usb: typec: mux: fix static inline syntax error
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / hyp / nvhe / mem_protect.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14
15 #include <hyp/fault.h>
16
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23
24 struct host_mmu host_mmu;
25
26 static struct hyp_pool host_s2_pool;
27
28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
29 #define current_vm (*this_cpu_ptr(&__current_vm))
30
31 static void guest_lock_component(struct pkvm_hyp_vm *vm)
32 {
33         hyp_spin_lock(&vm->lock);
34         current_vm = vm;
35 }
36
37 static void guest_unlock_component(struct pkvm_hyp_vm *vm)
38 {
39         current_vm = NULL;
40         hyp_spin_unlock(&vm->lock);
41 }
42
43 static void host_lock_component(void)
44 {
45         hyp_spin_lock(&host_mmu.lock);
46 }
47
48 static void host_unlock_component(void)
49 {
50         hyp_spin_unlock(&host_mmu.lock);
51 }
52
53 static void hyp_lock_component(void)
54 {
55         hyp_spin_lock(&pkvm_pgd_lock);
56 }
57
58 static void hyp_unlock_component(void)
59 {
60         hyp_spin_unlock(&pkvm_pgd_lock);
61 }
62
63 static void *host_s2_zalloc_pages_exact(size_t size)
64 {
65         void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
66
67         hyp_split_page(hyp_virt_to_page(addr));
68
69         /*
70          * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
71          * so there should be no need to free any of the tail pages to make the
72          * allocation exact.
73          */
74         WARN_ON(size != (PAGE_SIZE << get_order(size)));
75
76         return addr;
77 }
78
79 static void *host_s2_zalloc_page(void *pool)
80 {
81         return hyp_alloc_pages(pool, 0);
82 }
83
84 static void host_s2_get_page(void *addr)
85 {
86         hyp_get_page(&host_s2_pool, addr);
87 }
88
89 static void host_s2_put_page(void *addr)
90 {
91         hyp_put_page(&host_s2_pool, addr);
92 }
93
94 static void host_s2_free_removed_table(void *addr, u32 level)
95 {
96         kvm_pgtable_stage2_free_removed(&host_mmu.mm_ops, addr, level);
97 }
98
99 static int prepare_s2_pool(void *pgt_pool_base)
100 {
101         unsigned long nr_pages, pfn;
102         int ret;
103
104         pfn = hyp_virt_to_pfn(pgt_pool_base);
105         nr_pages = host_s2_pgtable_pages();
106         ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
107         if (ret)
108                 return ret;
109
110         host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
111                 .zalloc_pages_exact = host_s2_zalloc_pages_exact,
112                 .zalloc_page = host_s2_zalloc_page,
113                 .free_removed_table = host_s2_free_removed_table,
114                 .phys_to_virt = hyp_phys_to_virt,
115                 .virt_to_phys = hyp_virt_to_phys,
116                 .page_count = hyp_page_count,
117                 .get_page = host_s2_get_page,
118                 .put_page = host_s2_put_page,
119         };
120
121         return 0;
122 }
123
124 static void prepare_host_vtcr(void)
125 {
126         u32 parange, phys_shift;
127
128         /* The host stage 2 is id-mapped, so use parange for T0SZ */
129         parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
130         phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
131
132         host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
133                                           id_aa64mmfr1_el1_sys_val, phys_shift);
134 }
135
136 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
137
138 int kvm_host_prepare_stage2(void *pgt_pool_base)
139 {
140         struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
141         int ret;
142
143         prepare_host_vtcr();
144         hyp_spin_lock_init(&host_mmu.lock);
145         mmu->arch = &host_mmu.arch;
146
147         ret = prepare_s2_pool(pgt_pool_base);
148         if (ret)
149                 return ret;
150
151         ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
152                                         &host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
153                                         host_stage2_force_pte_cb);
154         if (ret)
155                 return ret;
156
157         mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
158         mmu->pgt = &host_mmu.pgt;
159         atomic64_set(&mmu->vmid.id, 0);
160
161         return 0;
162 }
163
164 static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
165                                       enum kvm_pgtable_prot prot)
166 {
167         return true;
168 }
169
170 static void *guest_s2_zalloc_pages_exact(size_t size)
171 {
172         void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
173
174         WARN_ON(size != (PAGE_SIZE << get_order(size)));
175         hyp_split_page(hyp_virt_to_page(addr));
176
177         return addr;
178 }
179
180 static void guest_s2_free_pages_exact(void *addr, unsigned long size)
181 {
182         u8 order = get_order(size);
183         unsigned int i;
184
185         for (i = 0; i < (1 << order); i++)
186                 hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
187 }
188
189 static void *guest_s2_zalloc_page(void *mc)
190 {
191         struct hyp_page *p;
192         void *addr;
193
194         addr = hyp_alloc_pages(&current_vm->pool, 0);
195         if (addr)
196                 return addr;
197
198         addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
199         if (!addr)
200                 return addr;
201
202         memset(addr, 0, PAGE_SIZE);
203         p = hyp_virt_to_page(addr);
204         memset(p, 0, sizeof(*p));
205         p->refcount = 1;
206
207         return addr;
208 }
209
210 static void guest_s2_get_page(void *addr)
211 {
212         hyp_get_page(&current_vm->pool, addr);
213 }
214
215 static void guest_s2_put_page(void *addr)
216 {
217         hyp_put_page(&current_vm->pool, addr);
218 }
219
220 static void clean_dcache_guest_page(void *va, size_t size)
221 {
222         __clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
223         hyp_fixmap_unmap();
224 }
225
226 static void invalidate_icache_guest_page(void *va, size_t size)
227 {
228         __invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
229         hyp_fixmap_unmap();
230 }
231
232 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
233 {
234         struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
235         unsigned long nr_pages;
236         int ret;
237
238         nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT;
239         ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
240         if (ret)
241                 return ret;
242
243         hyp_spin_lock_init(&vm->lock);
244         vm->mm_ops = (struct kvm_pgtable_mm_ops) {
245                 .zalloc_pages_exact     = guest_s2_zalloc_pages_exact,
246                 .free_pages_exact       = guest_s2_free_pages_exact,
247                 .zalloc_page            = guest_s2_zalloc_page,
248                 .phys_to_virt           = hyp_phys_to_virt,
249                 .virt_to_phys           = hyp_virt_to_phys,
250                 .page_count             = hyp_page_count,
251                 .get_page               = guest_s2_get_page,
252                 .put_page               = guest_s2_put_page,
253                 .dcache_clean_inval_poc = clean_dcache_guest_page,
254                 .icache_inval_pou       = invalidate_icache_guest_page,
255         };
256
257         guest_lock_component(vm);
258         ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0,
259                                         guest_stage2_force_pte_cb);
260         guest_unlock_component(vm);
261         if (ret)
262                 return ret;
263
264         vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
265
266         return 0;
267 }
268
269 void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
270 {
271         void *addr;
272
273         /* Dump all pgtable pages in the hyp_pool */
274         guest_lock_component(vm);
275         kvm_pgtable_stage2_destroy(&vm->pgt);
276         vm->kvm.arch.mmu.pgd_phys = 0ULL;
277         guest_unlock_component(vm);
278
279         /* Drain the hyp_pool into the memcache */
280         addr = hyp_alloc_pages(&vm->pool, 0);
281         while (addr) {
282                 memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page));
283                 push_hyp_memcache(mc, addr, hyp_virt_to_phys);
284                 WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
285                 addr = hyp_alloc_pages(&vm->pool, 0);
286         }
287 }
288
289 int __pkvm_prot_finalize(void)
290 {
291         struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
292         struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
293
294         if (params->hcr_el2 & HCR_VM)
295                 return -EPERM;
296
297         params->vttbr = kvm_get_vttbr(mmu);
298         params->vtcr = host_mmu.arch.vtcr;
299         params->hcr_el2 |= HCR_VM;
300
301         /*
302          * The CMO below not only cleans the updated params to the
303          * PoC, but also provides the DSB that ensures ongoing
304          * page-table walks that have started before we trapped to EL2
305          * have completed.
306          */
307         kvm_flush_dcache_to_poc(params, sizeof(*params));
308
309         write_sysreg(params->hcr_el2, hcr_el2);
310         __load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
311
312         /*
313          * Make sure to have an ISB before the TLB maintenance below but only
314          * when __load_stage2() doesn't include one already.
315          */
316         asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
317
318         /* Invalidate stale HCR bits that may be cached in TLBs */
319         __tlbi(vmalls12e1);
320         dsb(nsh);
321         isb();
322
323         return 0;
324 }
325
326 static int host_stage2_unmap_dev_all(void)
327 {
328         struct kvm_pgtable *pgt = &host_mmu.pgt;
329         struct memblock_region *reg;
330         u64 addr = 0;
331         int i, ret;
332
333         /* Unmap all non-memory regions to recycle the pages */
334         for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
335                 reg = &hyp_memory[i];
336                 ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
337                 if (ret)
338                         return ret;
339         }
340         return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
341 }
342
343 struct kvm_mem_range {
344         u64 start;
345         u64 end;
346 };
347
348 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
349 {
350         int cur, left = 0, right = hyp_memblock_nr;
351         struct memblock_region *reg;
352         phys_addr_t end;
353
354         range->start = 0;
355         range->end = ULONG_MAX;
356
357         /* The list of memblock regions is sorted, binary search it */
358         while (left < right) {
359                 cur = (left + right) >> 1;
360                 reg = &hyp_memory[cur];
361                 end = reg->base + reg->size;
362                 if (addr < reg->base) {
363                         right = cur;
364                         range->end = reg->base;
365                 } else if (addr >= end) {
366                         left = cur + 1;
367                         range->start = end;
368                 } else {
369                         range->start = reg->base;
370                         range->end = end;
371                         return reg;
372                 }
373         }
374
375         return NULL;
376 }
377
378 bool addr_is_memory(phys_addr_t phys)
379 {
380         struct kvm_mem_range range;
381
382         return !!find_mem_range(phys, &range);
383 }
384
385 static bool addr_is_allowed_memory(phys_addr_t phys)
386 {
387         struct memblock_region *reg;
388         struct kvm_mem_range range;
389
390         reg = find_mem_range(phys, &range);
391
392         return reg && !(reg->flags & MEMBLOCK_NOMAP);
393 }
394
395 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
396 {
397         return range->start <= addr && addr < range->end;
398 }
399
400 static bool range_is_memory(u64 start, u64 end)
401 {
402         struct kvm_mem_range r;
403
404         if (!find_mem_range(start, &r))
405                 return false;
406
407         return is_in_mem_range(end - 1, &r);
408 }
409
410 static inline int __host_stage2_idmap(u64 start, u64 end,
411                                       enum kvm_pgtable_prot prot)
412 {
413         return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
414                                       prot, &host_s2_pool, 0);
415 }
416
417 /*
418  * The pool has been provided with enough pages to cover all of memory with
419  * page granularity, but it is difficult to know how much of the MMIO range
420  * we will need to cover upfront, so we may need to 'recycle' the pages if we
421  * run out.
422  */
423 #define host_stage2_try(fn, ...)                                        \
424         ({                                                              \
425                 int __ret;                                              \
426                 hyp_assert_lock_held(&host_mmu.lock);                   \
427                 __ret = fn(__VA_ARGS__);                                \
428                 if (__ret == -ENOMEM) {                                 \
429                         __ret = host_stage2_unmap_dev_all();            \
430                         if (!__ret)                                     \
431                                 __ret = fn(__VA_ARGS__);                \
432                 }                                                       \
433                 __ret;                                                  \
434          })
435
436 static inline bool range_included(struct kvm_mem_range *child,
437                                   struct kvm_mem_range *parent)
438 {
439         return parent->start <= child->start && child->end <= parent->end;
440 }
441
442 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
443 {
444         struct kvm_mem_range cur;
445         kvm_pte_t pte;
446         u32 level;
447         int ret;
448
449         hyp_assert_lock_held(&host_mmu.lock);
450         ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
451         if (ret)
452                 return ret;
453
454         if (kvm_pte_valid(pte))
455                 return -EAGAIN;
456
457         if (pte)
458                 return -EPERM;
459
460         do {
461                 u64 granule = kvm_granule_size(level);
462                 cur.start = ALIGN_DOWN(addr, granule);
463                 cur.end = cur.start + granule;
464                 level++;
465         } while ((level < KVM_PGTABLE_MAX_LEVELS) &&
466                         !(kvm_level_supports_block_mapping(level) &&
467                           range_included(&cur, range)));
468
469         *range = cur;
470
471         return 0;
472 }
473
474 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
475                              enum kvm_pgtable_prot prot)
476 {
477         return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
478 }
479
480 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
481 {
482         return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
483                                addr, size, &host_s2_pool, owner_id);
484 }
485
486 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
487 {
488         /*
489          * Block mappings must be used with care in the host stage-2 as a
490          * kvm_pgtable_stage2_map() operation targeting a page in the range of
491          * an existing block will delete the block under the assumption that
492          * mappings in the rest of the block range can always be rebuilt lazily.
493          * That assumption is correct for the host stage-2 with RWX mappings
494          * targeting memory or RW mappings targeting MMIO ranges (see
495          * host_stage2_idmap() below which implements some of the host memory
496          * abort logic). However, this is not safe for any other mappings where
497          * the host stage-2 page-table is in fact the only place where this
498          * state is stored. In all those cases, it is safer to use page-level
499          * mappings, hence avoiding to lose the state because of side-effects in
500          * kvm_pgtable_stage2_map().
501          */
502         if (range_is_memory(addr, end))
503                 return prot != PKVM_HOST_MEM_PROT;
504         else
505                 return prot != PKVM_HOST_MMIO_PROT;
506 }
507
508 static int host_stage2_idmap(u64 addr)
509 {
510         struct kvm_mem_range range;
511         bool is_memory = !!find_mem_range(addr, &range);
512         enum kvm_pgtable_prot prot;
513         int ret;
514
515         prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
516
517         host_lock_component();
518         ret = host_stage2_adjust_range(addr, &range);
519         if (ret)
520                 goto unlock;
521
522         ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
523 unlock:
524         host_unlock_component();
525
526         return ret;
527 }
528
529 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
530 {
531         struct kvm_vcpu_fault_info fault;
532         u64 esr, addr;
533         int ret = 0;
534
535         esr = read_sysreg_el2(SYS_ESR);
536         BUG_ON(!__get_fault_info(esr, &fault));
537
538         addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
539         ret = host_stage2_idmap(addr);
540         BUG_ON(ret && ret != -EAGAIN);
541 }
542
543 struct pkvm_mem_transition {
544         u64                             nr_pages;
545
546         struct {
547                 enum pkvm_component_id  id;
548                 /* Address in the initiator's address space */
549                 u64                     addr;
550
551                 union {
552                         struct {
553                                 /* Address in the completer's address space */
554                                 u64     completer_addr;
555                         } host;
556                         struct {
557                                 u64     completer_addr;
558                         } hyp;
559                 };
560         } initiator;
561
562         struct {
563                 enum pkvm_component_id  id;
564         } completer;
565 };
566
567 struct pkvm_mem_share {
568         const struct pkvm_mem_transition        tx;
569         const enum kvm_pgtable_prot             completer_prot;
570 };
571
572 struct pkvm_mem_donation {
573         const struct pkvm_mem_transition        tx;
574 };
575
576 struct check_walk_data {
577         enum pkvm_page_state    desired;
578         enum pkvm_page_state    (*get_page_state)(kvm_pte_t pte);
579 };
580
581 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
582                                       enum kvm_pgtable_walk_flags visit)
583 {
584         struct check_walk_data *d = ctx->arg;
585
586         if (kvm_pte_valid(ctx->old) && !addr_is_allowed_memory(kvm_pte_to_phys(ctx->old)))
587                 return -EINVAL;
588
589         return d->get_page_state(ctx->old) == d->desired ? 0 : -EPERM;
590 }
591
592 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
593                                   struct check_walk_data *data)
594 {
595         struct kvm_pgtable_walker walker = {
596                 .cb     = __check_page_state_visitor,
597                 .arg    = data,
598                 .flags  = KVM_PGTABLE_WALK_LEAF,
599         };
600
601         return kvm_pgtable_walk(pgt, addr, size, &walker);
602 }
603
604 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte)
605 {
606         if (!kvm_pte_valid(pte) && pte)
607                 return PKVM_NOPAGE;
608
609         return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
610 }
611
612 static int __host_check_page_state_range(u64 addr, u64 size,
613                                          enum pkvm_page_state state)
614 {
615         struct check_walk_data d = {
616                 .desired        = state,
617                 .get_page_state = host_get_page_state,
618         };
619
620         hyp_assert_lock_held(&host_mmu.lock);
621         return check_page_state_range(&host_mmu.pgt, addr, size, &d);
622 }
623
624 static int __host_set_page_state_range(u64 addr, u64 size,
625                                        enum pkvm_page_state state)
626 {
627         enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
628
629         return host_stage2_idmap_locked(addr, size, prot);
630 }
631
632 static int host_request_owned_transition(u64 *completer_addr,
633                                          const struct pkvm_mem_transition *tx)
634 {
635         u64 size = tx->nr_pages * PAGE_SIZE;
636         u64 addr = tx->initiator.addr;
637
638         *completer_addr = tx->initiator.host.completer_addr;
639         return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
640 }
641
642 static int host_request_unshare(u64 *completer_addr,
643                                 const struct pkvm_mem_transition *tx)
644 {
645         u64 size = tx->nr_pages * PAGE_SIZE;
646         u64 addr = tx->initiator.addr;
647
648         *completer_addr = tx->initiator.host.completer_addr;
649         return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
650 }
651
652 static int host_initiate_share(u64 *completer_addr,
653                                const struct pkvm_mem_transition *tx)
654 {
655         u64 size = tx->nr_pages * PAGE_SIZE;
656         u64 addr = tx->initiator.addr;
657
658         *completer_addr = tx->initiator.host.completer_addr;
659         return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
660 }
661
662 static int host_initiate_unshare(u64 *completer_addr,
663                                  const struct pkvm_mem_transition *tx)
664 {
665         u64 size = tx->nr_pages * PAGE_SIZE;
666         u64 addr = tx->initiator.addr;
667
668         *completer_addr = tx->initiator.host.completer_addr;
669         return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
670 }
671
672 static int host_initiate_donation(u64 *completer_addr,
673                                   const struct pkvm_mem_transition *tx)
674 {
675         u8 owner_id = tx->completer.id;
676         u64 size = tx->nr_pages * PAGE_SIZE;
677
678         *completer_addr = tx->initiator.host.completer_addr;
679         return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id);
680 }
681
682 static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
683 {
684         return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
685                  tx->initiator.id != PKVM_ID_HYP);
686 }
687
688 static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx,
689                                  enum pkvm_page_state state)
690 {
691         u64 size = tx->nr_pages * PAGE_SIZE;
692
693         if (__host_ack_skip_pgtable_check(tx))
694                 return 0;
695
696         return __host_check_page_state_range(addr, size, state);
697 }
698
699 static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
700 {
701         return __host_ack_transition(addr, tx, PKVM_NOPAGE);
702 }
703
704 static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
705 {
706         u64 size = tx->nr_pages * PAGE_SIZE;
707         u8 host_id = tx->completer.id;
708
709         return host_stage2_set_owner_locked(addr, size, host_id);
710 }
711
712 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte)
713 {
714         if (!kvm_pte_valid(pte))
715                 return PKVM_NOPAGE;
716
717         return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte));
718 }
719
720 static int __hyp_check_page_state_range(u64 addr, u64 size,
721                                         enum pkvm_page_state state)
722 {
723         struct check_walk_data d = {
724                 .desired        = state,
725                 .get_page_state = hyp_get_page_state,
726         };
727
728         hyp_assert_lock_held(&pkvm_pgd_lock);
729         return check_page_state_range(&pkvm_pgtable, addr, size, &d);
730 }
731
732 static int hyp_request_donation(u64 *completer_addr,
733                                 const struct pkvm_mem_transition *tx)
734 {
735         u64 size = tx->nr_pages * PAGE_SIZE;
736         u64 addr = tx->initiator.addr;
737
738         *completer_addr = tx->initiator.hyp.completer_addr;
739         return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
740 }
741
742 static int hyp_initiate_donation(u64 *completer_addr,
743                                  const struct pkvm_mem_transition *tx)
744 {
745         u64 size = tx->nr_pages * PAGE_SIZE;
746         int ret;
747
748         *completer_addr = tx->initiator.hyp.completer_addr;
749         ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size);
750         return (ret != size) ? -EFAULT : 0;
751 }
752
753 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
754 {
755         return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
756                  tx->initiator.id != PKVM_ID_HOST);
757 }
758
759 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
760                          enum kvm_pgtable_prot perms)
761 {
762         u64 size = tx->nr_pages * PAGE_SIZE;
763
764         if (perms != PAGE_HYP)
765                 return -EPERM;
766
767         if (__hyp_ack_skip_pgtable_check(tx))
768                 return 0;
769
770         return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
771 }
772
773 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
774 {
775         u64 size = tx->nr_pages * PAGE_SIZE;
776
777         if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
778                 return -EBUSY;
779
780         if (__hyp_ack_skip_pgtable_check(tx))
781                 return 0;
782
783         return __hyp_check_page_state_range(addr, size,
784                                             PKVM_PAGE_SHARED_BORROWED);
785 }
786
787 static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
788 {
789         u64 size = tx->nr_pages * PAGE_SIZE;
790
791         if (__hyp_ack_skip_pgtable_check(tx))
792                 return 0;
793
794         return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
795 }
796
797 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
798                               enum kvm_pgtable_prot perms)
799 {
800         void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
801         enum kvm_pgtable_prot prot;
802
803         prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
804         return pkvm_create_mappings_locked(start, end, prot);
805 }
806
807 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
808 {
809         u64 size = tx->nr_pages * PAGE_SIZE;
810         int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
811
812         return (ret != size) ? -EFAULT : 0;
813 }
814
815 static int hyp_complete_donation(u64 addr,
816                                  const struct pkvm_mem_transition *tx)
817 {
818         void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
819         enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED);
820
821         return pkvm_create_mappings_locked(start, end, prot);
822 }
823
824 static int check_share(struct pkvm_mem_share *share)
825 {
826         const struct pkvm_mem_transition *tx = &share->tx;
827         u64 completer_addr;
828         int ret;
829
830         switch (tx->initiator.id) {
831         case PKVM_ID_HOST:
832                 ret = host_request_owned_transition(&completer_addr, tx);
833                 break;
834         default:
835                 ret = -EINVAL;
836         }
837
838         if (ret)
839                 return ret;
840
841         switch (tx->completer.id) {
842         case PKVM_ID_HYP:
843                 ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
844                 break;
845         default:
846                 ret = -EINVAL;
847         }
848
849         return ret;
850 }
851
852 static int __do_share(struct pkvm_mem_share *share)
853 {
854         const struct pkvm_mem_transition *tx = &share->tx;
855         u64 completer_addr;
856         int ret;
857
858         switch (tx->initiator.id) {
859         case PKVM_ID_HOST:
860                 ret = host_initiate_share(&completer_addr, tx);
861                 break;
862         default:
863                 ret = -EINVAL;
864         }
865
866         if (ret)
867                 return ret;
868
869         switch (tx->completer.id) {
870         case PKVM_ID_HYP:
871                 ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
872                 break;
873         default:
874                 ret = -EINVAL;
875         }
876
877         return ret;
878 }
879
880 /*
881  * do_share():
882  *
883  * The page owner grants access to another component with a given set
884  * of permissions.
885  *
886  * Initiator: OWNED     => SHARED_OWNED
887  * Completer: NOPAGE    => SHARED_BORROWED
888  */
889 static int do_share(struct pkvm_mem_share *share)
890 {
891         int ret;
892
893         ret = check_share(share);
894         if (ret)
895                 return ret;
896
897         return WARN_ON(__do_share(share));
898 }
899
900 static int check_unshare(struct pkvm_mem_share *share)
901 {
902         const struct pkvm_mem_transition *tx = &share->tx;
903         u64 completer_addr;
904         int ret;
905
906         switch (tx->initiator.id) {
907         case PKVM_ID_HOST:
908                 ret = host_request_unshare(&completer_addr, tx);
909                 break;
910         default:
911                 ret = -EINVAL;
912         }
913
914         if (ret)
915                 return ret;
916
917         switch (tx->completer.id) {
918         case PKVM_ID_HYP:
919                 ret = hyp_ack_unshare(completer_addr, tx);
920                 break;
921         default:
922                 ret = -EINVAL;
923         }
924
925         return ret;
926 }
927
928 static int __do_unshare(struct pkvm_mem_share *share)
929 {
930         const struct pkvm_mem_transition *tx = &share->tx;
931         u64 completer_addr;
932         int ret;
933
934         switch (tx->initiator.id) {
935         case PKVM_ID_HOST:
936                 ret = host_initiate_unshare(&completer_addr, tx);
937                 break;
938         default:
939                 ret = -EINVAL;
940         }
941
942         if (ret)
943                 return ret;
944
945         switch (tx->completer.id) {
946         case PKVM_ID_HYP:
947                 ret = hyp_complete_unshare(completer_addr, tx);
948                 break;
949         default:
950                 ret = -EINVAL;
951         }
952
953         return ret;
954 }
955
956 /*
957  * do_unshare():
958  *
959  * The page owner revokes access from another component for a range of
960  * pages which were previously shared using do_share().
961  *
962  * Initiator: SHARED_OWNED      => OWNED
963  * Completer: SHARED_BORROWED   => NOPAGE
964  */
965 static int do_unshare(struct pkvm_mem_share *share)
966 {
967         int ret;
968
969         ret = check_unshare(share);
970         if (ret)
971                 return ret;
972
973         return WARN_ON(__do_unshare(share));
974 }
975
976 static int check_donation(struct pkvm_mem_donation *donation)
977 {
978         const struct pkvm_mem_transition *tx = &donation->tx;
979         u64 completer_addr;
980         int ret;
981
982         switch (tx->initiator.id) {
983         case PKVM_ID_HOST:
984                 ret = host_request_owned_transition(&completer_addr, tx);
985                 break;
986         case PKVM_ID_HYP:
987                 ret = hyp_request_donation(&completer_addr, tx);
988                 break;
989         default:
990                 ret = -EINVAL;
991         }
992
993         if (ret)
994                 return ret;
995
996         switch (tx->completer.id) {
997         case PKVM_ID_HOST:
998                 ret = host_ack_donation(completer_addr, tx);
999                 break;
1000         case PKVM_ID_HYP:
1001                 ret = hyp_ack_donation(completer_addr, tx);
1002                 break;
1003         default:
1004                 ret = -EINVAL;
1005         }
1006
1007         return ret;
1008 }
1009
1010 static int __do_donate(struct pkvm_mem_donation *donation)
1011 {
1012         const struct pkvm_mem_transition *tx = &donation->tx;
1013         u64 completer_addr;
1014         int ret;
1015
1016         switch (tx->initiator.id) {
1017         case PKVM_ID_HOST:
1018                 ret = host_initiate_donation(&completer_addr, tx);
1019                 break;
1020         case PKVM_ID_HYP:
1021                 ret = hyp_initiate_donation(&completer_addr, tx);
1022                 break;
1023         default:
1024                 ret = -EINVAL;
1025         }
1026
1027         if (ret)
1028                 return ret;
1029
1030         switch (tx->completer.id) {
1031         case PKVM_ID_HOST:
1032                 ret = host_complete_donation(completer_addr, tx);
1033                 break;
1034         case PKVM_ID_HYP:
1035                 ret = hyp_complete_donation(completer_addr, tx);
1036                 break;
1037         default:
1038                 ret = -EINVAL;
1039         }
1040
1041         return ret;
1042 }
1043
1044 /*
1045  * do_donate():
1046  *
1047  * The page owner transfers ownership to another component, losing access
1048  * as a consequence.
1049  *
1050  * Initiator: OWNED     => NOPAGE
1051  * Completer: NOPAGE    => OWNED
1052  */
1053 static int do_donate(struct pkvm_mem_donation *donation)
1054 {
1055         int ret;
1056
1057         ret = check_donation(donation);
1058         if (ret)
1059                 return ret;
1060
1061         return WARN_ON(__do_donate(donation));
1062 }
1063
1064 int __pkvm_host_share_hyp(u64 pfn)
1065 {
1066         int ret;
1067         u64 host_addr = hyp_pfn_to_phys(pfn);
1068         u64 hyp_addr = (u64)__hyp_va(host_addr);
1069         struct pkvm_mem_share share = {
1070                 .tx     = {
1071                         .nr_pages       = 1,
1072                         .initiator      = {
1073                                 .id     = PKVM_ID_HOST,
1074                                 .addr   = host_addr,
1075                                 .host   = {
1076                                         .completer_addr = hyp_addr,
1077                                 },
1078                         },
1079                         .completer      = {
1080                                 .id     = PKVM_ID_HYP,
1081                         },
1082                 },
1083                 .completer_prot = PAGE_HYP,
1084         };
1085
1086         host_lock_component();
1087         hyp_lock_component();
1088
1089         ret = do_share(&share);
1090
1091         hyp_unlock_component();
1092         host_unlock_component();
1093
1094         return ret;
1095 }
1096
1097 int __pkvm_host_unshare_hyp(u64 pfn)
1098 {
1099         int ret;
1100         u64 host_addr = hyp_pfn_to_phys(pfn);
1101         u64 hyp_addr = (u64)__hyp_va(host_addr);
1102         struct pkvm_mem_share share = {
1103                 .tx     = {
1104                         .nr_pages       = 1,
1105                         .initiator      = {
1106                                 .id     = PKVM_ID_HOST,
1107                                 .addr   = host_addr,
1108                                 .host   = {
1109                                         .completer_addr = hyp_addr,
1110                                 },
1111                         },
1112                         .completer      = {
1113                                 .id     = PKVM_ID_HYP,
1114                         },
1115                 },
1116                 .completer_prot = PAGE_HYP,
1117         };
1118
1119         host_lock_component();
1120         hyp_lock_component();
1121
1122         ret = do_unshare(&share);
1123
1124         hyp_unlock_component();
1125         host_unlock_component();
1126
1127         return ret;
1128 }
1129
1130 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
1131 {
1132         int ret;
1133         u64 host_addr = hyp_pfn_to_phys(pfn);
1134         u64 hyp_addr = (u64)__hyp_va(host_addr);
1135         struct pkvm_mem_donation donation = {
1136                 .tx     = {
1137                         .nr_pages       = nr_pages,
1138                         .initiator      = {
1139                                 .id     = PKVM_ID_HOST,
1140                                 .addr   = host_addr,
1141                                 .host   = {
1142                                         .completer_addr = hyp_addr,
1143                                 },
1144                         },
1145                         .completer      = {
1146                                 .id     = PKVM_ID_HYP,
1147                         },
1148                 },
1149         };
1150
1151         host_lock_component();
1152         hyp_lock_component();
1153
1154         ret = do_donate(&donation);
1155
1156         hyp_unlock_component();
1157         host_unlock_component();
1158
1159         return ret;
1160 }
1161
1162 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
1163 {
1164         int ret;
1165         u64 host_addr = hyp_pfn_to_phys(pfn);
1166         u64 hyp_addr = (u64)__hyp_va(host_addr);
1167         struct pkvm_mem_donation donation = {
1168                 .tx     = {
1169                         .nr_pages       = nr_pages,
1170                         .initiator      = {
1171                                 .id     = PKVM_ID_HYP,
1172                                 .addr   = hyp_addr,
1173                                 .hyp    = {
1174                                         .completer_addr = host_addr,
1175                                 },
1176                         },
1177                         .completer      = {
1178                                 .id     = PKVM_ID_HOST,
1179                         },
1180                 },
1181         };
1182
1183         host_lock_component();
1184         hyp_lock_component();
1185
1186         ret = do_donate(&donation);
1187
1188         hyp_unlock_component();
1189         host_unlock_component();
1190
1191         return ret;
1192 }
1193
1194 int hyp_pin_shared_mem(void *from, void *to)
1195 {
1196         u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1197         u64 end = PAGE_ALIGN((u64)to);
1198         u64 size = end - start;
1199         int ret;
1200
1201         host_lock_component();
1202         hyp_lock_component();
1203
1204         ret = __host_check_page_state_range(__hyp_pa(start), size,
1205                                             PKVM_PAGE_SHARED_OWNED);
1206         if (ret)
1207                 goto unlock;
1208
1209         ret = __hyp_check_page_state_range(start, size,
1210                                            PKVM_PAGE_SHARED_BORROWED);
1211         if (ret)
1212                 goto unlock;
1213
1214         for (cur = start; cur < end; cur += PAGE_SIZE)
1215                 hyp_page_ref_inc(hyp_virt_to_page(cur));
1216
1217 unlock:
1218         hyp_unlock_component();
1219         host_unlock_component();
1220
1221         return ret;
1222 }
1223
1224 void hyp_unpin_shared_mem(void *from, void *to)
1225 {
1226         u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1227         u64 end = PAGE_ALIGN((u64)to);
1228
1229         host_lock_component();
1230         hyp_lock_component();
1231
1232         for (cur = start; cur < end; cur += PAGE_SIZE)
1233                 hyp_page_ref_dec(hyp_virt_to_page(cur));
1234
1235         hyp_unlock_component();
1236         host_unlock_component();
1237 }