Merge tag 'kvmarm-6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm...
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / hyp / include / hyp / switch.h
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18
19 #include <kvm/arm_psci.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33
34 struct kvm_exception_table_entry {
35         int insn, fixup;
36 };
37
38 extern struct kvm_exception_table_entry __start___kvm_ex_table;
39 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
40
41 /* Check whether the FP regs are owned by the guest */
42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
43 {
44         return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
45 }
46
47 /* Save the 32-bit only FPSIMD system register state */
48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
49 {
50         if (!vcpu_el1_is_32bit(vcpu))
51                 return;
52
53         __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
54 }
55
56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
57 {
58         /*
59          * We are about to set CPTR_EL2.TFP to trap all floating point
60          * register accesses to EL2, however, the ARM ARM clearly states that
61          * traps are only taken to EL2 if the operation would not otherwise
62          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
63          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
64          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
65          * it will cause an exception.
66          */
67         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
68                 write_sysreg(1 << 30, fpexc32_el2);
69                 isb();
70         }
71 }
72
73 static inline bool __hfgxtr_traps_required(void)
74 {
75         if (cpus_have_final_cap(ARM64_SME))
76                 return true;
77
78         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
79                 return true;
80
81         return false;
82 }
83
84 static inline void __activate_traps_hfgxtr(void)
85 {
86         u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
87
88         if (cpus_have_final_cap(ARM64_SME)) {
89                 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
90
91                 r_clr |= tmp;
92                 w_clr |= tmp;
93         }
94
95         /*
96          * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD.
97          */
98         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
99                 w_set |= HFGxTR_EL2_TCR_EL1_MASK;
100
101         sysreg_clear_set_s(SYS_HFGRTR_EL2, r_clr, r_set);
102         sysreg_clear_set_s(SYS_HFGWTR_EL2, w_clr, w_set);
103 }
104
105 static inline void __deactivate_traps_hfgxtr(void)
106 {
107         u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
108
109         if (cpus_have_final_cap(ARM64_SME)) {
110                 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
111
112                 r_set |= tmp;
113                 w_set |= tmp;
114         }
115
116         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
117                 w_clr |= HFGxTR_EL2_TCR_EL1_MASK;
118
119         sysreg_clear_set_s(SYS_HFGRTR_EL2, r_clr, r_set);
120         sysreg_clear_set_s(SYS_HFGWTR_EL2, w_clr, w_set);
121 }
122
123 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
124 {
125         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
126         write_sysreg(1 << 15, hstr_el2);
127
128         /*
129          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
130          * PMSELR_EL0 to make sure it never contains the cycle
131          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
132          * EL1 instead of being trapped to EL2.
133          */
134         if (kvm_arm_support_pmu_v3()) {
135                 struct kvm_cpu_context *hctxt;
136
137                 write_sysreg(0, pmselr_el0);
138
139                 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
140                 ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
141                 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
142                 vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
143         }
144
145         vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
146         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
147
148         if (__hfgxtr_traps_required())
149                 __activate_traps_hfgxtr();
150 }
151
152 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
153 {
154         write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
155
156         write_sysreg(0, hstr_el2);
157         if (kvm_arm_support_pmu_v3()) {
158                 struct kvm_cpu_context *hctxt;
159
160                 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
161                 write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
162                 vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
163         }
164
165         if (__hfgxtr_traps_required())
166                 __deactivate_traps_hfgxtr();
167 }
168
169 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
170 {
171         u64 hcr = vcpu->arch.hcr_el2;
172
173         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
174                 hcr |= HCR_TVM;
175
176         write_sysreg(hcr, hcr_el2);
177
178         if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
179                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
180 }
181
182 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
183 {
184         /*
185          * If we pended a virtual abort, preserve it until it gets
186          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
187          * the crucial bit is "On taking a vSError interrupt,
188          * HCR_EL2.VSE is cleared to 0."
189          */
190         if (vcpu->arch.hcr_el2 & HCR_VSE) {
191                 vcpu->arch.hcr_el2 &= ~HCR_VSE;
192                 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
193         }
194 }
195
196 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
197 {
198         return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
199 }
200
201 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
202 {
203         sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
204         __sve_restore_state(vcpu_sve_pffr(vcpu),
205                             &vcpu->arch.ctxt.fp_regs.fpsr);
206         write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
207 }
208
209 /*
210  * We trap the first access to the FP/SIMD to save the host context and
211  * restore the guest context lazily.
212  * If FP/SIMD is not implemented, handle the trap and inject an undefined
213  * instruction exception to the guest. Similarly for trapped SVE accesses.
214  */
215 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
216 {
217         bool sve_guest;
218         u8 esr_ec;
219         u64 reg;
220
221         if (!system_supports_fpsimd())
222                 return false;
223
224         sve_guest = vcpu_has_sve(vcpu);
225         esr_ec = kvm_vcpu_trap_get_class(vcpu);
226
227         /* Only handle traps the vCPU can support here: */
228         switch (esr_ec) {
229         case ESR_ELx_EC_FP_ASIMD:
230                 break;
231         case ESR_ELx_EC_SVE:
232                 if (!sve_guest)
233                         return false;
234                 break;
235         default:
236                 return false;
237         }
238
239         /* Valid trap.  Switch the context: */
240
241         /* First disable enough traps to allow us to update the registers */
242         if (has_vhe() || has_hvhe()) {
243                 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
244                 if (sve_guest)
245                         reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
246
247                 sysreg_clear_set(cpacr_el1, 0, reg);
248         } else {
249                 reg = CPTR_EL2_TFP;
250                 if (sve_guest)
251                         reg |= CPTR_EL2_TZ;
252
253                 sysreg_clear_set(cptr_el2, reg, 0);
254         }
255         isb();
256
257         /* Write out the host state if it's in the registers */
258         if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
259                 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
260
261         /* Restore the guest state */
262         if (sve_guest)
263                 __hyp_sve_restore_guest(vcpu);
264         else
265                 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
266
267         /* Skip restoring fpexc32 for AArch64 guests */
268         if (!(read_sysreg(hcr_el2) & HCR_RW))
269                 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
270
271         vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
272
273         return true;
274 }
275
276 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
277 {
278         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
279         int rt = kvm_vcpu_sys_get_rt(vcpu);
280         u64 val = vcpu_get_reg(vcpu, rt);
281
282         /*
283          * The normal sysreg handling code expects to see the traps,
284          * let's not do anything here.
285          */
286         if (vcpu->arch.hcr_el2 & HCR_TVM)
287                 return false;
288
289         switch (sysreg) {
290         case SYS_SCTLR_EL1:
291                 write_sysreg_el1(val, SYS_SCTLR);
292                 break;
293         case SYS_TTBR0_EL1:
294                 write_sysreg_el1(val, SYS_TTBR0);
295                 break;
296         case SYS_TTBR1_EL1:
297                 write_sysreg_el1(val, SYS_TTBR1);
298                 break;
299         case SYS_TCR_EL1:
300                 write_sysreg_el1(val, SYS_TCR);
301                 break;
302         case SYS_ESR_EL1:
303                 write_sysreg_el1(val, SYS_ESR);
304                 break;
305         case SYS_FAR_EL1:
306                 write_sysreg_el1(val, SYS_FAR);
307                 break;
308         case SYS_AFSR0_EL1:
309                 write_sysreg_el1(val, SYS_AFSR0);
310                 break;
311         case SYS_AFSR1_EL1:
312                 write_sysreg_el1(val, SYS_AFSR1);
313                 break;
314         case SYS_MAIR_EL1:
315                 write_sysreg_el1(val, SYS_MAIR);
316                 break;
317         case SYS_AMAIR_EL1:
318                 write_sysreg_el1(val, SYS_AMAIR);
319                 break;
320         case SYS_CONTEXTIDR_EL1:
321                 write_sysreg_el1(val, SYS_CONTEXTIDR);
322                 break;
323         default:
324                 return false;
325         }
326
327         __kvm_skip_instr(vcpu);
328         return true;
329 }
330
331 static inline bool esr_is_ptrauth_trap(u64 esr)
332 {
333         switch (esr_sys64_to_sysreg(esr)) {
334         case SYS_APIAKEYLO_EL1:
335         case SYS_APIAKEYHI_EL1:
336         case SYS_APIBKEYLO_EL1:
337         case SYS_APIBKEYHI_EL1:
338         case SYS_APDAKEYLO_EL1:
339         case SYS_APDAKEYHI_EL1:
340         case SYS_APDBKEYLO_EL1:
341         case SYS_APDBKEYHI_EL1:
342         case SYS_APGAKEYLO_EL1:
343         case SYS_APGAKEYHI_EL1:
344                 return true;
345         }
346
347         return false;
348 }
349
350 #define __ptrauth_save_key(ctxt, key)                                   \
351         do {                                                            \
352         u64 __val;                                                      \
353         __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
354         ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
355         __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
356         ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
357 } while(0)
358
359 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
360
361 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
362 {
363         struct kvm_cpu_context *ctxt;
364         u64 val;
365
366         if (!vcpu_has_ptrauth(vcpu))
367                 return false;
368
369         ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
370         __ptrauth_save_key(ctxt, APIA);
371         __ptrauth_save_key(ctxt, APIB);
372         __ptrauth_save_key(ctxt, APDA);
373         __ptrauth_save_key(ctxt, APDB);
374         __ptrauth_save_key(ctxt, APGA);
375
376         vcpu_ptrauth_enable(vcpu);
377
378         val = read_sysreg(hcr_el2);
379         val |= (HCR_API | HCR_APK);
380         write_sysreg(val, hcr_el2);
381
382         return true;
383 }
384
385 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
386 {
387         struct arch_timer_context *ctxt;
388         u32 sysreg;
389         u64 val;
390
391         /*
392          * We only get here for 64bit guests, 32bit guests will hit
393          * the long and winding road all the way to the standard
394          * handling. Yes, it sucks to be irrelevant.
395          */
396         sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
397
398         switch (sysreg) {
399         case SYS_CNTPCT_EL0:
400         case SYS_CNTPCTSS_EL0:
401                 if (vcpu_has_nv(vcpu)) {
402                         if (is_hyp_ctxt(vcpu)) {
403                                 ctxt = vcpu_hptimer(vcpu);
404                                 break;
405                         }
406
407                         /* Check for guest hypervisor trapping */
408                         val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
409                         if (!vcpu_el2_e2h_is_set(vcpu))
410                                 val = (val & CNTHCTL_EL1PCTEN) << 10;
411
412                         if (!(val & (CNTHCTL_EL1PCTEN << 10)))
413                                 return false;
414                 }
415
416                 ctxt = vcpu_ptimer(vcpu);
417                 break;
418         default:
419                 return false;
420         }
421
422         val = arch_timer_read_cntpct_el0();
423
424         if (ctxt->offset.vm_offset)
425                 val -= *kern_hyp_va(ctxt->offset.vm_offset);
426         if (ctxt->offset.vcpu_offset)
427                 val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
428
429         vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
430         __kvm_skip_instr(vcpu);
431         return true;
432 }
433
434 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
435 {
436         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
437         int rt = kvm_vcpu_sys_get_rt(vcpu);
438         u64 val = vcpu_get_reg(vcpu, rt);
439
440         if (sysreg != SYS_TCR_EL1)
441                 return false;
442
443         /*
444          * Affected parts do not advertise support for hardware Access Flag /
445          * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
446          * control bits are still functional. The architecture requires these be
447          * RES0 on systems that do not implement FEAT_HAFDBS.
448          *
449          * Uphold the requirements of the architecture by masking guest writes
450          * to TCR_EL1.{HA,HD} here.
451          */
452         val &= ~(TCR_HD | TCR_HA);
453         write_sysreg_el1(val, SYS_TCR);
454         return true;
455 }
456
457 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
458 {
459         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
460             handle_tx2_tvm(vcpu))
461                 return true;
462
463         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
464             handle_ampere1_tcr(vcpu))
465                 return true;
466
467         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
468             __vgic_v3_perform_cpuif_access(vcpu) == 1)
469                 return true;
470
471         if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
472                 return kvm_hyp_handle_ptrauth(vcpu, exit_code);
473
474         if (kvm_hyp_handle_cntpct(vcpu))
475                 return true;
476
477         return false;
478 }
479
480 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
481 {
482         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
483             __vgic_v3_perform_cpuif_access(vcpu) == 1)
484                 return true;
485
486         return false;
487 }
488
489 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
490 {
491         if (!__populate_fault_info(vcpu))
492                 return true;
493
494         return false;
495 }
496 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
497         __alias(kvm_hyp_handle_memory_fault);
498 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
499         __alias(kvm_hyp_handle_memory_fault);
500
501 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
502 {
503         if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
504                 return true;
505
506         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
507                 bool valid;
508
509                 valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
510                         kvm_vcpu_dabt_isvalid(vcpu) &&
511                         !kvm_vcpu_abt_issea(vcpu) &&
512                         !kvm_vcpu_abt_iss1tw(vcpu);
513
514                 if (valid) {
515                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
516
517                         if (ret == 1)
518                                 return true;
519
520                         /* Promote an illegal access to an SError.*/
521                         if (ret == -1)
522                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
523                 }
524         }
525
526         return false;
527 }
528
529 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
530
531 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
532
533 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
534
535 /*
536  * Allow the hypervisor to handle the exit with an exit handler if it has one.
537  *
538  * Returns true if the hypervisor handled the exit, and control should go back
539  * to the guest, or false if it hasn't.
540  */
541 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
542 {
543         const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
544         exit_handler_fn fn;
545
546         fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
547
548         if (fn)
549                 return fn(vcpu, exit_code);
550
551         return false;
552 }
553
554 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
555 {
556         /*
557          * Check for the conditions of Cortex-A510's #2077057. When these occur
558          * SPSR_EL2 can't be trusted, but isn't needed either as it is
559          * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
560          * Are we single-stepping the guest, and took a PAC exception from the
561          * active-not-pending state?
562          */
563         if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)               &&
564             vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP                 &&
565             *vcpu_cpsr(vcpu) & DBG_SPSR_SS                              &&
566             ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
567                 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
568
569         vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
570 }
571
572 /*
573  * Return true when we were able to fixup the guest exit and should return to
574  * the guest, false when we should restore the host state and return to the
575  * main run loop.
576  */
577 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
578 {
579         /*
580          * Save PSTATE early so that we can evaluate the vcpu mode
581          * early on.
582          */
583         synchronize_vcpu_pstate(vcpu, exit_code);
584
585         /*
586          * Check whether we want to repaint the state one way or
587          * another.
588          */
589         early_exit_filter(vcpu, exit_code);
590
591         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
592                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
593
594         if (ARM_SERROR_PENDING(*exit_code) &&
595             ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
596                 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
597
598                 /*
599                  * HVC already have an adjusted PC, which we need to
600                  * correct in order to return to after having injected
601                  * the SError.
602                  *
603                  * SMC, on the other hand, is *trapped*, meaning its
604                  * preferred return address is the SMC itself.
605                  */
606                 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
607                         write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
608         }
609
610         /*
611          * We're using the raw exception code in order to only process
612          * the trap if no SError is pending. We will come back to the
613          * same PC once the SError has been injected, and replay the
614          * trapping instruction.
615          */
616         if (*exit_code != ARM_EXCEPTION_TRAP)
617                 goto exit;
618
619         /* Check if there's an exit handler and allow it to handle the exit. */
620         if (kvm_hyp_handle_exit(vcpu, exit_code))
621                 goto guest;
622 exit:
623         /* Return to the host kernel and handle the exit */
624         return false;
625
626 guest:
627         /* Re-enter the guest */
628         asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
629         return true;
630 }
631
632 static inline void __kvm_unexpected_el2_exception(void)
633 {
634         extern char __guest_exit_panic[];
635         unsigned long addr, fixup;
636         struct kvm_exception_table_entry *entry, *end;
637         unsigned long elr_el2 = read_sysreg(elr_el2);
638
639         entry = &__start___kvm_ex_table;
640         end = &__stop___kvm_ex_table;
641
642         while (entry < end) {
643                 addr = (unsigned long)&entry->insn + entry->insn;
644                 fixup = (unsigned long)&entry->fixup + entry->fixup;
645
646                 if (addr != elr_el2) {
647                         entry++;
648                         continue;
649                 }
650
651                 write_sysreg(fixup, elr_el2);
652                 return;
653         }
654
655         /* Trigger a panic after restoring the hyp context. */
656         write_sysreg(__guest_exit_panic, elr_el2);
657 }
658
659 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */