                 if (!params->is_write)
2849                         vcpu_set_reg(vcpu, Rt, params->regval);
2850                 return 1;
2851         }
2852
2853         unhandled_cp_access(vcpu, params);
2854         return 1;
2855 }
2856
2857 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2858 {
2859         return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2860 }
2861
2862 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2863 {
2864         struct sys_reg_params params;
2865
2866         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2867
2868         /*
2869          * Certain AArch32 ID registers are handled by rerouting to the AArch64
2870          * system register table. Registers in the ID range where CRm=0 are
2871          * excluded from this scheme as they do not trivially map into AArch64
2872          * system register encodings.
2873          */
2874         if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2875                 return kvm_emulate_cp15_id_reg(vcpu, &params);
2876
2877         return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2878 }
2879
2880 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2881 {
2882         return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2883 }
2884
2885 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2886 {
2887         struct sys_reg_params params;
2888
2889         params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2890
2891         return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2892 }
2893
2894 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2895 {
2896         // See ARM DDI 0487E.a, section D12.3.2
2897         return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2898 }
2899
2900 /**
2901  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2902  * @vcpu: The VCPU pointer
2903  * @params: Decoded system register parameters
2904  *
2905  * Return: true if the system register access was successful, false otherwise.
2906  */
2907 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2908                            struct sys_reg_params *params)
2909 {
2910         const struct sys_reg_desc *r;
2911
2912         r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2913
2914         if (likely(r)) {
2915                 perform_access(vcpu, params, r);
2916                 return true;
2917         }
2918
2919         if (is_imp_def_sys_reg(params)) {
2920                 kvm_inject_undefined(vcpu);
2921         } else {
2922                 print_sys_reg_msg(params,
2923                                   "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2924                                   *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2925                 kvm_inject_undefined(vcpu);
2926         }
2927         return false;
2928 }
2929
2930 /**
2931  * kvm_reset_sys_regs - sets system registers to reset value
2932  * @vcpu: The VCPU pointer
2933  *
2934  * This function finds the right table above and sets the registers on the
2935  * virtual CPU struct to their architecturally defined reset values.
2936  */
2937 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2938 {
2939         unsigned long i;
2940
2941         for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2942                 if (sys_reg_descs[i].reset)
2943                         sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2944 }
2945
2946 /**
2947  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2948  * @vcpu: The VCPU pointer
2949  */
2950 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2951 {
2952         struct sys_reg_params params;
2953         unsigned long esr = kvm_vcpu_get_esr(vcpu);
2954         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2955
2956         trace_kvm_handle_sys_reg(esr);
2957
2958         params = esr_sys64_to_params(esr);
2959         params.regval = vcpu_get_reg(vcpu, Rt);
2960
2961         if (!emulate_sys_reg(vcpu, &params))
2962                 return 1;
2963
2964         if (!params.is_write)
2965                 vcpu_set_reg(vcpu, Rt, params.regval);
2966         return 1;
2967 }
2968
2969 /******************************************************************************
2970  * Userspace API
2971  *****************************************************************************/
2972
2973 static bool index_to_params(u64 id, struct sys_reg_params *params)
2974 {
2975         switch (id & KVM_REG_SIZE_MASK) {
2976         case KVM_REG_SIZE_U64:
2977                 /* Any unused index bits means it's not valid. */
2978                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2979                               | KVM_REG_ARM_COPROC_MASK
2980                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2981                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2982                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2983                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2984                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2985                         return false;
2986                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2987                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2988                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2989                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2990                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2991                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2992                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2993                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2994                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2995                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2996                 return true;
2997         default:
2998                 return false;
2999         }
3000 }
3001
3002 const struct sys_reg_desc *get_reg_by_id(u64 id,
3003                                          const struct sys_reg_desc table[],
3004                                          unsigned int num)
3005 {
3006         struct sys_reg_params params;
3007
3008         if (!index_to_params(id, &params))
3009                 return NULL;
3010
3011         return find_reg(&params, table, num);
3012 }
3013
3014 /* Decode an index value, and find the sys_reg_desc entry. */
3015 static const struct sys_reg_desc *
3016 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3017                    const struct sys_reg_desc table[], unsigned int num)
3018
3019 {
3020         const struct sys_reg_desc *r;
3021
3022         /* We only do sys_reg for now. */
3023         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3024                 return NULL;
3025
3026         r = get_reg_by_id(id, table, num);
3027
3028         /* Not saved in the sys_reg array and not otherwise accessible? */
3029         if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3030                 r = NULL;
3031
3032         return r;
3033 }
3034
3035 /*
3036  * These are the invariant sys_reg registers: we let the guest see the
3037  * host versions of these, so they're part of the guest state.
3038  *
3039  * A future CPU may provide a mechanism to present different values to
3040  * the guest, or a future kvm may trap them.
3041  */
3042
3043 #define FUNCTION_INVARIANT(reg)                                         \
3044         static void get_##reg(struct kvm_vcpu *v,                       \
3045                               const struct sys_reg_desc *r)             \
3046         {                                                               \
3047                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
3048         }
3049
3050 FUNCTION_INVARIANT(midr_el1)
3051 FUNCTION_INVARIANT(revidr_el1)
3052 FUNCTION_INVARIANT(aidr_el1)
3053
3054 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3055 {
3056         ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3057 }
3058
3059 /* ->val is filled in by kvm_sys_reg_table_init() */
3060 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3061         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3062         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3063         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3064         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3065 };
3066
3067 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3068 {
3069         const struct sys_reg_desc *r;
3070
3071         r = get_reg_by_id(id, invariant_sys_regs,
3072                           ARRAY_SIZE(invariant_sys_regs));
3073         if (!r)
3074                 return -ENOENT;
3075
3076         return put_user(r->val, uaddr);
3077 }
3078
3079 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3080 {
3081         const struct sys_reg_desc *r;
3082         u64 val;
3083
3084         r = get_reg_by_id(id, invariant_sys_regs,
3085                           ARRAY_SIZE(invariant_sys_regs));
3086         if (!r)
3087                 return -ENOENT;
3088
3089         if (get_user(val, uaddr))
3090                 return -EFAULT;
3091
3092         /* This is what we mean by invariant: you can't change it. */
3093         if (r->val != val)
3094                 return -EINVAL;
3095
3096         return 0;
3097 }
3098
3099 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3100 {
3101         u32 val;
3102         u32 __user *uval = uaddr;
3103
3104         /* Fail if we have unknown bits set. */
3105         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3106                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3107                 return -ENOENT;
3108
3109         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3110         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3111                 if (KVM_REG_SIZE(id) != 4)
3112                         return -ENOENT;
3113                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3114                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3115                 if (val >= CSSELR_MAX)
3116                         return -ENOENT;
3117
3118                 return put_user(get_ccsidr(vcpu, val), uval);
3119         default:
3120                 return -ENOENT;
3121         }
3122 }
3123
3124 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3125 {
3126         u32 val, newval;
3127         u32 __user *uval = uaddr;
3128
3129         /* Fail if we have unknown bits set. */
3130         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3131                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3132                 return -ENOENT;
3133
3134         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3135         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3136                 if (KVM_REG_SIZE(id) != 4)
3137                         return -ENOENT;
3138                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3139                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3140                 if (val >= CSSELR_MAX)
3141                         return -ENOENT;
3142
3143                 if (get_user(newval, uval))
3144                         return -EFAULT;
3145
3146                 return set_ccsidr(vcpu, val, newval);
3147         default:
3148                 return -ENOENT;
3149         }
3150 }
3151
3152 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3153                          const struct sys_reg_desc table[], unsigned int num)
3154 {
3155         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3156         const struct sys_reg_desc *r;
3157         u64 val;
3158         int ret;
3159
3160         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3161         if (!r || sysreg_hidden_user(vcpu, r))
3162                 return -ENOENT;
3163
3164         if (r->get_user) {
3165                 ret = (r->get_user)(vcpu, r, &val);
3166         } else {
3167                 val = __vcpu_sys_reg(vcpu, r->reg);
3168                 ret = 0;
3169         }
3170
3171         if (!ret)
3172                 ret = put_user(val, uaddr);
3173
3174         return ret;
3175 }
3176
3177 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3178 {
3179         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3180         int err;
3181
3182         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3183                 return demux_c15_get(vcpu, reg->id, uaddr);
3184
3185         err = get_invariant_sys_reg(reg->id, uaddr);
3186         if (err != -ENOENT)
3187                 return err;
3188
3189         return kvm_sys_reg_get_user(vcpu, reg,
3190                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3191 }
3192
3193 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3194                          const struct sys_reg_desc table[], unsigned int num)
3195 {
3196         u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3197         const struct sys_reg_desc *r;
3198         u64 val;
3199         int ret;
3200
3201         if (get_user(val, uaddr))
3202                 return -EFAULT;
3203
3204         r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3205         if (!r || sysreg_hidden_user(vcpu, r))
3206                 return -ENOENT;
3207
3208         if (sysreg_user_write_ignore(vcpu, r))
3209                 return 0;
3210
3211         if (r->set_user) {
3212                 ret = (r->set_user)(vcpu, r, val);
3213         } else {
3214                 __vcpu_sys_reg(vcpu, r->reg) = val;
3215                 ret = 0;
3216         }
3217
3218         return ret;
3219 }
3220
3221 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3222 {
3223         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3224         int err;
3225
3226         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3227                 return demux_c15_set(vcpu, reg->id, uaddr);
3228
3229         err = set_invariant_sys_reg(reg->id, uaddr);
3230         if (err != -ENOENT)
3231                 return err;
3232
3233         return kvm_sys_reg_set_user(vcpu, reg,
3234                                     sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3235 }
3236
3237 static unsigned int num_demux_regs(void)
3238 {
3239         return CSSELR_MAX;
3240 }
3241
3242 static int write_demux_regids(u64 __user *uindices)
3243 {
3244         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3245         unsigned int i;
3246
3247         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3248         for (i = 0; i < CSSELR_MAX; i++) {
3249                 if (put_user(val | i, uindices))
3250                         return -EFAULT;
3251                 uindices++;
3252         }
3253         return 0;
3254 }
3255
3256 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3257 {
3258         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3259                 KVM_REG_ARM64_SYSREG |
3260                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3261                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3262                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3263                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3264                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3265 }
3266
3267 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3268 {
3269         if (!*uind)
3270                 return true;
3271
3272         if (put_user(sys_reg_to_index(reg), *uind))
3273                 return false;
3274
3275         (*uind)++;
3276         return true;
3277 }
3278
3279 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3280                             const struct sys_reg_desc *rd,
3281                             u64 __user **uind,
3282                             unsigned int *total)
3283 {
3284         /*
3285          * Ignore registers we trap but don't save,
3286          * and for which no custom user accessor is provided.
3287          */
3288         if (!(rd->reg || rd->get_user))
3289                 return 0;
3290
3291         if (sysreg_hidden_user(vcpu, rd))
3292                 return 0;
3293
3294         if (!copy_reg_to_user(rd, uind))
3295                 return -EFAULT;
3296
3297         (*total)++;
3298         return 0;
3299 }
3300
3301 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3302 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3303 {
3304         const struct sys_reg_desc *i2, *end2;
3305         unsigned int total = 0;
3306         int err;
3307
3308         i2 = sys_reg_descs;
3309         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3310
3311         while (i2 != end2) {
3312                 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3313                 if (err)
3314                         return err;
3315         }
3316         return total;
3317 }
3318
3319 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3320 {
3321         return ARRAY_SIZE(invariant_sys_regs)
3322                 + num_demux_regs()
3323                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3324 }
3325
3326 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3327 {
3328         unsigned int i;
3329         int err;
3330
3331         /* Then give them all the invariant registers' indices. */
3332         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3333                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3334                         return -EFAULT;
3335                 uindices++;
3336         }
3337
3338         err = walk_sys_regs(vcpu, uindices);
3339         if (err < 0)
3340                 return err;
3341         uindices += err;
3342
3343         return write_demux_regids(uindices);
3344 }
3345
3346 int __init kvm_sys_reg_table_init(void)
3347 {
3348         bool valid = true;
3349         unsigned int i;
3350
3351         /* Make sure tables are unique and in order. */
3352         valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3353         valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3354         valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3355         valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3356         valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3357         valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3358
3359         if (!valid)
3360                 return -EINVAL;
3361
3362         /* We abuse the reset function to overwrite the table itself. */
3363         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3364                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3365
3366         return 0;
3367 }