xfs: preserve DIFLAG2_NREXT64 when setting other inode attributes
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / hyp / nvhe / mem_protect.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14
15 #include <hyp/fault.h>
16
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23
24 extern unsigned long hyp_nr_cpus;
25 struct host_kvm host_kvm;
26
27 static struct hyp_pool host_s2_pool;
28
29 const u8 pkvm_hyp_id = 1;
30
31 static void host_lock_component(void)
32 {
33         hyp_spin_lock(&host_kvm.lock);
34 }
35
36 static void host_unlock_component(void)
37 {
38         hyp_spin_unlock(&host_kvm.lock);
39 }
40
41 static void hyp_lock_component(void)
42 {
43         hyp_spin_lock(&pkvm_pgd_lock);
44 }
45
46 static void hyp_unlock_component(void)
47 {
48         hyp_spin_unlock(&pkvm_pgd_lock);
49 }
50
51 static void *host_s2_zalloc_pages_exact(size_t size)
52 {
53         void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
54
55         hyp_split_page(hyp_virt_to_page(addr));
56
57         /*
58          * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
59          * so there should be no need to free any of the tail pages to make the
60          * allocation exact.
61          */
62         WARN_ON(size != (PAGE_SIZE << get_order(size)));
63
64         return addr;
65 }
66
67 static void *host_s2_zalloc_page(void *pool)
68 {
69         return hyp_alloc_pages(pool, 0);
70 }
71
72 static void host_s2_get_page(void *addr)
73 {
74         hyp_get_page(&host_s2_pool, addr);
75 }
76
77 static void host_s2_put_page(void *addr)
78 {
79         hyp_put_page(&host_s2_pool, addr);
80 }
81
82 static int prepare_s2_pool(void *pgt_pool_base)
83 {
84         unsigned long nr_pages, pfn;
85         int ret;
86
87         pfn = hyp_virt_to_pfn(pgt_pool_base);
88         nr_pages = host_s2_pgtable_pages();
89         ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
90         if (ret)
91                 return ret;
92
93         host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
94                 .zalloc_pages_exact = host_s2_zalloc_pages_exact,
95                 .zalloc_page = host_s2_zalloc_page,
96                 .phys_to_virt = hyp_phys_to_virt,
97                 .virt_to_phys = hyp_virt_to_phys,
98                 .page_count = hyp_page_count,
99                 .get_page = host_s2_get_page,
100                 .put_page = host_s2_put_page,
101         };
102
103         return 0;
104 }
105
106 static void prepare_host_vtcr(void)
107 {
108         u32 parange, phys_shift;
109
110         /* The host stage 2 is id-mapped, so use parange for T0SZ */
111         parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
112         phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
113
114         host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
115                                           id_aa64mmfr1_el1_sys_val, phys_shift);
116 }
117
118 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
119
120 int kvm_host_prepare_stage2(void *pgt_pool_base)
121 {
122         struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
123         int ret;
124
125         prepare_host_vtcr();
126         hyp_spin_lock_init(&host_kvm.lock);
127         mmu->arch = &host_kvm.arch;
128
129         ret = prepare_s2_pool(pgt_pool_base);
130         if (ret)
131                 return ret;
132
133         ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, mmu,
134                                         &host_kvm.mm_ops, KVM_HOST_S2_FLAGS,
135                                         host_stage2_force_pte_cb);
136         if (ret)
137                 return ret;
138
139         mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
140         mmu->pgt = &host_kvm.pgt;
141         atomic64_set(&mmu->vmid.id, 0);
142
143         return 0;
144 }
145
146 int __pkvm_prot_finalize(void)
147 {
148         struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
149         struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
150
151         if (params->hcr_el2 & HCR_VM)
152                 return -EPERM;
153
154         params->vttbr = kvm_get_vttbr(mmu);
155         params->vtcr = host_kvm.arch.vtcr;
156         params->hcr_el2 |= HCR_VM;
157         kvm_flush_dcache_to_poc(params, sizeof(*params));
158
159         write_sysreg(params->hcr_el2, hcr_el2);
160         __load_stage2(&host_kvm.arch.mmu, &host_kvm.arch);
161
162         /*
163          * Make sure to have an ISB before the TLB maintenance below but only
164          * when __load_stage2() doesn't include one already.
165          */
166         asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
167
168         /* Invalidate stale HCR bits that may be cached in TLBs */
169         __tlbi(vmalls12e1);
170         dsb(nsh);
171         isb();
172
173         return 0;
174 }
175
176 static int host_stage2_unmap_dev_all(void)
177 {
178         struct kvm_pgtable *pgt = &host_kvm.pgt;
179         struct memblock_region *reg;
180         u64 addr = 0;
181         int i, ret;
182
183         /* Unmap all non-memory regions to recycle the pages */
184         for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
185                 reg = &hyp_memory[i];
186                 ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
187                 if (ret)
188                         return ret;
189         }
190         return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
191 }
192
193 struct kvm_mem_range {
194         u64 start;
195         u64 end;
196 };
197
198 static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
199 {
200         int cur, left = 0, right = hyp_memblock_nr;
201         struct memblock_region *reg;
202         phys_addr_t end;
203
204         range->start = 0;
205         range->end = ULONG_MAX;
206
207         /* The list of memblock regions is sorted, binary search it */
208         while (left < right) {
209                 cur = (left + right) >> 1;
210                 reg = &hyp_memory[cur];
211                 end = reg->base + reg->size;
212                 if (addr < reg->base) {
213                         right = cur;
214                         range->end = reg->base;
215                 } else if (addr >= end) {
216                         left = cur + 1;
217                         range->start = end;
218                 } else {
219                         range->start = reg->base;
220                         range->end = end;
221                         return true;
222                 }
223         }
224
225         return false;
226 }
227
228 bool addr_is_memory(phys_addr_t phys)
229 {
230         struct kvm_mem_range range;
231
232         return find_mem_range(phys, &range);
233 }
234
235 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
236 {
237         return range->start <= addr && addr < range->end;
238 }
239
240 static bool range_is_memory(u64 start, u64 end)
241 {
242         struct kvm_mem_range r;
243
244         if (!find_mem_range(start, &r))
245                 return false;
246
247         return is_in_mem_range(end - 1, &r);
248 }
249
250 static inline int __host_stage2_idmap(u64 start, u64 end,
251                                       enum kvm_pgtable_prot prot)
252 {
253         return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
254                                       prot, &host_s2_pool);
255 }
256
257 /*
258  * The pool has been provided with enough pages to cover all of memory with
259  * page granularity, but it is difficult to know how much of the MMIO range
260  * we will need to cover upfront, so we may need to 'recycle' the pages if we
261  * run out.
262  */
263 #define host_stage2_try(fn, ...)                                        \
264         ({                                                              \
265                 int __ret;                                              \
266                 hyp_assert_lock_held(&host_kvm.lock);                   \
267                 __ret = fn(__VA_ARGS__);                                \
268                 if (__ret == -ENOMEM) {                                 \
269                         __ret = host_stage2_unmap_dev_all();            \
270                         if (!__ret)                                     \
271                                 __ret = fn(__VA_ARGS__);                \
272                 }                                                       \
273                 __ret;                                                  \
274          })
275
276 static inline bool range_included(struct kvm_mem_range *child,
277                                   struct kvm_mem_range *parent)
278 {
279         return parent->start <= child->start && child->end <= parent->end;
280 }
281
282 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
283 {
284         struct kvm_mem_range cur;
285         kvm_pte_t pte;
286         u32 level;
287         int ret;
288
289         hyp_assert_lock_held(&host_kvm.lock);
290         ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level);
291         if (ret)
292                 return ret;
293
294         if (kvm_pte_valid(pte))
295                 return -EAGAIN;
296
297         if (pte)
298                 return -EPERM;
299
300         do {
301                 u64 granule = kvm_granule_size(level);
302                 cur.start = ALIGN_DOWN(addr, granule);
303                 cur.end = cur.start + granule;
304                 level++;
305         } while ((level < KVM_PGTABLE_MAX_LEVELS) &&
306                         !(kvm_level_supports_block_mapping(level) &&
307                           range_included(&cur, range)));
308
309         *range = cur;
310
311         return 0;
312 }
313
314 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
315                              enum kvm_pgtable_prot prot)
316 {
317         hyp_assert_lock_held(&host_kvm.lock);
318
319         return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
320 }
321
322 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
323 {
324         hyp_assert_lock_held(&host_kvm.lock);
325
326         return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt,
327                                addr, size, &host_s2_pool, owner_id);
328 }
329
330 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
331 {
332         /*
333          * Block mappings must be used with care in the host stage-2 as a
334          * kvm_pgtable_stage2_map() operation targeting a page in the range of
335          * an existing block will delete the block under the assumption that
336          * mappings in the rest of the block range can always be rebuilt lazily.
337          * That assumption is correct for the host stage-2 with RWX mappings
338          * targeting memory or RW mappings targeting MMIO ranges (see
339          * host_stage2_idmap() below which implements some of the host memory
340          * abort logic). However, this is not safe for any other mappings where
341          * the host stage-2 page-table is in fact the only place where this
342          * state is stored. In all those cases, it is safer to use page-level
343          * mappings, hence avoiding to lose the state because of side-effects in
344          * kvm_pgtable_stage2_map().
345          */
346         if (range_is_memory(addr, end))
347                 return prot != PKVM_HOST_MEM_PROT;
348         else
349                 return prot != PKVM_HOST_MMIO_PROT;
350 }
351
352 static int host_stage2_idmap(u64 addr)
353 {
354         struct kvm_mem_range range;
355         bool is_memory = find_mem_range(addr, &range);
356         enum kvm_pgtable_prot prot;
357         int ret;
358
359         prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
360
361         host_lock_component();
362         ret = host_stage2_adjust_range(addr, &range);
363         if (ret)
364                 goto unlock;
365
366         ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
367 unlock:
368         host_unlock_component();
369
370         return ret;
371 }
372
373 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
374 {
375         struct kvm_vcpu_fault_info fault;
376         u64 esr, addr;
377         int ret = 0;
378
379         esr = read_sysreg_el2(SYS_ESR);
380         BUG_ON(!__get_fault_info(esr, &fault));
381
382         addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
383         ret = host_stage2_idmap(addr);
384         BUG_ON(ret && ret != -EAGAIN);
385 }
386
387 /* This corresponds to locking order */
388 enum pkvm_component_id {
389         PKVM_ID_HOST,
390         PKVM_ID_HYP,
391 };
392
393 struct pkvm_mem_transition {
394         u64                             nr_pages;
395
396         struct {
397                 enum pkvm_component_id  id;
398                 /* Address in the initiator's address space */
399                 u64                     addr;
400
401                 union {
402                         struct {
403                                 /* Address in the completer's address space */
404                                 u64     completer_addr;
405                         } host;
406                 };
407         } initiator;
408
409         struct {
410                 enum pkvm_component_id  id;
411         } completer;
412 };
413
414 struct pkvm_mem_share {
415         const struct pkvm_mem_transition        tx;
416         const enum kvm_pgtable_prot             completer_prot;
417 };
418
419 struct check_walk_data {
420         enum pkvm_page_state    desired;
421         enum pkvm_page_state    (*get_page_state)(kvm_pte_t pte);
422 };
423
424 static int __check_page_state_visitor(u64 addr, u64 end, u32 level,
425                                       kvm_pte_t *ptep,
426                                       enum kvm_pgtable_walk_flags flag,
427                                       void * const arg)
428 {
429         struct check_walk_data *d = arg;
430         kvm_pte_t pte = *ptep;
431
432         if (kvm_pte_valid(pte) && !addr_is_memory(kvm_pte_to_phys(pte)))
433                 return -EINVAL;
434
435         return d->get_page_state(pte) == d->desired ? 0 : -EPERM;
436 }
437
438 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
439                                   struct check_walk_data *data)
440 {
441         struct kvm_pgtable_walker walker = {
442                 .cb     = __check_page_state_visitor,
443                 .arg    = data,
444                 .flags  = KVM_PGTABLE_WALK_LEAF,
445         };
446
447         return kvm_pgtable_walk(pgt, addr, size, &walker);
448 }
449
450 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte)
451 {
452         if (!kvm_pte_valid(pte) && pte)
453                 return PKVM_NOPAGE;
454
455         return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
456 }
457
458 static int __host_check_page_state_range(u64 addr, u64 size,
459                                          enum pkvm_page_state state)
460 {
461         struct check_walk_data d = {
462                 .desired        = state,
463                 .get_page_state = host_get_page_state,
464         };
465
466         hyp_assert_lock_held(&host_kvm.lock);
467         return check_page_state_range(&host_kvm.pgt, addr, size, &d);
468 }
469
470 static int __host_set_page_state_range(u64 addr, u64 size,
471                                        enum pkvm_page_state state)
472 {
473         enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
474
475         return host_stage2_idmap_locked(addr, size, prot);
476 }
477
478 static int host_request_owned_transition(u64 *completer_addr,
479                                          const struct pkvm_mem_transition *tx)
480 {
481         u64 size = tx->nr_pages * PAGE_SIZE;
482         u64 addr = tx->initiator.addr;
483
484         *completer_addr = tx->initiator.host.completer_addr;
485         return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
486 }
487
488 static int host_request_unshare(u64 *completer_addr,
489                                 const struct pkvm_mem_transition *tx)
490 {
491         u64 size = tx->nr_pages * PAGE_SIZE;
492         u64 addr = tx->initiator.addr;
493
494         *completer_addr = tx->initiator.host.completer_addr;
495         return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
496 }
497
498 static int host_initiate_share(u64 *completer_addr,
499                                const struct pkvm_mem_transition *tx)
500 {
501         u64 size = tx->nr_pages * PAGE_SIZE;
502         u64 addr = tx->initiator.addr;
503
504         *completer_addr = tx->initiator.host.completer_addr;
505         return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
506 }
507
508 static int host_initiate_unshare(u64 *completer_addr,
509                                  const struct pkvm_mem_transition *tx)
510 {
511         u64 size = tx->nr_pages * PAGE_SIZE;
512         u64 addr = tx->initiator.addr;
513
514         *completer_addr = tx->initiator.host.completer_addr;
515         return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
516 }
517
518 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte)
519 {
520         if (!kvm_pte_valid(pte))
521                 return PKVM_NOPAGE;
522
523         return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
524 }
525
526 static int __hyp_check_page_state_range(u64 addr, u64 size,
527                                         enum pkvm_page_state state)
528 {
529         struct check_walk_data d = {
530                 .desired        = state,
531                 .get_page_state = hyp_get_page_state,
532         };
533
534         hyp_assert_lock_held(&pkvm_pgd_lock);
535         return check_page_state_range(&pkvm_pgtable, addr, size, &d);
536 }
537
538 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
539 {
540         return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
541                  tx->initiator.id != PKVM_ID_HOST);
542 }
543
544 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
545                          enum kvm_pgtable_prot perms)
546 {
547         u64 size = tx->nr_pages * PAGE_SIZE;
548
549         if (perms != PAGE_HYP)
550                 return -EPERM;
551
552         if (__hyp_ack_skip_pgtable_check(tx))
553                 return 0;
554
555         return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
556 }
557
558 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
559 {
560         u64 size = tx->nr_pages * PAGE_SIZE;
561
562         if (__hyp_ack_skip_pgtable_check(tx))
563                 return 0;
564
565         return __hyp_check_page_state_range(addr, size,
566                                             PKVM_PAGE_SHARED_BORROWED);
567 }
568
569 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
570                               enum kvm_pgtable_prot perms)
571 {
572         void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
573         enum kvm_pgtable_prot prot;
574
575         prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
576         return pkvm_create_mappings_locked(start, end, prot);
577 }
578
579 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
580 {
581         u64 size = tx->nr_pages * PAGE_SIZE;
582         int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
583
584         return (ret != size) ? -EFAULT : 0;
585 }
586
587 static int check_share(struct pkvm_mem_share *share)
588 {
589         const struct pkvm_mem_transition *tx = &share->tx;
590         u64 completer_addr;
591         int ret;
592
593         switch (tx->initiator.id) {
594         case PKVM_ID_HOST:
595                 ret = host_request_owned_transition(&completer_addr, tx);
596                 break;
597         default:
598                 ret = -EINVAL;
599         }
600
601         if (ret)
602                 return ret;
603
604         switch (tx->completer.id) {
605         case PKVM_ID_HYP:
606                 ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
607                 break;
608         default:
609                 ret = -EINVAL;
610         }
611
612         return ret;
613 }
614
615 static int __do_share(struct pkvm_mem_share *share)
616 {
617         const struct pkvm_mem_transition *tx = &share->tx;
618         u64 completer_addr;
619         int ret;
620
621         switch (tx->initiator.id) {
622         case PKVM_ID_HOST:
623                 ret = host_initiate_share(&completer_addr, tx);
624                 break;
625         default:
626                 ret = -EINVAL;
627         }
628
629         if (ret)
630                 return ret;
631
632         switch (tx->completer.id) {
633         case PKVM_ID_HYP:
634                 ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
635                 break;
636         default:
637                 ret = -EINVAL;
638         }
639
640         return ret;
641 }
642
643 /*
644  * do_share():
645  *
646  * The page owner grants access to another component with a given set
647  * of permissions.
648  *
649  * Initiator: OWNED     => SHARED_OWNED
650  * Completer: NOPAGE    => SHARED_BORROWED
651  */
652 static int do_share(struct pkvm_mem_share *share)
653 {
654         int ret;
655
656         ret = check_share(share);
657         if (ret)
658                 return ret;
659
660         return WARN_ON(__do_share(share));
661 }
662
663 static int check_unshare(struct pkvm_mem_share *share)
664 {
665         const struct pkvm_mem_transition *tx = &share->tx;
666         u64 completer_addr;
667         int ret;
668
669         switch (tx->initiator.id) {
670         case PKVM_ID_HOST:
671                 ret = host_request_unshare(&completer_addr, tx);
672                 break;
673         default:
674                 ret = -EINVAL;
675         }
676
677         if (ret)
678                 return ret;
679
680         switch (tx->completer.id) {
681         case PKVM_ID_HYP:
682                 ret = hyp_ack_unshare(completer_addr, tx);
683                 break;
684         default:
685                 ret = -EINVAL;
686         }
687
688         return ret;
689 }
690
691 static int __do_unshare(struct pkvm_mem_share *share)
692 {
693         const struct pkvm_mem_transition *tx = &share->tx;
694         u64 completer_addr;
695         int ret;
696
697         switch (tx->initiator.id) {
698         case PKVM_ID_HOST:
699                 ret = host_initiate_unshare(&completer_addr, tx);
700                 break;
701         default:
702                 ret = -EINVAL;
703         }
704
705         if (ret)
706                 return ret;
707
708         switch (tx->completer.id) {
709         case PKVM_ID_HYP:
710                 ret = hyp_complete_unshare(completer_addr, tx);
711                 break;
712         default:
713                 ret = -EINVAL;
714         }
715
716         return ret;
717 }
718
719 /*
720  * do_unshare():
721  *
722  * The page owner revokes access from another component for a range of
723  * pages which were previously shared using do_share().
724  *
725  * Initiator: SHARED_OWNED      => OWNED
726  * Completer: SHARED_BORROWED   => NOPAGE
727  */
728 static int do_unshare(struct pkvm_mem_share *share)
729 {
730         int ret;
731
732         ret = check_unshare(share);
733         if (ret)
734                 return ret;
735
736         return WARN_ON(__do_unshare(share));
737 }
738
739 int __pkvm_host_share_hyp(u64 pfn)
740 {
741         int ret;
742         u64 host_addr = hyp_pfn_to_phys(pfn);
743         u64 hyp_addr = (u64)__hyp_va(host_addr);
744         struct pkvm_mem_share share = {
745                 .tx     = {
746                         .nr_pages       = 1,
747                         .initiator      = {
748                                 .id     = PKVM_ID_HOST,
749                                 .addr   = host_addr,
750                                 .host   = {
751                                         .completer_addr = hyp_addr,
752                                 },
753                         },
754                         .completer      = {
755                                 .id     = PKVM_ID_HYP,
756                         },
757                 },
758                 .completer_prot = PAGE_HYP,
759         };
760
761         host_lock_component();
762         hyp_lock_component();
763
764         ret = do_share(&share);
765
766         hyp_unlock_component();
767         host_unlock_component();
768
769         return ret;
770 }
771
772 int __pkvm_host_unshare_hyp(u64 pfn)
773 {
774         int ret;
775         u64 host_addr = hyp_pfn_to_phys(pfn);
776         u64 hyp_addr = (u64)__hyp_va(host_addr);
777         struct pkvm_mem_share share = {
778                 .tx     = {
779                         .nr_pages       = 1,
780                         .initiator      = {
781                                 .id     = PKVM_ID_HOST,
782                                 .addr   = host_addr,
783                                 .host   = {
784                                         .completer_addr = hyp_addr,
785                                 },
786                         },
787                         .completer      = {
788                                 .id     = PKVM_ID_HYP,
789                         },
790                 },
791                 .completer_prot = PAGE_HYP,
792         };
793
794         host_lock_component();
795         hyp_lock_component();
796
797         ret = do_unshare(&share);
798
799         hyp_unlock_component();
800         host_unlock_component();
801
802         return ret;
803 }