KVM: arm64: Rework CPTR_EL2 programming for HVHE configuration
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / hyp / nvhe / switch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15
16 #include <kvm/arm_psci.h>
17
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38
39 static void __activate_traps(struct kvm_vcpu *vcpu)
40 {
41         u64 val;
42
43         ___activate_traps(vcpu);
44         __activate_traps_common(vcpu);
45
46         val = vcpu->arch.cptr_el2;
47         val |= CPTR_EL2_TAM;    /* Same bit irrespective of E2H */
48         val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA;
49         if (cpus_have_final_cap(ARM64_SME)) {
50                 if (has_hvhe())
51                         val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN);
52                 else
53                         val |= CPTR_EL2_TSM;
54         }
55
56         if (!guest_owns_fp_regs(vcpu)) {
57                 if (has_hvhe())
58                         val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
59                                  CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN);
60                 else
61                         val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
62
63                 __activate_traps_fpsimd32(vcpu);
64         }
65
66         write_sysreg(val, cptr_el2);
67         write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
68
69         if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
70                 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
71
72                 isb();
73                 /*
74                  * At this stage, and thanks to the above isb(), S2 is
75                  * configured and enabled. We can now restore the guest's S1
76                  * configuration: SCTLR, and only then TCR.
77                  */
78                 write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR);
79                 isb();
80                 write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),   SYS_TCR);
81         }
82 }
83
84 static void __deactivate_traps(struct kvm_vcpu *vcpu)
85 {
86         extern char __kvm_hyp_host_vector[];
87
88         ___deactivate_traps(vcpu);
89
90         if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
91                 u64 val;
92
93                 /*
94                  * Set the TCR and SCTLR registers in the exact opposite
95                  * sequence as __activate_traps (first prevent walks,
96                  * then force the MMU on). A generous sprinkling of isb()
97                  * ensure that things happen in this exact order.
98                  */
99                 val = read_sysreg_el1(SYS_TCR);
100                 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
101                 isb();
102                 val = read_sysreg_el1(SYS_SCTLR);
103                 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
104                 isb();
105         }
106
107         __deactivate_traps_common(vcpu);
108
109         write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
110
111         kvm_reset_cptr_el2(vcpu);
112         write_sysreg(__kvm_hyp_host_vector, vbar_el2);
113 }
114
115 /* Save VGICv3 state on non-VHE systems */
116 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
117 {
118         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
119                 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
120                 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
121         }
122 }
123
124 /* Restore VGICv3 state on non-VHE systems */
125 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
126 {
127         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
128                 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
129                 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
130         }
131 }
132
133 /*
134  * Disable host events, enable guest events
135  */
136 #ifdef CONFIG_HW_PERF_EVENTS
137 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
138 {
139         struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
140
141         if (pmu->events_host)
142                 write_sysreg(pmu->events_host, pmcntenclr_el0);
143
144         if (pmu->events_guest)
145                 write_sysreg(pmu->events_guest, pmcntenset_el0);
146
147         return (pmu->events_host || pmu->events_guest);
148 }
149
150 /*
151  * Disable guest events, enable host events
152  */
153 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
154 {
155         struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
156
157         if (pmu->events_guest)
158                 write_sysreg(pmu->events_guest, pmcntenclr_el0);
159
160         if (pmu->events_host)
161                 write_sysreg(pmu->events_host, pmcntenset_el0);
162 }
163 #else
164 #define __pmu_switch_to_guest(v)        ({ false; })
165 #define __pmu_switch_to_host(v)         do {} while (0)
166 #endif
167
168 /*
169  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
170  *
171  * Returns true if the hypervisor has handled the exit, and control should go
172  * back to the guest, or false if it hasn't.
173  */
174 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
175 {
176         /*
177          * Make sure we handle the exit for workarounds and ptrauth
178          * before the pKVM handling, as the latter could decide to
179          * UNDEF.
180          */
181         return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
182                 kvm_handle_pvm_sysreg(vcpu, exit_code));
183 }
184
185 static const exit_handler_fn hyp_exit_handlers[] = {
186         [0 ... ESR_ELx_EC_MAX]          = NULL,
187         [ESR_ELx_EC_CP15_32]            = kvm_hyp_handle_cp15_32,
188         [ESR_ELx_EC_SYS64]              = kvm_hyp_handle_sysreg,
189         [ESR_ELx_EC_SVE]                = kvm_hyp_handle_fpsimd,
190         [ESR_ELx_EC_FP_ASIMD]           = kvm_hyp_handle_fpsimd,
191         [ESR_ELx_EC_IABT_LOW]           = kvm_hyp_handle_iabt_low,
192         [ESR_ELx_EC_DABT_LOW]           = kvm_hyp_handle_dabt_low,
193         [ESR_ELx_EC_PAC]                = kvm_hyp_handle_ptrauth,
194 };
195
196 static const exit_handler_fn pvm_exit_handlers[] = {
197         [0 ... ESR_ELx_EC_MAX]          = NULL,
198         [ESR_ELx_EC_SYS64]              = kvm_handle_pvm_sys64,
199         [ESR_ELx_EC_SVE]                = kvm_handle_pvm_restricted,
200         [ESR_ELx_EC_FP_ASIMD]           = kvm_hyp_handle_fpsimd,
201         [ESR_ELx_EC_IABT_LOW]           = kvm_hyp_handle_iabt_low,
202         [ESR_ELx_EC_DABT_LOW]           = kvm_hyp_handle_dabt_low,
203         [ESR_ELx_EC_PAC]                = kvm_hyp_handle_ptrauth,
204 };
205
206 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
207 {
208         if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
209                 return pvm_exit_handlers;
210
211         return hyp_exit_handlers;
212 }
213
214 /*
215  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
216  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
217  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
218  * hypervisor spots a guest in such a state ensure it is handled, and don't
219  * trust the host to spot or fix it.  The check below is based on the one in
220  * kvm_arch_vcpu_ioctl_run().
221  *
222  * Returns false if the guest ran in AArch32 when it shouldn't have, and
223  * thus should exit to the host, or true if a the guest run loop can continue.
224  */
225 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
226 {
227         struct kvm *kvm = kern_hyp_va(vcpu->kvm);
228
229         if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
230                 /*
231                  * As we have caught the guest red-handed, decide that it isn't
232                  * fit for purpose anymore by making the vcpu invalid. The VMM
233                  * can try and fix it by re-initializing the vcpu with
234                  * KVM_ARM_VCPU_INIT, however, this is likely not possible for
235                  * protected VMs.
236                  */
237                 vcpu->arch.target = -1;
238                 *exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
239                 *exit_code |= ARM_EXCEPTION_IL;
240         }
241 }
242
243 /* Switch to the guest for legacy non-VHE systems */
244 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
245 {
246         struct kvm_cpu_context *host_ctxt;
247         struct kvm_cpu_context *guest_ctxt;
248         struct kvm_s2_mmu *mmu;
249         bool pmu_switch_needed;
250         u64 exit_code;
251
252         /*
253          * Having IRQs masked via PMR when entering the guest means the GIC
254          * will not signal the CPU of interrupts of lower priority, and the
255          * only way to get out will be via guest exceptions.
256          * Naturally, we want to avoid this.
257          */
258         if (system_uses_irq_prio_masking()) {
259                 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
260                 pmr_sync();
261         }
262
263         host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
264         host_ctxt->__hyp_running_vcpu = vcpu;
265         guest_ctxt = &vcpu->arch.ctxt;
266
267         pmu_switch_needed = __pmu_switch_to_guest(vcpu);
268
269         __sysreg_save_state_nvhe(host_ctxt);
270         /*
271          * We must flush and disable the SPE buffer for nVHE, as
272          * the translation regime(EL1&0) is going to be loaded with
273          * that of the guest. And we must do this before we change the
274          * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
275          * before we load guest Stage1.
276          */
277         __debug_save_host_buffers_nvhe(vcpu);
278
279         /*
280          * We're about to restore some new MMU state. Make sure
281          * ongoing page-table walks that have started before we
282          * trapped to EL2 have completed. This also synchronises the
283          * above disabling of SPE and TRBE.
284          *
285          * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
286          * rule R_LFHQG and subsequent information statements.
287          */
288         dsb(nsh);
289
290         __kvm_adjust_pc(vcpu);
291
292         /*
293          * We must restore the 32-bit state before the sysregs, thanks
294          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
295          *
296          * Also, and in order to be able to deal with erratum #1319537 (A57)
297          * and #1319367 (A72), we must ensure that all VM-related sysreg are
298          * restored before we enable S2 translation.
299          */
300         __sysreg32_restore_state(vcpu);
301         __sysreg_restore_state_nvhe(guest_ctxt);
302
303         mmu = kern_hyp_va(vcpu->arch.hw_mmu);
304         __load_stage2(mmu, kern_hyp_va(mmu->arch));
305         __activate_traps(vcpu);
306
307         __hyp_vgic_restore_state(vcpu);
308         __timer_enable_traps(vcpu);
309
310         __debug_switch_to_guest(vcpu);
311
312         do {
313                 /* Jump in the fire! */
314                 exit_code = __guest_enter(vcpu);
315
316                 /* And we're baaack! */
317         } while (fixup_guest_exit(vcpu, &exit_code));
318
319         __sysreg_save_state_nvhe(guest_ctxt);
320         __sysreg32_save_state(vcpu);
321         __timer_disable_traps(vcpu);
322         __hyp_vgic_save_state(vcpu);
323
324         /*
325          * Same thing as before the guest run: we're about to switch
326          * the MMU context, so let's make sure we don't have any
327          * ongoing EL1&0 translations.
328          */
329         dsb(nsh);
330
331         __deactivate_traps(vcpu);
332         __load_host_stage2();
333
334         __sysreg_restore_state_nvhe(host_ctxt);
335
336         if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
337                 __fpsimd_save_fpexc32(vcpu);
338
339         __debug_switch_to_host(vcpu);
340         /*
341          * This must come after restoring the host sysregs, since a non-VHE
342          * system may enable SPE here and make use of the TTBRs.
343          */
344         __debug_restore_host_buffers_nvhe(vcpu);
345
346         if (pmu_switch_needed)
347                 __pmu_switch_to_host(vcpu);
348
349         /* Returning to host will clear PSR.I, remask PMR if needed */
350         if (system_uses_irq_prio_masking())
351                 gic_write_pmr(GIC_PRIO_IRQOFF);
352
353         host_ctxt->__hyp_running_vcpu = NULL;
354
355         return exit_code;
356 }
357
358 asmlinkage void __noreturn hyp_panic(void)
359 {
360         u64 spsr = read_sysreg_el2(SYS_SPSR);
361         u64 elr = read_sysreg_el2(SYS_ELR);
362         u64 par = read_sysreg_par();
363         struct kvm_cpu_context *host_ctxt;
364         struct kvm_vcpu *vcpu;
365
366         host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
367         vcpu = host_ctxt->__hyp_running_vcpu;
368
369         if (vcpu) {
370                 __timer_disable_traps(vcpu);
371                 __deactivate_traps(vcpu);
372                 __load_host_stage2();
373                 __sysreg_restore_state_nvhe(host_ctxt);
374         }
375
376         /* Prepare to dump kvm nvhe hyp stacktrace */
377         kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
378                                    _THIS_IP_);
379
380         __hyp_do_panic(host_ctxt, spsr, elr, par);
381         unreachable();
382 }
383
384 asmlinkage void __noreturn hyp_panic_bad_stack(void)
385 {
386         hyp_panic();
387 }
388
389 asmlinkage void kvm_unexpected_el2_exception(void)
390 {
391         __kvm_unexpected_el2_exception();
392 }