6410d21d86957d3b9e057e6412c2b91563e97c31
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / hyp / nvhe / switch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15
16 #include <kvm/arm_psci.h>
17
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36
37 static void __activate_traps(struct kvm_vcpu *vcpu)
38 {
39         u64 val;
40
41         ___activate_traps(vcpu);
42         __activate_traps_common(vcpu);
43
44         val = vcpu->arch.cptr_el2;
45         val |= CPTR_EL2_TTA | CPTR_EL2_TAM;
46         if (!update_fp_enabled(vcpu)) {
47                 val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
48                 __activate_traps_fpsimd32(vcpu);
49         }
50
51         write_sysreg(val, cptr_el2);
52         write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
53
54         if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
55                 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
56
57                 isb();
58                 /*
59                  * At this stage, and thanks to the above isb(), S2 is
60                  * configured and enabled. We can now restore the guest's S1
61                  * configuration: SCTLR, and only then TCR.
62                  */
63                 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
64                 isb();
65                 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),   SYS_TCR);
66         }
67 }
68
69 static void __deactivate_traps(struct kvm_vcpu *vcpu)
70 {
71         extern char __kvm_hyp_host_vector[];
72         u64 cptr;
73
74         ___deactivate_traps(vcpu);
75
76         if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
77                 u64 val;
78
79                 /*
80                  * Set the TCR and SCTLR registers in the exact opposite
81                  * sequence as __activate_traps (first prevent walks,
82                  * then force the MMU on). A generous sprinkling of isb()
83                  * ensure that things happen in this exact order.
84                  */
85                 val = read_sysreg_el1(SYS_TCR);
86                 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
87                 isb();
88                 val = read_sysreg_el1(SYS_SCTLR);
89                 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
90                 isb();
91         }
92
93         __deactivate_traps_common(vcpu);
94
95         write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
96
97         cptr = CPTR_EL2_DEFAULT;
98         if (vcpu_has_sve(vcpu) && (vcpu->arch.flags & KVM_ARM64_FP_ENABLED))
99                 cptr |= CPTR_EL2_TZ;
100
101         write_sysreg(cptr, cptr_el2);
102         write_sysreg(__kvm_hyp_host_vector, vbar_el2);
103 }
104
105 /* Save VGICv3 state on non-VHE systems */
106 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
107 {
108         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
109                 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
110                 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
111         }
112 }
113
114 /* Restore VGICv3 state on non_VEH systems */
115 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
116 {
117         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
118                 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
119                 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
120         }
121 }
122
123 /**
124  * Disable host events, enable guest events
125  */
126 static bool __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
127 {
128         struct kvm_host_data *host;
129         struct kvm_pmu_events *pmu;
130
131         host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
132         pmu = &host->pmu_events;
133
134         if (pmu->events_host)
135                 write_sysreg(pmu->events_host, pmcntenclr_el0);
136
137         if (pmu->events_guest)
138                 write_sysreg(pmu->events_guest, pmcntenset_el0);
139
140         return (pmu->events_host || pmu->events_guest);
141 }
142
143 /**
144  * Disable guest events, enable host events
145  */
146 static void __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
147 {
148         struct kvm_host_data *host;
149         struct kvm_pmu_events *pmu;
150
151         host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
152         pmu = &host->pmu_events;
153
154         if (pmu->events_guest)
155                 write_sysreg(pmu->events_guest, pmcntenclr_el0);
156
157         if (pmu->events_host)
158                 write_sysreg(pmu->events_host, pmcntenset_el0);
159 }
160
161 /**
162  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
163  *
164  * Returns true if the hypervisor has handled the exit, and control should go
165  * back to the guest, or false if it hasn't.
166  */
167 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
168 {
169         /*
170          * Make sure we handle the exit for workarounds and ptrauth
171          * before the pKVM handling, as the latter could decide to
172          * UNDEF.
173          */
174         return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
175                 kvm_handle_pvm_sysreg(vcpu, exit_code));
176 }
177
178 /**
179  * Handler for protected floating-point and Advanced SIMD accesses.
180  *
181  * Returns true if the hypervisor has handled the exit, and control should go
182  * back to the guest, or false if it hasn't.
183  */
184 static bool kvm_handle_pvm_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
185 {
186         /* Linux guests assume support for floating-point and Advanced SIMD. */
187         BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_FP),
188                                 PVM_ID_AA64PFR0_ALLOW));
189         BUILD_BUG_ON(!FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_ASIMD),
190                                 PVM_ID_AA64PFR0_ALLOW));
191
192         return kvm_hyp_handle_fpsimd(vcpu, exit_code);
193 }
194
195 static const exit_handler_fn hyp_exit_handlers[] = {
196         [0 ... ESR_ELx_EC_MAX]          = NULL,
197         [ESR_ELx_EC_CP15_32]            = kvm_hyp_handle_cp15_32,
198         [ESR_ELx_EC_SYS64]              = kvm_hyp_handle_sysreg,
199         [ESR_ELx_EC_SVE]                = kvm_hyp_handle_fpsimd,
200         [ESR_ELx_EC_FP_ASIMD]           = kvm_hyp_handle_fpsimd,
201         [ESR_ELx_EC_IABT_LOW]           = kvm_hyp_handle_iabt_low,
202         [ESR_ELx_EC_DABT_LOW]           = kvm_hyp_handle_dabt_low,
203         [ESR_ELx_EC_PAC]                = kvm_hyp_handle_ptrauth,
204 };
205
206 static const exit_handler_fn pvm_exit_handlers[] = {
207         [0 ... ESR_ELx_EC_MAX]          = NULL,
208         [ESR_ELx_EC_SYS64]              = kvm_handle_pvm_sys64,
209         [ESR_ELx_EC_SVE]                = kvm_handle_pvm_restricted,
210         [ESR_ELx_EC_FP_ASIMD]           = kvm_handle_pvm_fpsimd,
211         [ESR_ELx_EC_IABT_LOW]           = kvm_hyp_handle_iabt_low,
212         [ESR_ELx_EC_DABT_LOW]           = kvm_hyp_handle_dabt_low,
213         [ESR_ELx_EC_PAC]                = kvm_hyp_handle_ptrauth,
214 };
215
216 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
217 {
218         if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
219                 return pvm_exit_handlers;
220
221         return hyp_exit_handlers;
222 }
223
224 /*
225  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
226  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
227  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
228  * hypervisor spots a guest in such a state ensure it is handled, and don't
229  * trust the host to spot or fix it.  The check below is based on the one in
230  * kvm_arch_vcpu_ioctl_run().
231  *
232  * Returns false if the guest ran in AArch32 when it shouldn't have, and
233  * thus should exit to the host, or true if a the guest run loop can continue.
234  */
235 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
236 {
237         struct kvm *kvm = kern_hyp_va(vcpu->kvm);
238
239         if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
240                 /*
241                  * As we have caught the guest red-handed, decide that it isn't
242                  * fit for purpose anymore by making the vcpu invalid. The VMM
243                  * can try and fix it by re-initializing the vcpu with
244                  * KVM_ARM_VCPU_INIT, however, this is likely not possible for
245                  * protected VMs.
246                  */
247                 vcpu->arch.target = -1;
248                 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
249                 *exit_code |= ARM_EXCEPTION_IL;
250         }
251 }
252
253 /* Switch to the guest for legacy non-VHE systems */
254 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
255 {
256         struct kvm_cpu_context *host_ctxt;
257         struct kvm_cpu_context *guest_ctxt;
258         struct kvm_s2_mmu *mmu;
259         bool pmu_switch_needed;
260         u64 exit_code;
261
262         /*
263          * Having IRQs masked via PMR when entering the guest means the GIC
264          * will not signal the CPU of interrupts of lower priority, and the
265          * only way to get out will be via guest exceptions.
266          * Naturally, we want to avoid this.
267          */
268         if (system_uses_irq_prio_masking()) {
269                 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
270                 pmr_sync();
271         }
272
273         host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
274         host_ctxt->__hyp_running_vcpu = vcpu;
275         guest_ctxt = &vcpu->arch.ctxt;
276
277         pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
278
279         __sysreg_save_state_nvhe(host_ctxt);
280         /*
281          * We must flush and disable the SPE buffer for nVHE, as
282          * the translation regime(EL1&0) is going to be loaded with
283          * that of the guest. And we must do this before we change the
284          * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
285          * before we load guest Stage1.
286          */
287         __debug_save_host_buffers_nvhe(vcpu);
288
289         __kvm_adjust_pc(vcpu);
290
291         /*
292          * We must restore the 32-bit state before the sysregs, thanks
293          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
294          *
295          * Also, and in order to be able to deal with erratum #1319537 (A57)
296          * and #1319367 (A72), we must ensure that all VM-related sysreg are
297          * restored before we enable S2 translation.
298          */
299         __sysreg32_restore_state(vcpu);
300         __sysreg_restore_state_nvhe(guest_ctxt);
301
302         mmu = kern_hyp_va(vcpu->arch.hw_mmu);
303         __load_stage2(mmu, kern_hyp_va(mmu->arch));
304         __activate_traps(vcpu);
305
306         __hyp_vgic_restore_state(vcpu);
307         __timer_enable_traps(vcpu);
308
309         __debug_switch_to_guest(vcpu);
310
311         do {
312                 /* Jump in the fire! */
313                 exit_code = __guest_enter(vcpu);
314
315                 /* And we're baaack! */
316         } while (fixup_guest_exit(vcpu, &exit_code));
317
318         __sysreg_save_state_nvhe(guest_ctxt);
319         __sysreg32_save_state(vcpu);
320         __timer_disable_traps(vcpu);
321         __hyp_vgic_save_state(vcpu);
322
323         __deactivate_traps(vcpu);
324         __load_host_stage2();
325
326         __sysreg_restore_state_nvhe(host_ctxt);
327
328         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
329                 __fpsimd_save_fpexc32(vcpu);
330
331         __debug_switch_to_host(vcpu);
332         /*
333          * This must come after restoring the host sysregs, since a non-VHE
334          * system may enable SPE here and make use of the TTBRs.
335          */
336         __debug_restore_host_buffers_nvhe(vcpu);
337
338         if (pmu_switch_needed)
339                 __pmu_switch_to_host(host_ctxt);
340
341         /* Returning to host will clear PSR.I, remask PMR if needed */
342         if (system_uses_irq_prio_masking())
343                 gic_write_pmr(GIC_PRIO_IRQOFF);
344
345         host_ctxt->__hyp_running_vcpu = NULL;
346
347         return exit_code;
348 }
349
350 void __noreturn hyp_panic(void)
351 {
352         u64 spsr = read_sysreg_el2(SYS_SPSR);
353         u64 elr = read_sysreg_el2(SYS_ELR);
354         u64 par = read_sysreg_par();
355         struct kvm_cpu_context *host_ctxt;
356         struct kvm_vcpu *vcpu;
357
358         host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
359         vcpu = host_ctxt->__hyp_running_vcpu;
360
361         if (vcpu) {
362                 __timer_disable_traps(vcpu);
363                 __deactivate_traps(vcpu);
364                 __load_host_stage2();
365                 __sysreg_restore_state_nvhe(host_ctxt);
366         }
367
368         __hyp_do_panic(host_ctxt, spsr, elr, par);
369         unreachable();
370 }
371
372 asmlinkage void kvm_unexpected_el2_exception(void)
373 {
374         return __kvm_unexpected_el2_exception();
375 }