drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / arch / arm64 / kvm / mmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long __ro_after_init hyp_idmap_start;
29 static unsigned long __ro_after_init hyp_idmap_end;
30 static phys_addr_t __ro_after_init hyp_idmap_vector;
31
32 static unsigned long __ro_after_init io_map_base;
33
34 static phys_addr_t __stage2_range_addr_end(phys_addr_t addr, phys_addr_t end,
35                                            phys_addr_t size)
36 {
37         phys_addr_t boundary = ALIGN_DOWN(addr + size, size);
38
39         return (boundary - 1 < end - 1) ? boundary : end;
40 }
41
42 static phys_addr_t stage2_range_addr_end(phys_addr_t addr, phys_addr_t end)
43 {
44         phys_addr_t size = kvm_granule_size(KVM_PGTABLE_MIN_BLOCK_LEVEL);
45
46         return __stage2_range_addr_end(addr, end, size);
47 }
48
49 /*
50  * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
51  * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
52  * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
53  * long will also starve other vCPUs. We have to also make sure that the page
54  * tables are not freed while we released the lock.
55  */
56 static int stage2_apply_range(struct kvm_s2_mmu *mmu, phys_addr_t addr,
57                               phys_addr_t end,
58                               int (*fn)(struct kvm_pgtable *, u64, u64),
59                               bool resched)
60 {
61         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
62         int ret;
63         u64 next;
64
65         do {
66                 struct kvm_pgtable *pgt = mmu->pgt;
67                 if (!pgt)
68                         return -EINVAL;
69
70                 next = stage2_range_addr_end(addr, end);
71                 ret = fn(pgt, addr, next - addr);
72                 if (ret)
73                         break;
74
75                 if (resched && next != end)
76                         cond_resched_rwlock_write(&kvm->mmu_lock);
77         } while (addr = next, addr != end);
78
79         return ret;
80 }
81
82 #define stage2_apply_range_resched(mmu, addr, end, fn)                  \
83         stage2_apply_range(mmu, addr, end, fn, true)
84
85 /*
86  * Get the maximum number of page-tables pages needed to split a range
87  * of blocks into PAGE_SIZE PTEs. It assumes the range is already
88  * mapped at level 2, or at level 1 if allowed.
89  */
90 static int kvm_mmu_split_nr_page_tables(u64 range)
91 {
92         int n = 0;
93
94         if (KVM_PGTABLE_MIN_BLOCK_LEVEL < 2)
95                 n += DIV_ROUND_UP(range, PUD_SIZE);
96         n += DIV_ROUND_UP(range, PMD_SIZE);
97         return n;
98 }
99
100 static bool need_split_memcache_topup_or_resched(struct kvm *kvm)
101 {
102         struct kvm_mmu_memory_cache *cache;
103         u64 chunk_size, min;
104
105         if (need_resched() || rwlock_needbreak(&kvm->mmu_lock))
106                 return true;
107
108         chunk_size = kvm->arch.mmu.split_page_chunk_size;
109         min = kvm_mmu_split_nr_page_tables(chunk_size);
110         cache = &kvm->arch.mmu.split_page_cache;
111         return kvm_mmu_memory_cache_nr_free_objects(cache) < min;
112 }
113
114 static int kvm_mmu_split_huge_pages(struct kvm *kvm, phys_addr_t addr,
115                                     phys_addr_t end)
116 {
117         struct kvm_mmu_memory_cache *cache;
118         struct kvm_pgtable *pgt;
119         int ret, cache_capacity;
120         u64 next, chunk_size;
121
122         lockdep_assert_held_write(&kvm->mmu_lock);
123
124         chunk_size = kvm->arch.mmu.split_page_chunk_size;
125         cache_capacity = kvm_mmu_split_nr_page_tables(chunk_size);
126
127         if (chunk_size == 0)
128                 return 0;
129
130         cache = &kvm->arch.mmu.split_page_cache;
131
132         do {
133                 if (need_split_memcache_topup_or_resched(kvm)) {
134                         write_unlock(&kvm->mmu_lock);
135                         cond_resched();
136                         /* Eager page splitting is best-effort. */
137                         ret = __kvm_mmu_topup_memory_cache(cache,
138                                                            cache_capacity,
139                                                            cache_capacity);
140                         write_lock(&kvm->mmu_lock);
141                         if (ret)
142                                 break;
143                 }
144
145                 pgt = kvm->arch.mmu.pgt;
146                 if (!pgt)
147                         return -EINVAL;
148
149                 next = __stage2_range_addr_end(addr, end, chunk_size);
150                 ret = kvm_pgtable_stage2_split(pgt, addr, next - addr, cache);
151                 if (ret)
152                         break;
153         } while (addr = next, addr != end);
154
155         return ret;
156 }
157
158 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
159 {
160         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
161 }
162
163 /**
164  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
165  * @kvm:        pointer to kvm structure.
166  *
167  * Interface to HYP function to flush all VM TLB entries
168  */
169 void kvm_flush_remote_tlbs(struct kvm *kvm)
170 {
171         ++kvm->stat.generic.remote_tlb_flush_requests;
172         kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
173 }
174
175 static bool kvm_is_device_pfn(unsigned long pfn)
176 {
177         return !pfn_is_map_memory(pfn);
178 }
179
180 static void *stage2_memcache_zalloc_page(void *arg)
181 {
182         struct kvm_mmu_memory_cache *mc = arg;
183         void *virt;
184
185         /* Allocated with __GFP_ZERO, so no need to zero */
186         virt = kvm_mmu_memory_cache_alloc(mc);
187         if (virt)
188                 kvm_account_pgtable_pages(virt, 1);
189         return virt;
190 }
191
192 static void *kvm_host_zalloc_pages_exact(size_t size)
193 {
194         return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
195 }
196
197 static void *kvm_s2_zalloc_pages_exact(size_t size)
198 {
199         void *virt = kvm_host_zalloc_pages_exact(size);
200
201         if (virt)
202                 kvm_account_pgtable_pages(virt, (size >> PAGE_SHIFT));
203         return virt;
204 }
205
206 static void kvm_s2_free_pages_exact(void *virt, size_t size)
207 {
208         kvm_account_pgtable_pages(virt, -(size >> PAGE_SHIFT));
209         free_pages_exact(virt, size);
210 }
211
212 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops;
213
214 static void stage2_free_unlinked_table_rcu_cb(struct rcu_head *head)
215 {
216         struct page *page = container_of(head, struct page, rcu_head);
217         void *pgtable = page_to_virt(page);
218         u32 level = page_private(page);
219
220         kvm_pgtable_stage2_free_unlinked(&kvm_s2_mm_ops, pgtable, level);
221 }
222
223 static void stage2_free_unlinked_table(void *addr, u32 level)
224 {
225         struct page *page = virt_to_page(addr);
226
227         set_page_private(page, (unsigned long)level);
228         call_rcu(&page->rcu_head, stage2_free_unlinked_table_rcu_cb);
229 }
230
231 static void kvm_host_get_page(void *addr)
232 {
233         get_page(virt_to_page(addr));
234 }
235
236 static void kvm_host_put_page(void *addr)
237 {
238         put_page(virt_to_page(addr));
239 }
240
241 static void kvm_s2_put_page(void *addr)
242 {
243         struct page *p = virt_to_page(addr);
244         /* Dropping last refcount, the page will be freed */
245         if (page_count(p) == 1)
246                 kvm_account_pgtable_pages(addr, -1);
247         put_page(p);
248 }
249
250 static int kvm_host_page_count(void *addr)
251 {
252         return page_count(virt_to_page(addr));
253 }
254
255 static phys_addr_t kvm_host_pa(void *addr)
256 {
257         return __pa(addr);
258 }
259
260 static void *kvm_host_va(phys_addr_t phys)
261 {
262         return __va(phys);
263 }
264
265 static void clean_dcache_guest_page(void *va, size_t size)
266 {
267         __clean_dcache_guest_page(va, size);
268 }
269
270 static void invalidate_icache_guest_page(void *va, size_t size)
271 {
272         __invalidate_icache_guest_page(va, size);
273 }
274
275 /*
276  * Unmapping vs dcache management:
277  *
278  * If a guest maps certain memory pages as uncached, all writes will
279  * bypass the data cache and go directly to RAM.  However, the CPUs
280  * can still speculate reads (not writes) and fill cache lines with
281  * data.
282  *
283  * Those cache lines will be *clean* cache lines though, so a
284  * clean+invalidate operation is equivalent to an invalidate
285  * operation, because no cache lines are marked dirty.
286  *
287  * Those clean cache lines could be filled prior to an uncached write
288  * by the guest, and the cache coherent IO subsystem would therefore
289  * end up writing old data to disk.
290  *
291  * This is why right after unmapping a page/section and invalidating
292  * the corresponding TLBs, we flush to make sure the IO subsystem will
293  * never hit in the cache.
294  *
295  * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
296  * we then fully enforce cacheability of RAM, no matter what the guest
297  * does.
298  */
299 /**
300  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
301  * @mmu:   The KVM stage-2 MMU pointer
302  * @start: The intermediate physical base address of the range to unmap
303  * @size:  The size of the area to unmap
304  * @may_block: Whether or not we are permitted to block
305  *
306  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
307  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
308  * destroying the VM), otherwise another faulting VCPU may come in and mess
309  * with things behind our backs.
310  */
311 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
312                                  bool may_block)
313 {
314         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
315         phys_addr_t end = start + size;
316
317         lockdep_assert_held_write(&kvm->mmu_lock);
318         WARN_ON(size & ~PAGE_MASK);
319         WARN_ON(stage2_apply_range(mmu, start, end, kvm_pgtable_stage2_unmap,
320                                    may_block));
321 }
322
323 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
324 {
325         __unmap_stage2_range(mmu, start, size, true);
326 }
327
328 static void stage2_flush_memslot(struct kvm *kvm,
329                                  struct kvm_memory_slot *memslot)
330 {
331         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
332         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
333
334         stage2_apply_range_resched(&kvm->arch.mmu, addr, end, kvm_pgtable_stage2_flush);
335 }
336
337 /**
338  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
339  * @kvm: The struct kvm pointer
340  *
341  * Go through the stage 2 page tables and invalidate any cache lines
342  * backing memory already mapped to the VM.
343  */
344 static void stage2_flush_vm(struct kvm *kvm)
345 {
346         struct kvm_memslots *slots;
347         struct kvm_memory_slot *memslot;
348         int idx, bkt;
349
350         idx = srcu_read_lock(&kvm->srcu);
351         write_lock(&kvm->mmu_lock);
352
353         slots = kvm_memslots(kvm);
354         kvm_for_each_memslot(memslot, bkt, slots)
355                 stage2_flush_memslot(kvm, memslot);
356
357         write_unlock(&kvm->mmu_lock);
358         srcu_read_unlock(&kvm->srcu, idx);
359 }
360
361 /**
362  * free_hyp_pgds - free Hyp-mode page tables
363  */
364 void __init free_hyp_pgds(void)
365 {
366         mutex_lock(&kvm_hyp_pgd_mutex);
367         if (hyp_pgtable) {
368                 kvm_pgtable_hyp_destroy(hyp_pgtable);
369                 kfree(hyp_pgtable);
370                 hyp_pgtable = NULL;
371         }
372         mutex_unlock(&kvm_hyp_pgd_mutex);
373 }
374
375 static bool kvm_host_owns_hyp_mappings(void)
376 {
377         if (is_kernel_in_hyp_mode())
378                 return false;
379
380         if (static_branch_likely(&kvm_protected_mode_initialized))
381                 return false;
382
383         /*
384          * This can happen at boot time when __create_hyp_mappings() is called
385          * after the hyp protection has been enabled, but the static key has
386          * not been flipped yet.
387          */
388         if (!hyp_pgtable && is_protected_kvm_enabled())
389                 return false;
390
391         WARN_ON(!hyp_pgtable);
392
393         return true;
394 }
395
396 int __create_hyp_mappings(unsigned long start, unsigned long size,
397                           unsigned long phys, enum kvm_pgtable_prot prot)
398 {
399         int err;
400
401         if (WARN_ON(!kvm_host_owns_hyp_mappings()))
402                 return -EINVAL;
403
404         mutex_lock(&kvm_hyp_pgd_mutex);
405         err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
406         mutex_unlock(&kvm_hyp_pgd_mutex);
407
408         return err;
409 }
410
411 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
412 {
413         if (!is_vmalloc_addr(kaddr)) {
414                 BUG_ON(!virt_addr_valid(kaddr));
415                 return __pa(kaddr);
416         } else {
417                 return page_to_phys(vmalloc_to_page(kaddr)) +
418                        offset_in_page(kaddr);
419         }
420 }
421
422 struct hyp_shared_pfn {
423         u64 pfn;
424         int count;
425         struct rb_node node;
426 };
427
428 static DEFINE_MUTEX(hyp_shared_pfns_lock);
429 static struct rb_root hyp_shared_pfns = RB_ROOT;
430
431 static struct hyp_shared_pfn *find_shared_pfn(u64 pfn, struct rb_node ***node,
432                                               struct rb_node **parent)
433 {
434         struct hyp_shared_pfn *this;
435
436         *node = &hyp_shared_pfns.rb_node;
437         *parent = NULL;
438         while (**node) {
439                 this = container_of(**node, struct hyp_shared_pfn, node);
440                 *parent = **node;
441                 if (this->pfn < pfn)
442                         *node = &((**node)->rb_left);
443                 else if (this->pfn > pfn)
444                         *node = &((**node)->rb_right);
445                 else
446                         return this;
447         }
448
449         return NULL;
450 }
451
452 static int share_pfn_hyp(u64 pfn)
453 {
454         struct rb_node **node, *parent;
455         struct hyp_shared_pfn *this;
456         int ret = 0;
457
458         mutex_lock(&hyp_shared_pfns_lock);
459         this = find_shared_pfn(pfn, &node, &parent);
460         if (this) {
461                 this->count++;
462                 goto unlock;
463         }
464
465         this = kzalloc(sizeof(*this), GFP_KERNEL);
466         if (!this) {
467                 ret = -ENOMEM;
468                 goto unlock;
469         }
470
471         this->pfn = pfn;
472         this->count = 1;
473         rb_link_node(&this->node, parent, node);
474         rb_insert_color(&this->node, &hyp_shared_pfns);
475         ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp, pfn, 1);
476 unlock:
477         mutex_unlock(&hyp_shared_pfns_lock);
478
479         return ret;
480 }
481
482 static int unshare_pfn_hyp(u64 pfn)
483 {
484         struct rb_node **node, *parent;
485         struct hyp_shared_pfn *this;
486         int ret = 0;
487
488         mutex_lock(&hyp_shared_pfns_lock);
489         this = find_shared_pfn(pfn, &node, &parent);
490         if (WARN_ON(!this)) {
491                 ret = -ENOENT;
492                 goto unlock;
493         }
494
495         this->count--;
496         if (this->count)
497                 goto unlock;
498
499         rb_erase(&this->node, &hyp_shared_pfns);
500         kfree(this);
501         ret = kvm_call_hyp_nvhe(__pkvm_host_unshare_hyp, pfn, 1);
502 unlock:
503         mutex_unlock(&hyp_shared_pfns_lock);
504
505         return ret;
506 }
507
508 int kvm_share_hyp(void *from, void *to)
509 {
510         phys_addr_t start, end, cur;
511         u64 pfn;
512         int ret;
513
514         if (is_kernel_in_hyp_mode())
515                 return 0;
516
517         /*
518          * The share hcall maps things in the 'fixed-offset' region of the hyp
519          * VA space, so we can only share physically contiguous data-structures
520          * for now.
521          */
522         if (is_vmalloc_or_module_addr(from) || is_vmalloc_or_module_addr(to))
523                 return -EINVAL;
524
525         if (kvm_host_owns_hyp_mappings())
526                 return create_hyp_mappings(from, to, PAGE_HYP);
527
528         start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
529         end = PAGE_ALIGN(__pa(to));
530         for (cur = start; cur < end; cur += PAGE_SIZE) {
531                 pfn = __phys_to_pfn(cur);
532                 ret = share_pfn_hyp(pfn);
533                 if (ret)
534                         return ret;
535         }
536
537         return 0;
538 }
539
540 void kvm_unshare_hyp(void *from, void *to)
541 {
542         phys_addr_t start, end, cur;
543         u64 pfn;
544
545         if (is_kernel_in_hyp_mode() || kvm_host_owns_hyp_mappings() || !from)
546                 return;
547
548         start = ALIGN_DOWN(__pa(from), PAGE_SIZE);
549         end = PAGE_ALIGN(__pa(to));
550         for (cur = start; cur < end; cur += PAGE_SIZE) {
551                 pfn = __phys_to_pfn(cur);
552                 WARN_ON(unshare_pfn_hyp(pfn));
553         }
554 }
555
556 /**
557  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
558  * @from:       The virtual kernel start address of the range
559  * @to:         The virtual kernel end address of the range (exclusive)
560  * @prot:       The protection to be applied to this range
561  *
562  * The same virtual address as the kernel virtual address is also used
563  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
564  * physical pages.
565  */
566 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
567 {
568         phys_addr_t phys_addr;
569         unsigned long virt_addr;
570         unsigned long start = kern_hyp_va((unsigned long)from);
571         unsigned long end = kern_hyp_va((unsigned long)to);
572
573         if (is_kernel_in_hyp_mode())
574                 return 0;
575
576         if (!kvm_host_owns_hyp_mappings())
577                 return -EPERM;
578
579         start = start & PAGE_MASK;
580         end = PAGE_ALIGN(end);
581
582         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
583                 int err;
584
585                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
586                 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
587                                             prot);
588                 if (err)
589                         return err;
590         }
591
592         return 0;
593 }
594
595
596 /**
597  * hyp_alloc_private_va_range - Allocates a private VA range.
598  * @size:       The size of the VA range to reserve.
599  * @haddr:      The hypervisor virtual start address of the allocation.
600  *
601  * The private virtual address (VA) range is allocated below io_map_base
602  * and aligned based on the order of @size.
603  *
604  * Return: 0 on success or negative error code on failure.
605  */
606 int hyp_alloc_private_va_range(size_t size, unsigned long *haddr)
607 {
608         unsigned long base;
609         int ret = 0;
610
611         mutex_lock(&kvm_hyp_pgd_mutex);
612
613         /*
614          * This assumes that we have enough space below the idmap
615          * page to allocate our VAs. If not, the check below will
616          * kick. A potential alternative would be to detect that
617          * overflow and switch to an allocation above the idmap.
618          *
619          * The allocated size is always a multiple of PAGE_SIZE.
620          */
621         base = io_map_base - PAGE_ALIGN(size);
622
623         /* Align the allocation based on the order of its size */
624         base = ALIGN_DOWN(base, PAGE_SIZE << get_order(size));
625
626         /*
627          * Verify that BIT(VA_BITS - 1) hasn't been flipped by
628          * allocating the new area, as it would indicate we've
629          * overflowed the idmap/IO address range.
630          */
631         if ((base ^ io_map_base) & BIT(VA_BITS - 1))
632                 ret = -ENOMEM;
633         else
634                 *haddr = io_map_base = base;
635
636         mutex_unlock(&kvm_hyp_pgd_mutex);
637
638         return ret;
639 }
640
641 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
642                                         unsigned long *haddr,
643                                         enum kvm_pgtable_prot prot)
644 {
645         unsigned long addr;
646         int ret = 0;
647
648         if (!kvm_host_owns_hyp_mappings()) {
649                 addr = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
650                                          phys_addr, size, prot);
651                 if (IS_ERR_VALUE(addr))
652                         return addr;
653                 *haddr = addr;
654
655                 return 0;
656         }
657
658         size = PAGE_ALIGN(size + offset_in_page(phys_addr));
659         ret = hyp_alloc_private_va_range(size, &addr);
660         if (ret)
661                 return ret;
662
663         ret = __create_hyp_mappings(addr, size, phys_addr, prot);
664         if (ret)
665                 return ret;
666
667         *haddr = addr + offset_in_page(phys_addr);
668         return ret;
669 }
670
671 /**
672  * create_hyp_io_mappings - Map IO into both kernel and HYP
673  * @phys_addr:  The physical start address which gets mapped
674  * @size:       Size of the region being mapped
675  * @kaddr:      Kernel VA for this mapping
676  * @haddr:      HYP VA for this mapping
677  */
678 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
679                            void __iomem **kaddr,
680                            void __iomem **haddr)
681 {
682         unsigned long addr;
683         int ret;
684
685         if (is_protected_kvm_enabled())
686                 return -EPERM;
687
688         *kaddr = ioremap(phys_addr, size);
689         if (!*kaddr)
690                 return -ENOMEM;
691
692         if (is_kernel_in_hyp_mode()) {
693                 *haddr = *kaddr;
694                 return 0;
695         }
696
697         ret = __create_hyp_private_mapping(phys_addr, size,
698                                            &addr, PAGE_HYP_DEVICE);
699         if (ret) {
700                 iounmap(*kaddr);
701                 *kaddr = NULL;
702                 *haddr = NULL;
703                 return ret;
704         }
705
706         *haddr = (void __iomem *)addr;
707         return 0;
708 }
709
710 /**
711  * create_hyp_exec_mappings - Map an executable range into HYP
712  * @phys_addr:  The physical start address which gets mapped
713  * @size:       Size of the region being mapped
714  * @haddr:      HYP VA for this mapping
715  */
716 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
717                              void **haddr)
718 {
719         unsigned long addr;
720         int ret;
721
722         BUG_ON(is_kernel_in_hyp_mode());
723
724         ret = __create_hyp_private_mapping(phys_addr, size,
725                                            &addr, PAGE_HYP_EXEC);
726         if (ret) {
727                 *haddr = NULL;
728                 return ret;
729         }
730
731         *haddr = (void *)addr;
732         return 0;
733 }
734
735 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
736         /* We shouldn't need any other callback to walk the PT */
737         .phys_to_virt           = kvm_host_va,
738 };
739
740 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
741 {
742         struct kvm_pgtable pgt = {
743                 .pgd            = (kvm_pteref_t)kvm->mm->pgd,
744                 .ia_bits        = vabits_actual,
745                 .start_level    = (KVM_PGTABLE_MAX_LEVELS -
746                                    CONFIG_PGTABLE_LEVELS),
747                 .mm_ops         = &kvm_user_mm_ops,
748         };
749         unsigned long flags;
750         kvm_pte_t pte = 0;      /* Keep GCC quiet... */
751         u32 level = ~0;
752         int ret;
753
754         /*
755          * Disable IRQs so that we hazard against a concurrent
756          * teardown of the userspace page tables (which relies on
757          * IPI-ing threads).
758          */
759         local_irq_save(flags);
760         ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
761         local_irq_restore(flags);
762
763         if (ret)
764                 return ret;
765
766         /*
767          * Not seeing an error, but not updating level? Something went
768          * deeply wrong...
769          */
770         if (WARN_ON(level >= KVM_PGTABLE_MAX_LEVELS))
771                 return -EFAULT;
772
773         /* Oops, the userspace PTs are gone... Replay the fault */
774         if (!kvm_pte_valid(pte))
775                 return -EAGAIN;
776
777         return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
778 }
779
780 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
781         .zalloc_page            = stage2_memcache_zalloc_page,
782         .zalloc_pages_exact     = kvm_s2_zalloc_pages_exact,
783         .free_pages_exact       = kvm_s2_free_pages_exact,
784         .free_unlinked_table    = stage2_free_unlinked_table,
785         .get_page               = kvm_host_get_page,
786         .put_page               = kvm_s2_put_page,
787         .page_count             = kvm_host_page_count,
788         .phys_to_virt           = kvm_host_va,
789         .virt_to_phys           = kvm_host_pa,
790         .dcache_clean_inval_poc = clean_dcache_guest_page,
791         .icache_inval_pou       = invalidate_icache_guest_page,
792 };
793
794 /**
795  * kvm_init_stage2_mmu - Initialise a S2 MMU structure
796  * @kvm:        The pointer to the KVM structure
797  * @mmu:        The pointer to the s2 MMU structure
798  * @type:       The machine type of the virtual machine
799  *
800  * Allocates only the stage-2 HW PGD level table(s).
801  * Note we don't need locking here as this is only called when the VM is
802  * created, which can only be done once.
803  */
804 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu, unsigned long type)
805 {
806         u32 kvm_ipa_limit = get_kvm_ipa_limit();
807         int cpu, err;
808         struct kvm_pgtable *pgt;
809         u64 mmfr0, mmfr1;
810         u32 phys_shift;
811
812         if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
813                 return -EINVAL;
814
815         phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
816         if (is_protected_kvm_enabled()) {
817                 phys_shift = kvm_ipa_limit;
818         } else if (phys_shift) {
819                 if (phys_shift > kvm_ipa_limit ||
820                     phys_shift < ARM64_MIN_PARANGE_BITS)
821                         return -EINVAL;
822         } else {
823                 phys_shift = KVM_PHYS_SHIFT;
824                 if (phys_shift > kvm_ipa_limit) {
825                         pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
826                                      current->comm);
827                         return -EINVAL;
828                 }
829         }
830
831         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
832         mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
833         kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
834
835         if (mmu->pgt != NULL) {
836                 kvm_err("kvm_arch already initialized?\n");
837                 return -EINVAL;
838         }
839
840         pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
841         if (!pgt)
842                 return -ENOMEM;
843
844         mmu->arch = &kvm->arch;
845         err = kvm_pgtable_stage2_init(pgt, mmu, &kvm_s2_mm_ops);
846         if (err)
847                 goto out_free_pgtable;
848
849         mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
850         if (!mmu->last_vcpu_ran) {
851                 err = -ENOMEM;
852                 goto out_destroy_pgtable;
853         }
854
855         for_each_possible_cpu(cpu)
856                 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
857
858          /* The eager page splitting is disabled by default */
859         mmu->split_page_chunk_size = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
860         mmu->split_page_cache.gfp_zero = __GFP_ZERO;
861
862         mmu->pgt = pgt;
863         mmu->pgd_phys = __pa(pgt->pgd);
864         return 0;
865
866 out_destroy_pgtable:
867         kvm_pgtable_stage2_destroy(pgt);
868 out_free_pgtable:
869         kfree(pgt);
870         return err;
871 }
872
873 void kvm_uninit_stage2_mmu(struct kvm *kvm)
874 {
875         kvm_free_stage2_pgd(&kvm->arch.mmu);
876         kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
877 }
878
879 static void stage2_unmap_memslot(struct kvm *kvm,
880                                  struct kvm_memory_slot *memslot)
881 {
882         hva_t hva = memslot->userspace_addr;
883         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
884         phys_addr_t size = PAGE_SIZE * memslot->npages;
885         hva_t reg_end = hva + size;
886
887         /*
888          * A memory region could potentially cover multiple VMAs, and any holes
889          * between them, so iterate over all of them to find out if we should
890          * unmap any of them.
891          *
892          *     +--------------------------------------------+
893          * +---------------+----------------+   +----------------+
894          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
895          * +---------------+----------------+   +----------------+
896          *     |               memory region                |
897          *     +--------------------------------------------+
898          */
899         do {
900                 struct vm_area_struct *vma;
901                 hva_t vm_start, vm_end;
902
903                 vma = find_vma_intersection(current->mm, hva, reg_end);
904                 if (!vma)
905                         break;
906
907                 /*
908                  * Take the intersection of this VMA with the memory region
909                  */
910                 vm_start = max(hva, vma->vm_start);
911                 vm_end = min(reg_end, vma->vm_end);
912
913                 if (!(vma->vm_flags & VM_PFNMAP)) {
914                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
915                         unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
916                 }
917                 hva = vm_end;
918         } while (hva < reg_end);
919 }
920
921 /**
922  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
923  * @kvm: The struct kvm pointer
924  *
925  * Go through the memregions and unmap any regular RAM
926  * backing memory already mapped to the VM.
927  */
928 void stage2_unmap_vm(struct kvm *kvm)
929 {
930         struct kvm_memslots *slots;
931         struct kvm_memory_slot *memslot;
932         int idx, bkt;
933
934         idx = srcu_read_lock(&kvm->srcu);
935         mmap_read_lock(current->mm);
936         write_lock(&kvm->mmu_lock);
937
938         slots = kvm_memslots(kvm);
939         kvm_for_each_memslot(memslot, bkt, slots)
940                 stage2_unmap_memslot(kvm, memslot);
941
942         write_unlock(&kvm->mmu_lock);
943         mmap_read_unlock(current->mm);
944         srcu_read_unlock(&kvm->srcu, idx);
945 }
946
947 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
948 {
949         struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
950         struct kvm_pgtable *pgt = NULL;
951
952         write_lock(&kvm->mmu_lock);
953         pgt = mmu->pgt;
954         if (pgt) {
955                 mmu->pgd_phys = 0;
956                 mmu->pgt = NULL;
957                 free_percpu(mmu->last_vcpu_ran);
958         }
959         write_unlock(&kvm->mmu_lock);
960
961         if (pgt) {
962                 kvm_pgtable_stage2_destroy(pgt);
963                 kfree(pgt);
964         }
965 }
966
967 static void hyp_mc_free_fn(void *addr, void *unused)
968 {
969         free_page((unsigned long)addr);
970 }
971
972 static void *hyp_mc_alloc_fn(void *unused)
973 {
974         return (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
975 }
976
977 void free_hyp_memcache(struct kvm_hyp_memcache *mc)
978 {
979         if (is_protected_kvm_enabled())
980                 __free_hyp_memcache(mc, hyp_mc_free_fn,
981                                     kvm_host_va, NULL);
982 }
983
984 int topup_hyp_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages)
985 {
986         if (!is_protected_kvm_enabled())
987                 return 0;
988
989         return __topup_hyp_memcache(mc, min_pages, hyp_mc_alloc_fn,
990                                     kvm_host_pa, NULL);
991 }
992
993 /**
994  * kvm_phys_addr_ioremap - map a device range to guest IPA
995  *
996  * @kvm:        The KVM pointer
997  * @guest_ipa:  The IPA at which to insert the mapping
998  * @pa:         The physical address of the device
999  * @size:       The size of the mapping
1000  * @writable:   Whether or not to create a writable mapping
1001  */
1002 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1003                           phys_addr_t pa, unsigned long size, bool writable)
1004 {
1005         phys_addr_t addr;
1006         int ret = 0;
1007         struct kvm_mmu_memory_cache cache = { .gfp_zero = __GFP_ZERO };
1008         struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
1009         enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
1010                                      KVM_PGTABLE_PROT_R |
1011                                      (writable ? KVM_PGTABLE_PROT_W : 0);
1012
1013         if (is_protected_kvm_enabled())
1014                 return -EPERM;
1015
1016         size += offset_in_page(guest_ipa);
1017         guest_ipa &= PAGE_MASK;
1018
1019         for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
1020                 ret = kvm_mmu_topup_memory_cache(&cache,
1021                                                  kvm_mmu_cache_min_pages(kvm));
1022                 if (ret)
1023                         break;
1024
1025                 write_lock(&kvm->mmu_lock);
1026                 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
1027                                              &cache, 0);
1028                 write_unlock(&kvm->mmu_lock);
1029                 if (ret)
1030                         break;
1031
1032                 pa += PAGE_SIZE;
1033         }
1034
1035         kvm_mmu_free_memory_cache(&cache);
1036         return ret;
1037 }
1038
1039 /**
1040  * stage2_wp_range() - write protect stage2 memory region range
1041  * @mmu:        The KVM stage-2 MMU pointer
1042  * @addr:       Start address of range
1043  * @end:        End address of range
1044  */
1045 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
1046 {
1047         stage2_apply_range_resched(mmu, addr, end, kvm_pgtable_stage2_wrprotect);
1048 }
1049
1050 /**
1051  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1052  * @kvm:        The KVM pointer
1053  * @slot:       The memory slot to write protect
1054  *
1055  * Called to start logging dirty pages after memory region
1056  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1057  * all present PUD, PMD and PTEs are write protected in the memory region.
1058  * Afterwards read of dirty page log can be called.
1059  *
1060  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1061  * serializing operations for VM memory regions.
1062  */
1063 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1064 {
1065         struct kvm_memslots *slots = kvm_memslots(kvm);
1066         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1067         phys_addr_t start, end;
1068
1069         if (WARN_ON_ONCE(!memslot))
1070                 return;
1071
1072         start = memslot->base_gfn << PAGE_SHIFT;
1073         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1074
1075         write_lock(&kvm->mmu_lock);
1076         stage2_wp_range(&kvm->arch.mmu, start, end);
1077         write_unlock(&kvm->mmu_lock);
1078         kvm_flush_remote_tlbs(kvm);
1079 }
1080
1081 /**
1082  * kvm_mmu_split_memory_region() - split the stage 2 blocks into PAGE_SIZE
1083  *                                 pages for memory slot
1084  * @kvm:        The KVM pointer
1085  * @slot:       The memory slot to split
1086  *
1087  * Acquires kvm->mmu_lock. Called with kvm->slots_lock mutex acquired,
1088  * serializing operations for VM memory regions.
1089  */
1090 static void kvm_mmu_split_memory_region(struct kvm *kvm, int slot)
1091 {
1092         struct kvm_memslots *slots;
1093         struct kvm_memory_slot *memslot;
1094         phys_addr_t start, end;
1095
1096         lockdep_assert_held(&kvm->slots_lock);
1097
1098         slots = kvm_memslots(kvm);
1099         memslot = id_to_memslot(slots, slot);
1100
1101         start = memslot->base_gfn << PAGE_SHIFT;
1102         end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1103
1104         write_lock(&kvm->mmu_lock);
1105         kvm_mmu_split_huge_pages(kvm, start, end);
1106         write_unlock(&kvm->mmu_lock);
1107 }
1108
1109 /*
1110  * kvm_arch_mmu_enable_log_dirty_pt_masked() - enable dirty logging for selected pages.
1111  * @kvm:        The KVM pointer
1112  * @slot:       The memory slot associated with mask
1113  * @gfn_offset: The gfn offset in memory slot
1114  * @mask:       The mask of pages at offset 'gfn_offset' in this memory
1115  *              slot to enable dirty logging on
1116  *
1117  * Writes protect selected pages to enable dirty logging, and then
1118  * splits them to PAGE_SIZE. Caller must acquire kvm->mmu_lock.
1119  */
1120 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1121                 struct kvm_memory_slot *slot,
1122                 gfn_t gfn_offset, unsigned long mask)
1123 {
1124         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1125         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1126         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1127
1128         lockdep_assert_held_write(&kvm->mmu_lock);
1129
1130         stage2_wp_range(&kvm->arch.mmu, start, end);
1131
1132         /*
1133          * Eager-splitting is done when manual-protect is set.  We
1134          * also check for initially-all-set because we can avoid
1135          * eager-splitting if initially-all-set is false.
1136          * Initially-all-set equal false implies that huge-pages were
1137          * already split when enabling dirty logging: no need to do it
1138          * again.
1139          */
1140         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1141                 kvm_mmu_split_huge_pages(kvm, start, end);
1142 }
1143
1144 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
1145 {
1146         send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
1147 }
1148
1149 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
1150                                                unsigned long hva,
1151                                                unsigned long map_size)
1152 {
1153         gpa_t gpa_start;
1154         hva_t uaddr_start, uaddr_end;
1155         size_t size;
1156
1157         /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
1158         if (map_size == PAGE_SIZE)
1159                 return true;
1160
1161         size = memslot->npages * PAGE_SIZE;
1162
1163         gpa_start = memslot->base_gfn << PAGE_SHIFT;
1164
1165         uaddr_start = memslot->userspace_addr;
1166         uaddr_end = uaddr_start + size;
1167
1168         /*
1169          * Pages belonging to memslots that don't have the same alignment
1170          * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
1171          * PMD/PUD entries, because we'll end up mapping the wrong pages.
1172          *
1173          * Consider a layout like the following:
1174          *
1175          *    memslot->userspace_addr:
1176          *    +-----+--------------------+--------------------+---+
1177          *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
1178          *    +-----+--------------------+--------------------+---+
1179          *
1180          *    memslot->base_gfn << PAGE_SHIFT:
1181          *      +---+--------------------+--------------------+-----+
1182          *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
1183          *      +---+--------------------+--------------------+-----+
1184          *
1185          * If we create those stage-2 blocks, we'll end up with this incorrect
1186          * mapping:
1187          *   d -> f
1188          *   e -> g
1189          *   f -> h
1190          */
1191         if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
1192                 return false;
1193
1194         /*
1195          * Next, let's make sure we're not trying to map anything not covered
1196          * by the memslot. This means we have to prohibit block size mappings
1197          * for the beginning and end of a non-block aligned and non-block sized
1198          * memory slot (illustrated by the head and tail parts of the
1199          * userspace view above containing pages 'abcde' and 'xyz',
1200          * respectively).
1201          *
1202          * Note that it doesn't matter if we do the check using the
1203          * userspace_addr or the base_gfn, as both are equally aligned (per
1204          * the check above) and equally sized.
1205          */
1206         return (hva & ~(map_size - 1)) >= uaddr_start &&
1207                (hva & ~(map_size - 1)) + map_size <= uaddr_end;
1208 }
1209
1210 /*
1211  * Check if the given hva is backed by a transparent huge page (THP) and
1212  * whether it can be mapped using block mapping in stage2. If so, adjust
1213  * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
1214  * supported. This will need to be updated to support other THP sizes.
1215  *
1216  * Returns the size of the mapping.
1217  */
1218 static long
1219 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
1220                             unsigned long hva, kvm_pfn_t *pfnp,
1221                             phys_addr_t *ipap)
1222 {
1223         kvm_pfn_t pfn = *pfnp;
1224
1225         /*
1226          * Make sure the adjustment is done only for THP pages. Also make
1227          * sure that the HVA and IPA are sufficiently aligned and that the
1228          * block map is contained within the memslot.
1229          */
1230         if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
1231                 int sz = get_user_mapping_size(kvm, hva);
1232
1233                 if (sz < 0)
1234                         return sz;
1235
1236                 if (sz < PMD_SIZE)
1237                         return PAGE_SIZE;
1238
1239                 /*
1240                  * The address we faulted on is backed by a transparent huge
1241                  * page.  However, because we map the compound huge page and
1242                  * not the individual tail page, we need to transfer the
1243                  * refcount to the head page.  We have to be careful that the
1244                  * THP doesn't start to split while we are adjusting the
1245                  * refcounts.
1246                  *
1247                  * We are sure this doesn't happen, because mmu_invalidate_retry
1248                  * was successful and we are holding the mmu_lock, so if this
1249                  * THP is trying to split, it will be blocked in the mmu
1250                  * notifier before touching any of the pages, specifically
1251                  * before being able to call __split_huge_page_refcount().
1252                  *
1253                  * We can therefore safely transfer the refcount from PG_tail
1254                  * to PG_head and switch the pfn from a tail page to the head
1255                  * page accordingly.
1256                  */
1257                 *ipap &= PMD_MASK;
1258                 kvm_release_pfn_clean(pfn);
1259                 pfn &= ~(PTRS_PER_PMD - 1);
1260                 get_page(pfn_to_page(pfn));
1261                 *pfnp = pfn;
1262
1263                 return PMD_SIZE;
1264         }
1265
1266         /* Use page mapping if we cannot use block mapping. */
1267         return PAGE_SIZE;
1268 }
1269
1270 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
1271 {
1272         unsigned long pa;
1273
1274         if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
1275                 return huge_page_shift(hstate_vma(vma));
1276
1277         if (!(vma->vm_flags & VM_PFNMAP))
1278                 return PAGE_SHIFT;
1279
1280         VM_BUG_ON(is_vm_hugetlb_page(vma));
1281
1282         pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
1283
1284 #ifndef __PAGETABLE_PMD_FOLDED
1285         if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
1286             ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
1287             ALIGN(hva, PUD_SIZE) <= vma->vm_end)
1288                 return PUD_SHIFT;
1289 #endif
1290
1291         if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
1292             ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
1293             ALIGN(hva, PMD_SIZE) <= vma->vm_end)
1294                 return PMD_SHIFT;
1295
1296         return PAGE_SHIFT;
1297 }
1298
1299 /*
1300  * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
1301  * able to see the page's tags and therefore they must be initialised first. If
1302  * PG_mte_tagged is set, tags have already been initialised.
1303  *
1304  * The race in the test/set of the PG_mte_tagged flag is handled by:
1305  * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
1306  *   racing to santise the same page
1307  * - mmap_lock protects between a VM faulting a page in and the VMM performing
1308  *   an mprotect() to add VM_MTE
1309  */
1310 static void sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
1311                               unsigned long size)
1312 {
1313         unsigned long i, nr_pages = size >> PAGE_SHIFT;
1314         struct page *page = pfn_to_page(pfn);
1315
1316         if (!kvm_has_mte(kvm))
1317                 return;
1318
1319         for (i = 0; i < nr_pages; i++, page++) {
1320                 if (try_page_mte_tagging(page)) {
1321                         mte_clear_page_tags(page_address(page));
1322                         set_page_mte_tagged(page);
1323                 }
1324         }
1325 }
1326
1327 static bool kvm_vma_mte_allowed(struct vm_area_struct *vma)
1328 {
1329         return vma->vm_flags & VM_MTE_ALLOWED;
1330 }
1331
1332 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1333                           struct kvm_memory_slot *memslot, unsigned long hva,
1334                           unsigned long fault_status)
1335 {
1336         int ret = 0;
1337         bool write_fault, writable, force_pte = false;
1338         bool exec_fault, mte_allowed;
1339         bool device = false;
1340         unsigned long mmu_seq;
1341         struct kvm *kvm = vcpu->kvm;
1342         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1343         struct vm_area_struct *vma;
1344         short vma_shift;
1345         gfn_t gfn;
1346         kvm_pfn_t pfn;
1347         bool logging_active = memslot_is_logging(memslot);
1348         unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
1349         long vma_pagesize, fault_granule;
1350         enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
1351         struct kvm_pgtable *pgt;
1352
1353         fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
1354         write_fault = kvm_is_write_fault(vcpu);
1355         exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
1356         VM_BUG_ON(write_fault && exec_fault);
1357
1358         if (fault_status == ESR_ELx_FSC_PERM && !write_fault && !exec_fault) {
1359                 kvm_err("Unexpected L2 read permission error\n");
1360                 return -EFAULT;
1361         }
1362
1363         /*
1364          * Permission faults just need to update the existing leaf entry,
1365          * and so normally don't require allocations from the memcache. The
1366          * only exception to this is when dirty logging is enabled at runtime
1367          * and a write fault needs to collapse a block entry into a table.
1368          */
1369         if (fault_status != ESR_ELx_FSC_PERM ||
1370             (logging_active && write_fault)) {
1371                 ret = kvm_mmu_topup_memory_cache(memcache,
1372                                                  kvm_mmu_cache_min_pages(kvm));
1373                 if (ret)
1374                         return ret;
1375         }
1376
1377         /*
1378          * Let's check if we will get back a huge page backed by hugetlbfs, or
1379          * get block mapping for device MMIO region.
1380          */
1381         mmap_read_lock(current->mm);
1382         vma = vma_lookup(current->mm, hva);
1383         if (unlikely(!vma)) {
1384                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1385                 mmap_read_unlock(current->mm);
1386                 return -EFAULT;
1387         }
1388
1389         /*
1390          * logging_active is guaranteed to never be true for VM_PFNMAP
1391          * memslots.
1392          */
1393         if (logging_active) {
1394                 force_pte = true;
1395                 vma_shift = PAGE_SHIFT;
1396         } else {
1397                 vma_shift = get_vma_page_shift(vma, hva);
1398         }
1399
1400         switch (vma_shift) {
1401 #ifndef __PAGETABLE_PMD_FOLDED
1402         case PUD_SHIFT:
1403                 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1404                         break;
1405                 fallthrough;
1406 #endif
1407         case CONT_PMD_SHIFT:
1408                 vma_shift = PMD_SHIFT;
1409                 fallthrough;
1410         case PMD_SHIFT:
1411                 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1412                         break;
1413                 fallthrough;
1414         case CONT_PTE_SHIFT:
1415                 vma_shift = PAGE_SHIFT;
1416                 force_pte = true;
1417                 fallthrough;
1418         case PAGE_SHIFT:
1419                 break;
1420         default:
1421                 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1422         }
1423
1424         vma_pagesize = 1UL << vma_shift;
1425         if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1426                 fault_ipa &= ~(vma_pagesize - 1);
1427
1428         gfn = fault_ipa >> PAGE_SHIFT;
1429         mte_allowed = kvm_vma_mte_allowed(vma);
1430
1431         /* Don't use the VMA after the unlock -- it may have vanished */
1432         vma = NULL;
1433
1434         /*
1435          * Read mmu_invalidate_seq so that KVM can detect if the results of
1436          * vma_lookup() or __gfn_to_pfn_memslot() become stale prior to
1437          * acquiring kvm->mmu_lock.
1438          *
1439          * Rely on mmap_read_unlock() for an implicit smp_rmb(), which pairs
1440          * with the smp_wmb() in kvm_mmu_invalidate_end().
1441          */
1442         mmu_seq = vcpu->kvm->mmu_invalidate_seq;
1443         mmap_read_unlock(current->mm);
1444
1445         pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
1446                                    write_fault, &writable, NULL);
1447         if (pfn == KVM_PFN_ERR_HWPOISON) {
1448                 kvm_send_hwpoison_signal(hva, vma_shift);
1449                 return 0;
1450         }
1451         if (is_error_noslot_pfn(pfn))
1452                 return -EFAULT;
1453
1454         if (kvm_is_device_pfn(pfn)) {
1455                 /*
1456                  * If the page was identified as device early by looking at
1457                  * the VMA flags, vma_pagesize is already representing the
1458                  * largest quantity we can map.  If instead it was mapped
1459                  * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1460                  * and must not be upgraded.
1461                  *
1462                  * In both cases, we don't let transparent_hugepage_adjust()
1463                  * change things at the last minute.
1464                  */
1465                 device = true;
1466         } else if (logging_active && !write_fault) {
1467                 /*
1468                  * Only actually map the page as writable if this was a write
1469                  * fault.
1470                  */
1471                 writable = false;
1472         }
1473
1474         if (exec_fault && device)
1475                 return -ENOEXEC;
1476
1477         read_lock(&kvm->mmu_lock);
1478         pgt = vcpu->arch.hw_mmu->pgt;
1479         if (mmu_invalidate_retry(kvm, mmu_seq))
1480                 goto out_unlock;
1481
1482         /*
1483          * If we are not forced to use page mapping, check if we are
1484          * backed by a THP and thus use block mapping if possible.
1485          */
1486         if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1487                 if (fault_status ==  ESR_ELx_FSC_PERM &&
1488                     fault_granule > PAGE_SIZE)
1489                         vma_pagesize = fault_granule;
1490                 else
1491                         vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1492                                                                    hva, &pfn,
1493                                                                    &fault_ipa);
1494
1495                 if (vma_pagesize < 0) {
1496                         ret = vma_pagesize;
1497                         goto out_unlock;
1498                 }
1499         }
1500
1501         if (fault_status != ESR_ELx_FSC_PERM && !device && kvm_has_mte(kvm)) {
1502                 /* Check the VMM hasn't introduced a new disallowed VMA */
1503                 if (mte_allowed) {
1504                         sanitise_mte_tags(kvm, pfn, vma_pagesize);
1505                 } else {
1506                         ret = -EFAULT;
1507                         goto out_unlock;
1508                 }
1509         }
1510
1511         if (writable)
1512                 prot |= KVM_PGTABLE_PROT_W;
1513
1514         if (exec_fault)
1515                 prot |= KVM_PGTABLE_PROT_X;
1516
1517         if (device)
1518                 prot |= KVM_PGTABLE_PROT_DEVICE;
1519         else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1520                 prot |= KVM_PGTABLE_PROT_X;
1521
1522         /*
1523          * Under the premise of getting a FSC_PERM fault, we just need to relax
1524          * permissions only if vma_pagesize equals fault_granule. Otherwise,
1525          * kvm_pgtable_stage2_map() should be called to change block size.
1526          */
1527         if (fault_status == ESR_ELx_FSC_PERM && vma_pagesize == fault_granule)
1528                 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1529         else
1530                 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1531                                              __pfn_to_phys(pfn), prot,
1532                                              memcache,
1533                                              KVM_PGTABLE_WALK_HANDLE_FAULT |
1534                                              KVM_PGTABLE_WALK_SHARED);
1535
1536         /* Mark the page dirty only if the fault is handled successfully */
1537         if (writable && !ret) {
1538                 kvm_set_pfn_dirty(pfn);
1539                 mark_page_dirty_in_slot(kvm, memslot, gfn);
1540         }
1541
1542 out_unlock:
1543         read_unlock(&kvm->mmu_lock);
1544         kvm_set_pfn_accessed(pfn);
1545         kvm_release_pfn_clean(pfn);
1546         return ret != -EAGAIN ? ret : 0;
1547 }
1548
1549 /* Resolve the access fault by making the page young again. */
1550 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1551 {
1552         kvm_pte_t pte;
1553         struct kvm_s2_mmu *mmu;
1554
1555         trace_kvm_access_fault(fault_ipa);
1556
1557         read_lock(&vcpu->kvm->mmu_lock);
1558         mmu = vcpu->arch.hw_mmu;
1559         pte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1560         read_unlock(&vcpu->kvm->mmu_lock);
1561
1562         if (kvm_pte_valid(pte))
1563                 kvm_set_pfn_accessed(kvm_pte_to_pfn(pte));
1564 }
1565
1566 /**
1567  * kvm_handle_guest_abort - handles all 2nd stage aborts
1568  * @vcpu:       the VCPU pointer
1569  *
1570  * Any abort that gets to the host is almost guaranteed to be caused by a
1571  * missing second stage translation table entry, which can mean that either the
1572  * guest simply needs more memory and we must allocate an appropriate page or it
1573  * can mean that the guest tried to access I/O memory, which is emulated by user
1574  * space. The distinction is based on the IPA causing the fault and whether this
1575  * memory region has been registered as standard RAM by user space.
1576  */
1577 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1578 {
1579         unsigned long fault_status;
1580         phys_addr_t fault_ipa;
1581         struct kvm_memory_slot *memslot;
1582         unsigned long hva;
1583         bool is_iabt, write_fault, writable;
1584         gfn_t gfn;
1585         int ret, idx;
1586
1587         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1588
1589         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1590         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1591
1592         if (fault_status == ESR_ELx_FSC_FAULT) {
1593                 /* Beyond sanitised PARange (which is the IPA limit) */
1594                 if (fault_ipa >= BIT_ULL(get_kvm_ipa_limit())) {
1595                         kvm_inject_size_fault(vcpu);
1596                         return 1;
1597                 }
1598
1599                 /* Falls between the IPA range and the PARange? */
1600                 if (fault_ipa >= BIT_ULL(vcpu->arch.hw_mmu->pgt->ia_bits)) {
1601                         fault_ipa |= kvm_vcpu_get_hfar(vcpu) & GENMASK(11, 0);
1602
1603                         if (is_iabt)
1604                                 kvm_inject_pabt(vcpu, fault_ipa);
1605                         else
1606                                 kvm_inject_dabt(vcpu, fault_ipa);
1607                         return 1;
1608                 }
1609         }
1610
1611         /* Synchronous External Abort? */
1612         if (kvm_vcpu_abt_issea(vcpu)) {
1613                 /*
1614                  * For RAS the host kernel may handle this abort.
1615                  * There is no need to pass the error into the guest.
1616                  */
1617                 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1618                         kvm_inject_vabt(vcpu);
1619
1620                 return 1;
1621         }
1622
1623         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1624                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1625
1626         /* Check the stage-2 fault is trans. fault or write fault */
1627         if (fault_status != ESR_ELx_FSC_FAULT &&
1628             fault_status != ESR_ELx_FSC_PERM &&
1629             fault_status != ESR_ELx_FSC_ACCESS) {
1630                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1631                         kvm_vcpu_trap_get_class(vcpu),
1632                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1633                         (unsigned long)kvm_vcpu_get_esr(vcpu));
1634                 return -EFAULT;
1635         }
1636
1637         idx = srcu_read_lock(&vcpu->kvm->srcu);
1638
1639         gfn = fault_ipa >> PAGE_SHIFT;
1640         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1641         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1642         write_fault = kvm_is_write_fault(vcpu);
1643         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1644                 /*
1645                  * The guest has put either its instructions or its page-tables
1646                  * somewhere it shouldn't have. Userspace won't be able to do
1647                  * anything about this (there's no syndrome for a start), so
1648                  * re-inject the abort back into the guest.
1649                  */
1650                 if (is_iabt) {
1651                         ret = -ENOEXEC;
1652                         goto out;
1653                 }
1654
1655                 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1656                         kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1657                         ret = 1;
1658                         goto out_unlock;
1659                 }
1660
1661                 /*
1662                  * Check for a cache maintenance operation. Since we
1663                  * ended-up here, we know it is outside of any memory
1664                  * slot. But we can't find out if that is for a device,
1665                  * or if the guest is just being stupid. The only thing
1666                  * we know for sure is that this range cannot be cached.
1667                  *
1668                  * So let's assume that the guest is just being
1669                  * cautious, and skip the instruction.
1670                  */
1671                 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1672                         kvm_incr_pc(vcpu);
1673                         ret = 1;
1674                         goto out_unlock;
1675                 }
1676
1677                 /*
1678                  * The IPA is reported as [MAX:12], so we need to
1679                  * complement it with the bottom 12 bits from the
1680                  * faulting VA. This is always 12 bits, irrespective
1681                  * of the page size.
1682                  */
1683                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1684                 ret = io_mem_abort(vcpu, fault_ipa);
1685                 goto out_unlock;
1686         }
1687
1688         /* Userspace should not be able to register out-of-bounds IPAs */
1689         VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1690
1691         if (fault_status == ESR_ELx_FSC_ACCESS) {
1692                 handle_access_fault(vcpu, fault_ipa);
1693                 ret = 1;
1694                 goto out_unlock;
1695         }
1696
1697         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1698         if (ret == 0)
1699                 ret = 1;
1700 out:
1701         if (ret == -ENOEXEC) {
1702                 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1703                 ret = 1;
1704         }
1705 out_unlock:
1706         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1707         return ret;
1708 }
1709
1710 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1711 {
1712         if (!kvm->arch.mmu.pgt)
1713                 return false;
1714
1715         __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1716                              (range->end - range->start) << PAGE_SHIFT,
1717                              range->may_block);
1718
1719         return false;
1720 }
1721
1722 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1723 {
1724         kvm_pfn_t pfn = pte_pfn(range->pte);
1725
1726         if (!kvm->arch.mmu.pgt)
1727                 return false;
1728
1729         WARN_ON(range->end - range->start != 1);
1730
1731         /*
1732          * If the page isn't tagged, defer to user_mem_abort() for sanitising
1733          * the MTE tags. The S2 pte should have been unmapped by
1734          * mmu_notifier_invalidate_range_end().
1735          */
1736         if (kvm_has_mte(kvm) && !page_mte_tagged(pfn_to_page(pfn)))
1737                 return false;
1738
1739         /*
1740          * We've moved a page around, probably through CoW, so let's treat
1741          * it just like a translation fault and the map handler will clean
1742          * the cache to the PoC.
1743          *
1744          * The MMU notifiers will have unmapped a huge PMD before calling
1745          * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1746          * therefore we never need to clear out a huge PMD through this
1747          * calling path and a memcache is not required.
1748          */
1749         kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1750                                PAGE_SIZE, __pfn_to_phys(pfn),
1751                                KVM_PGTABLE_PROT_R, NULL, 0);
1752
1753         return false;
1754 }
1755
1756 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1757 {
1758         u64 size = (range->end - range->start) << PAGE_SHIFT;
1759         kvm_pte_t kpte;
1760         pte_t pte;
1761
1762         if (!kvm->arch.mmu.pgt)
1763                 return false;
1764
1765         WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1766
1767         kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1768                                         range->start << PAGE_SHIFT);
1769         pte = __pte(kpte);
1770         return pte_valid(pte) && pte_young(pte);
1771 }
1772
1773 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1774 {
1775         if (!kvm->arch.mmu.pgt)
1776                 return false;
1777
1778         return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1779                                            range->start << PAGE_SHIFT);
1780 }
1781
1782 phys_addr_t kvm_mmu_get_httbr(void)
1783 {
1784         return __pa(hyp_pgtable->pgd);
1785 }
1786
1787 phys_addr_t kvm_get_idmap_vector(void)
1788 {
1789         return hyp_idmap_vector;
1790 }
1791
1792 static int kvm_map_idmap_text(void)
1793 {
1794         unsigned long size = hyp_idmap_end - hyp_idmap_start;
1795         int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1796                                         PAGE_HYP_EXEC);
1797         if (err)
1798                 kvm_err("Failed to idmap %lx-%lx\n",
1799                         hyp_idmap_start, hyp_idmap_end);
1800
1801         return err;
1802 }
1803
1804 static void *kvm_hyp_zalloc_page(void *arg)
1805 {
1806         return (void *)get_zeroed_page(GFP_KERNEL);
1807 }
1808
1809 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1810         .zalloc_page            = kvm_hyp_zalloc_page,
1811         .get_page               = kvm_host_get_page,
1812         .put_page               = kvm_host_put_page,
1813         .phys_to_virt           = kvm_host_va,
1814         .virt_to_phys           = kvm_host_pa,
1815 };
1816
1817 int __init kvm_mmu_init(u32 *hyp_va_bits)
1818 {
1819         int err;
1820         u32 idmap_bits;
1821         u32 kernel_bits;
1822
1823         hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1824         hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1825         hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1826         hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1827         hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1828
1829         /*
1830          * We rely on the linker script to ensure at build time that the HYP
1831          * init code does not cross a page boundary.
1832          */
1833         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1834
1835         /*
1836          * The ID map may be configured to use an extended virtual address
1837          * range. This is only the case if system RAM is out of range for the
1838          * currently configured page size and VA_BITS_MIN, in which case we will
1839          * also need the extended virtual range for the HYP ID map, or we won't
1840          * be able to enable the EL2 MMU.
1841          *
1842          * However, in some cases the ID map may be configured for fewer than
1843          * the number of VA bits used by the regular kernel stage 1. This
1844          * happens when VA_BITS=52 and the kernel image is placed in PA space
1845          * below 48 bits.
1846          *
1847          * At EL2, there is only one TTBR register, and we can't switch between
1848          * translation tables *and* update TCR_EL2.T0SZ at the same time. Bottom
1849          * line: we need to use the extended range with *both* our translation
1850          * tables.
1851          *
1852          * So use the maximum of the idmap VA bits and the regular kernel stage
1853          * 1 VA bits to assure that the hypervisor can both ID map its code page
1854          * and map any kernel memory.
1855          */
1856         idmap_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1857         kernel_bits = vabits_actual;
1858         *hyp_va_bits = max(idmap_bits, kernel_bits);
1859
1860         kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1861         kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1862         kvm_debug("HYP VA range: %lx:%lx\n",
1863                   kern_hyp_va(PAGE_OFFSET),
1864                   kern_hyp_va((unsigned long)high_memory - 1));
1865
1866         if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1867             hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1868             hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1869                 /*
1870                  * The idmap page is intersecting with the VA space,
1871                  * it is not safe to continue further.
1872                  */
1873                 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1874                 err = -EINVAL;
1875                 goto out;
1876         }
1877
1878         hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1879         if (!hyp_pgtable) {
1880                 kvm_err("Hyp mode page-table not allocated\n");
1881                 err = -ENOMEM;
1882                 goto out;
1883         }
1884
1885         err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1886         if (err)
1887                 goto out_free_pgtable;
1888
1889         err = kvm_map_idmap_text();
1890         if (err)
1891                 goto out_destroy_pgtable;
1892
1893         io_map_base = hyp_idmap_start;
1894         return 0;
1895
1896 out_destroy_pgtable:
1897         kvm_pgtable_hyp_destroy(hyp_pgtable);
1898 out_free_pgtable:
1899         kfree(hyp_pgtable);
1900         hyp_pgtable = NULL;
1901 out:
1902         return err;
1903 }
1904
1905 void kvm_arch_commit_memory_region(struct kvm *kvm,
1906                                    struct kvm_memory_slot *old,
1907                                    const struct kvm_memory_slot *new,
1908                                    enum kvm_mr_change change)
1909 {
1910         bool log_dirty_pages = new && new->flags & KVM_MEM_LOG_DIRTY_PAGES;
1911
1912         /*
1913          * At this point memslot has been committed and there is an
1914          * allocated dirty_bitmap[], dirty pages will be tracked while the
1915          * memory slot is write protected.
1916          */
1917         if (log_dirty_pages) {
1918
1919                 if (change == KVM_MR_DELETE)
1920                         return;
1921
1922                 /*
1923                  * Huge and normal pages are write-protected and split
1924                  * on either of these two cases:
1925                  *
1926                  * 1. with initial-all-set: gradually with CLEAR ioctls,
1927                  */
1928                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1929                         return;
1930                 /*
1931                  * or
1932                  * 2. without initial-all-set: all in one shot when
1933                  *    enabling dirty logging.
1934                  */
1935                 kvm_mmu_wp_memory_region(kvm, new->id);
1936                 kvm_mmu_split_memory_region(kvm, new->id);
1937         } else {
1938                 /*
1939                  * Free any leftovers from the eager page splitting cache. Do
1940                  * this when deleting, moving, disabling dirty logging, or
1941                  * creating the memslot (a nop). Doing it for deletes makes
1942                  * sure we don't leak memory, and there's no need to keep the
1943                  * cache around for any of the other cases.
1944                  */
1945                 kvm_mmu_free_memory_cache(&kvm->arch.mmu.split_page_cache);
1946         }
1947 }
1948
1949 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1950                                    const struct kvm_memory_slot *old,
1951                                    struct kvm_memory_slot *new,
1952                                    enum kvm_mr_change change)
1953 {
1954         hva_t hva, reg_end;
1955         int ret = 0;
1956
1957         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1958                         change != KVM_MR_FLAGS_ONLY)
1959                 return 0;
1960
1961         /*
1962          * Prevent userspace from creating a memory region outside of the IPA
1963          * space addressable by the KVM guest IPA space.
1964          */
1965         if ((new->base_gfn + new->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1966                 return -EFAULT;
1967
1968         hva = new->userspace_addr;
1969         reg_end = hva + (new->npages << PAGE_SHIFT);
1970
1971         mmap_read_lock(current->mm);
1972         /*
1973          * A memory region could potentially cover multiple VMAs, and any holes
1974          * between them, so iterate over all of them.
1975          *
1976          *     +--------------------------------------------+
1977          * +---------------+----------------+   +----------------+
1978          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1979          * +---------------+----------------+   +----------------+
1980          *     |               memory region                |
1981          *     +--------------------------------------------+
1982          */
1983         do {
1984                 struct vm_area_struct *vma;
1985
1986                 vma = find_vma_intersection(current->mm, hva, reg_end);
1987                 if (!vma)
1988                         break;
1989
1990                 if (kvm_has_mte(kvm) && !kvm_vma_mte_allowed(vma)) {
1991                         ret = -EINVAL;
1992                         break;
1993                 }
1994
1995                 if (vma->vm_flags & VM_PFNMAP) {
1996                         /* IO region dirty page logging not allowed */
1997                         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1998                                 ret = -EINVAL;
1999                                 break;
2000                         }
2001                 }
2002                 hva = min(reg_end, vma->vm_end);
2003         } while (hva < reg_end);
2004
2005         mmap_read_unlock(current->mm);
2006         return ret;
2007 }
2008
2009 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
2010 {
2011 }
2012
2013 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2014 {
2015 }
2016
2017 void kvm_arch_flush_shadow_all(struct kvm *kvm)
2018 {
2019         kvm_uninit_stage2_mmu(kvm);
2020 }
2021
2022 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
2023                                    struct kvm_memory_slot *slot)
2024 {
2025         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
2026         phys_addr_t size = slot->npages << PAGE_SHIFT;
2027
2028         write_lock(&kvm->mmu_lock);
2029         unmap_stage2_range(&kvm->arch.mmu, gpa, size);
2030         write_unlock(&kvm->mmu_lock);
2031 }
2032
2033 /*
2034  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
2035  *
2036  * Main problems:
2037  * - S/W ops are local to a CPU (not broadcast)
2038  * - We have line migration behind our back (speculation)
2039  * - System caches don't support S/W at all (damn!)
2040  *
2041  * In the face of the above, the best we can do is to try and convert
2042  * S/W ops to VA ops. Because the guest is not allowed to infer the
2043  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
2044  * which is a rather good thing for us.
2045  *
2046  * Also, it is only used when turning caches on/off ("The expected
2047  * usage of the cache maintenance instructions that operate by set/way
2048  * is associated with the cache maintenance instructions associated
2049  * with the powerdown and powerup of caches, if this is required by
2050  * the implementation.").
2051  *
2052  * We use the following policy:
2053  *
2054  * - If we trap a S/W operation, we enable VM trapping to detect
2055  *   caches being turned on/off, and do a full clean.
2056  *
2057  * - We flush the caches on both caches being turned on and off.
2058  *
2059  * - Once the caches are enabled, we stop trapping VM ops.
2060  */
2061 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
2062 {
2063         unsigned long hcr = *vcpu_hcr(vcpu);
2064
2065         /*
2066          * If this is the first time we do a S/W operation
2067          * (i.e. HCR_TVM not set) flush the whole memory, and set the
2068          * VM trapping.
2069          *
2070          * Otherwise, rely on the VM trapping to wait for the MMU +
2071          * Caches to be turned off. At that point, we'll be able to
2072          * clean the caches again.
2073          */
2074         if (!(hcr & HCR_TVM)) {
2075                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
2076                                         vcpu_has_cache_enabled(vcpu));
2077                 stage2_flush_vm(vcpu->kvm);
2078                 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
2079         }
2080 }
2081
2082 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
2083 {
2084         bool now_enabled = vcpu_has_cache_enabled(vcpu);
2085
2086         /*
2087          * If switching the MMU+caches on, need to invalidate the caches.
2088          * If switching it off, need to clean the caches.
2089          * Clean + invalidate does the trick always.
2090          */
2091         if (now_enabled != was_enabled)
2092                 stage2_flush_vm(vcpu->kvm);
2093
2094         /* Caches are now on, stop trapping VM ops (until a S/W op) */
2095         if (now_enabled)
2096                 *vcpu_hcr(vcpu) &= ~HCR_TVM;
2097
2098         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
2099 }