KVM: arm64: Rework CPTR_EL2 programming for HVHE configuration
[platform/kernel/linux-starfive.git] / arch / arm64 / kvm / hyp / include / hyp / switch.h
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18
19 #include <kvm/arm_psci.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33
34 struct kvm_exception_table_entry {
35         int insn, fixup;
36 };
37
38 extern struct kvm_exception_table_entry __start___kvm_ex_table;
39 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
40
41 /* Check whether the FP regs are owned by the guest */
42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
43 {
44         return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
45 }
46
47 /* Save the 32-bit only FPSIMD system register state */
48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
49 {
50         if (!vcpu_el1_is_32bit(vcpu))
51                 return;
52
53         __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
54 }
55
56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
57 {
58         /*
59          * We are about to set CPTR_EL2.TFP to trap all floating point
60          * register accesses to EL2, however, the ARM ARM clearly states that
61          * traps are only taken to EL2 if the operation would not otherwise
62          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
63          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
64          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
65          * it will cause an exception.
66          */
67         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
68                 write_sysreg(1 << 30, fpexc32_el2);
69                 isb();
70         }
71 }
72
73 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
74 {
75         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
76         write_sysreg(1 << 15, hstr_el2);
77
78         /*
79          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
80          * PMSELR_EL0 to make sure it never contains the cycle
81          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
82          * EL1 instead of being trapped to EL2.
83          */
84         if (kvm_arm_support_pmu_v3()) {
85                 write_sysreg(0, pmselr_el0);
86                 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
87         }
88
89         vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
90         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
91
92         if (cpus_have_final_cap(ARM64_SME)) {
93                 sysreg_clear_set_s(SYS_HFGRTR_EL2,
94                                    HFGxTR_EL2_nSMPRI_EL1_MASK |
95                                    HFGxTR_EL2_nTPIDR2_EL0_MASK,
96                                    0);
97                 sysreg_clear_set_s(SYS_HFGWTR_EL2,
98                                    HFGxTR_EL2_nSMPRI_EL1_MASK |
99                                    HFGxTR_EL2_nTPIDR2_EL0_MASK,
100                                    0);
101         }
102 }
103
104 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
105 {
106         write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
107
108         write_sysreg(0, hstr_el2);
109         if (kvm_arm_support_pmu_v3())
110                 write_sysreg(0, pmuserenr_el0);
111
112         if (cpus_have_final_cap(ARM64_SME)) {
113                 sysreg_clear_set_s(SYS_HFGRTR_EL2, 0,
114                                    HFGxTR_EL2_nSMPRI_EL1_MASK |
115                                    HFGxTR_EL2_nTPIDR2_EL0_MASK);
116                 sysreg_clear_set_s(SYS_HFGWTR_EL2, 0,
117                                    HFGxTR_EL2_nSMPRI_EL1_MASK |
118                                    HFGxTR_EL2_nTPIDR2_EL0_MASK);
119         }
120 }
121
122 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
123 {
124         u64 hcr = vcpu->arch.hcr_el2;
125
126         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
127                 hcr |= HCR_TVM;
128
129         write_sysreg(hcr, hcr_el2);
130
131         if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
132                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
133 }
134
135 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
136 {
137         /*
138          * If we pended a virtual abort, preserve it until it gets
139          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
140          * the crucial bit is "On taking a vSError interrupt,
141          * HCR_EL2.VSE is cleared to 0."
142          */
143         if (vcpu->arch.hcr_el2 & HCR_VSE) {
144                 vcpu->arch.hcr_el2 &= ~HCR_VSE;
145                 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
146         }
147 }
148
149 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
150 {
151         return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
152 }
153
154 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
155 {
156         sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
157         __sve_restore_state(vcpu_sve_pffr(vcpu),
158                             &vcpu->arch.ctxt.fp_regs.fpsr);
159         write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
160 }
161
162 /*
163  * We trap the first access to the FP/SIMD to save the host context and
164  * restore the guest context lazily.
165  * If FP/SIMD is not implemented, handle the trap and inject an undefined
166  * instruction exception to the guest. Similarly for trapped SVE accesses.
167  */
168 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
169 {
170         bool sve_guest;
171         u8 esr_ec;
172         u64 reg;
173
174         if (!system_supports_fpsimd())
175                 return false;
176
177         sve_guest = vcpu_has_sve(vcpu);
178         esr_ec = kvm_vcpu_trap_get_class(vcpu);
179
180         /* Only handle traps the vCPU can support here: */
181         switch (esr_ec) {
182         case ESR_ELx_EC_FP_ASIMD:
183                 break;
184         case ESR_ELx_EC_SVE:
185                 if (!sve_guest)
186                         return false;
187                 break;
188         default:
189                 return false;
190         }
191
192         /* Valid trap.  Switch the context: */
193
194         /* First disable enough traps to allow us to update the registers */
195         if (has_vhe() || has_hvhe()) {
196                 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
197                 if (sve_guest)
198                         reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
199
200                 sysreg_clear_set(cpacr_el1, 0, reg);
201         } else {
202                 reg = CPTR_EL2_TFP;
203                 if (sve_guest)
204                         reg |= CPTR_EL2_TZ;
205
206                 sysreg_clear_set(cptr_el2, reg, 0);
207         }
208         isb();
209
210         /* Write out the host state if it's in the registers */
211         if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
212                 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
213
214         /* Restore the guest state */
215         if (sve_guest)
216                 __hyp_sve_restore_guest(vcpu);
217         else
218                 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
219
220         /* Skip restoring fpexc32 for AArch64 guests */
221         if (!(read_sysreg(hcr_el2) & HCR_RW))
222                 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
223
224         vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
225
226         return true;
227 }
228
229 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
230 {
231         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
232         int rt = kvm_vcpu_sys_get_rt(vcpu);
233         u64 val = vcpu_get_reg(vcpu, rt);
234
235         /*
236          * The normal sysreg handling code expects to see the traps,
237          * let's not do anything here.
238          */
239         if (vcpu->arch.hcr_el2 & HCR_TVM)
240                 return false;
241
242         switch (sysreg) {
243         case SYS_SCTLR_EL1:
244                 write_sysreg_el1(val, SYS_SCTLR);
245                 break;
246         case SYS_TTBR0_EL1:
247                 write_sysreg_el1(val, SYS_TTBR0);
248                 break;
249         case SYS_TTBR1_EL1:
250                 write_sysreg_el1(val, SYS_TTBR1);
251                 break;
252         case SYS_TCR_EL1:
253                 write_sysreg_el1(val, SYS_TCR);
254                 break;
255         case SYS_ESR_EL1:
256                 write_sysreg_el1(val, SYS_ESR);
257                 break;
258         case SYS_FAR_EL1:
259                 write_sysreg_el1(val, SYS_FAR);
260                 break;
261         case SYS_AFSR0_EL1:
262                 write_sysreg_el1(val, SYS_AFSR0);
263                 break;
264         case SYS_AFSR1_EL1:
265                 write_sysreg_el1(val, SYS_AFSR1);
266                 break;
267         case SYS_MAIR_EL1:
268                 write_sysreg_el1(val, SYS_MAIR);
269                 break;
270         case SYS_AMAIR_EL1:
271                 write_sysreg_el1(val, SYS_AMAIR);
272                 break;
273         case SYS_CONTEXTIDR_EL1:
274                 write_sysreg_el1(val, SYS_CONTEXTIDR);
275                 break;
276         default:
277                 return false;
278         }
279
280         __kvm_skip_instr(vcpu);
281         return true;
282 }
283
284 static inline bool esr_is_ptrauth_trap(u64 esr)
285 {
286         switch (esr_sys64_to_sysreg(esr)) {
287         case SYS_APIAKEYLO_EL1:
288         case SYS_APIAKEYHI_EL1:
289         case SYS_APIBKEYLO_EL1:
290         case SYS_APIBKEYHI_EL1:
291         case SYS_APDAKEYLO_EL1:
292         case SYS_APDAKEYHI_EL1:
293         case SYS_APDBKEYLO_EL1:
294         case SYS_APDBKEYHI_EL1:
295         case SYS_APGAKEYLO_EL1:
296         case SYS_APGAKEYHI_EL1:
297                 return true;
298         }
299
300         return false;
301 }
302
303 #define __ptrauth_save_key(ctxt, key)                                   \
304         do {                                                            \
305         u64 __val;                                                      \
306         __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
307         ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
308         __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
309         ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
310 } while(0)
311
312 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
313
314 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
315 {
316         struct kvm_cpu_context *ctxt;
317         u64 val;
318
319         if (!vcpu_has_ptrauth(vcpu))
320                 return false;
321
322         ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
323         __ptrauth_save_key(ctxt, APIA);
324         __ptrauth_save_key(ctxt, APIB);
325         __ptrauth_save_key(ctxt, APDA);
326         __ptrauth_save_key(ctxt, APDB);
327         __ptrauth_save_key(ctxt, APGA);
328
329         vcpu_ptrauth_enable(vcpu);
330
331         val = read_sysreg(hcr_el2);
332         val |= (HCR_API | HCR_APK);
333         write_sysreg(val, hcr_el2);
334
335         return true;
336 }
337
338 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
339 {
340         struct arch_timer_context *ctxt;
341         u32 sysreg;
342         u64 val;
343
344         /*
345          * We only get here for 64bit guests, 32bit guests will hit
346          * the long and winding road all the way to the standard
347          * handling. Yes, it sucks to be irrelevant.
348          */
349         sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
350
351         switch (sysreg) {
352         case SYS_CNTPCT_EL0:
353         case SYS_CNTPCTSS_EL0:
354                 if (vcpu_has_nv(vcpu)) {
355                         if (is_hyp_ctxt(vcpu)) {
356                                 ctxt = vcpu_hptimer(vcpu);
357                                 break;
358                         }
359
360                         /* Check for guest hypervisor trapping */
361                         val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
362                         if (!vcpu_el2_e2h_is_set(vcpu))
363                                 val = (val & CNTHCTL_EL1PCTEN) << 10;
364
365                         if (!(val & (CNTHCTL_EL1PCTEN << 10)))
366                                 return false;
367                 }
368
369                 ctxt = vcpu_ptimer(vcpu);
370                 break;
371         default:
372                 return false;
373         }
374
375         val = arch_timer_read_cntpct_el0();
376
377         if (ctxt->offset.vm_offset)
378                 val -= *kern_hyp_va(ctxt->offset.vm_offset);
379         if (ctxt->offset.vcpu_offset)
380                 val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
381
382         vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
383         __kvm_skip_instr(vcpu);
384         return true;
385 }
386
387 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
388 {
389         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
390             handle_tx2_tvm(vcpu))
391                 return true;
392
393         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
394             __vgic_v3_perform_cpuif_access(vcpu) == 1)
395                 return true;
396
397         if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
398                 return kvm_hyp_handle_ptrauth(vcpu, exit_code);
399
400         if (kvm_hyp_handle_cntpct(vcpu))
401                 return true;
402
403         return false;
404 }
405
406 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
407 {
408         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
409             __vgic_v3_perform_cpuif_access(vcpu) == 1)
410                 return true;
411
412         return false;
413 }
414
415 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
416 {
417         if (!__populate_fault_info(vcpu))
418                 return true;
419
420         return false;
421 }
422
423 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
424 {
425         if (!__populate_fault_info(vcpu))
426                 return true;
427
428         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
429                 bool valid;
430
431                 valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
432                         kvm_vcpu_dabt_isvalid(vcpu) &&
433                         !kvm_vcpu_abt_issea(vcpu) &&
434                         !kvm_vcpu_abt_iss1tw(vcpu);
435
436                 if (valid) {
437                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
438
439                         if (ret == 1)
440                                 return true;
441
442                         /* Promote an illegal access to an SError.*/
443                         if (ret == -1)
444                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
445                 }
446         }
447
448         return false;
449 }
450
451 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
452
453 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
454
455 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
456
457 /*
458  * Allow the hypervisor to handle the exit with an exit handler if it has one.
459  *
460  * Returns true if the hypervisor handled the exit, and control should go back
461  * to the guest, or false if it hasn't.
462  */
463 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
464 {
465         const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
466         exit_handler_fn fn;
467
468         fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
469
470         if (fn)
471                 return fn(vcpu, exit_code);
472
473         return false;
474 }
475
476 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
477 {
478         /*
479          * Check for the conditions of Cortex-A510's #2077057. When these occur
480          * SPSR_EL2 can't be trusted, but isn't needed either as it is
481          * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
482          * Are we single-stepping the guest, and took a PAC exception from the
483          * active-not-pending state?
484          */
485         if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)               &&
486             vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP                 &&
487             *vcpu_cpsr(vcpu) & DBG_SPSR_SS                              &&
488             ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
489                 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
490
491         vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
492 }
493
494 /*
495  * Return true when we were able to fixup the guest exit and should return to
496  * the guest, false when we should restore the host state and return to the
497  * main run loop.
498  */
499 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
500 {
501         /*
502          * Save PSTATE early so that we can evaluate the vcpu mode
503          * early on.
504          */
505         synchronize_vcpu_pstate(vcpu, exit_code);
506
507         /*
508          * Check whether we want to repaint the state one way or
509          * another.
510          */
511         early_exit_filter(vcpu, exit_code);
512
513         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
514                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
515
516         if (ARM_SERROR_PENDING(*exit_code) &&
517             ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
518                 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
519
520                 /*
521                  * HVC already have an adjusted PC, which we need to
522                  * correct in order to return to after having injected
523                  * the SError.
524                  *
525                  * SMC, on the other hand, is *trapped*, meaning its
526                  * preferred return address is the SMC itself.
527                  */
528                 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
529                         write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
530         }
531
532         /*
533          * We're using the raw exception code in order to only process
534          * the trap if no SError is pending. We will come back to the
535          * same PC once the SError has been injected, and replay the
536          * trapping instruction.
537          */
538         if (*exit_code != ARM_EXCEPTION_TRAP)
539                 goto exit;
540
541         /* Check if there's an exit handler and allow it to handle the exit. */
542         if (kvm_hyp_handle_exit(vcpu, exit_code))
543                 goto guest;
544 exit:
545         /* Return to the host kernel and handle the exit */
546         return false;
547
548 guest:
549         /* Re-enter the guest */
550         asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
551         return true;
552 }
553
554 static inline void __kvm_unexpected_el2_exception(void)
555 {
556         extern char __guest_exit_panic[];
557         unsigned long addr, fixup;
558         struct kvm_exception_table_entry *entry, *end;
559         unsigned long elr_el2 = read_sysreg(elr_el2);
560
561         entry = &__start___kvm_ex_table;
562         end = &__stop___kvm_ex_table;
563
564         while (entry < end) {
565                 addr = (unsigned long)&entry->insn + entry->insn;
566                 fixup = (unsigned long)&entry->fixup + entry->fixup;
567
568                 if (addr != elr_el2) {
569                         entry++;
570                         continue;
571                 }
572
573                 write_sysreg(fixup, elr_el2);
574                 return;
575         }
576
577         /* Trigger a panic after restoring the hyp context. */
578         write_sysreg(__guest_exit_panic, elr_el2);
579 }
580
581 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */