1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
19 #include <kvm/arm_psci.h>
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
34 struct kvm_exception_table_entry {
38 extern struct kvm_exception_table_entry __start___kvm_ex_table;
39 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
41 /* Check whether the FP regs are owned by the guest */
42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
44 return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
47 /* Save the 32-bit only FPSIMD system register state */
48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
50 if (!vcpu_el1_is_32bit(vcpu))
53 __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
59 * We are about to set CPTR_EL2.TFP to trap all floating point
60 * register accesses to EL2, however, the ARM ARM clearly states that
61 * traps are only taken to EL2 if the operation would not otherwise
62 * trap to EL1. Therefore, always make sure that for 32-bit guests,
63 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
64 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
65 * it will cause an exception.
67 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
68 write_sysreg(1 << 30, fpexc32_el2);
73 static inline bool __hfgxtr_traps_required(void)
75 if (cpus_have_final_cap(ARM64_SME))
78 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
84 static inline void __activate_traps_hfgxtr(void)
86 u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
88 if (cpus_have_final_cap(ARM64_SME)) {
89 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
96 * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD.
98 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
99 w_set |= HFGxTR_EL2_TCR_EL1_MASK;
101 sysreg_clear_set_s(SYS_HFGRTR_EL2, r_clr, r_set);
102 sysreg_clear_set_s(SYS_HFGWTR_EL2, w_clr, w_set);
105 static inline void __deactivate_traps_hfgxtr(void)
107 u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
109 if (cpus_have_final_cap(ARM64_SME)) {
110 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
116 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
117 w_clr |= HFGxTR_EL2_TCR_EL1_MASK;
119 sysreg_clear_set_s(SYS_HFGRTR_EL2, r_clr, r_set);
120 sysreg_clear_set_s(SYS_HFGWTR_EL2, w_clr, w_set);
123 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
125 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
126 write_sysreg(1 << 15, hstr_el2);
129 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
130 * PMSELR_EL0 to make sure it never contains the cycle
131 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
132 * EL1 instead of being trapped to EL2.
134 if (kvm_arm_support_pmu_v3()) {
135 struct kvm_cpu_context *hctxt;
137 write_sysreg(0, pmselr_el0);
139 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
140 ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
141 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
142 vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
145 vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
146 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
148 if (__hfgxtr_traps_required())
149 __activate_traps_hfgxtr();
152 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
154 write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
156 write_sysreg(0, hstr_el2);
157 if (kvm_arm_support_pmu_v3()) {
158 struct kvm_cpu_context *hctxt;
160 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
161 write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
162 vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
165 if (__hfgxtr_traps_required())
166 __deactivate_traps_hfgxtr();
169 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
171 u64 hcr = vcpu->arch.hcr_el2;
173 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
176 write_sysreg(hcr, hcr_el2);
178 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
179 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
181 if (cpus_have_final_cap(ARM64_HAS_HCX))
182 write_sysreg_s(HCRX_GUEST_FLAGS, SYS_HCRX_EL2);
185 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
188 * If we pended a virtual abort, preserve it until it gets
189 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
190 * the crucial bit is "On taking a vSError interrupt,
191 * HCR_EL2.VSE is cleared to 0."
193 if (vcpu->arch.hcr_el2 & HCR_VSE) {
194 vcpu->arch.hcr_el2 &= ~HCR_VSE;
195 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
198 if (cpus_have_final_cap(ARM64_HAS_HCX))
199 write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
202 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
204 return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
207 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
209 sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
210 __sve_restore_state(vcpu_sve_pffr(vcpu),
211 &vcpu->arch.ctxt.fp_regs.fpsr);
212 write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
216 * We trap the first access to the FP/SIMD to save the host context and
217 * restore the guest context lazily.
218 * If FP/SIMD is not implemented, handle the trap and inject an undefined
219 * instruction exception to the guest. Similarly for trapped SVE accesses.
221 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
227 if (!system_supports_fpsimd())
230 sve_guest = vcpu_has_sve(vcpu);
231 esr_ec = kvm_vcpu_trap_get_class(vcpu);
233 /* Only handle traps the vCPU can support here: */
235 case ESR_ELx_EC_FP_ASIMD:
245 /* Valid trap. Switch the context: */
247 /* First disable enough traps to allow us to update the registers */
248 if (has_vhe() || has_hvhe()) {
249 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
251 reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
253 sysreg_clear_set(cpacr_el1, 0, reg);
259 sysreg_clear_set(cptr_el2, reg, 0);
263 /* Write out the host state if it's in the registers */
264 if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
265 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
267 /* Restore the guest state */
269 __hyp_sve_restore_guest(vcpu);
271 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
273 /* Skip restoring fpexc32 for AArch64 guests */
274 if (!(read_sysreg(hcr_el2) & HCR_RW))
275 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
277 vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
282 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
284 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
285 int rt = kvm_vcpu_sys_get_rt(vcpu);
286 u64 val = vcpu_get_reg(vcpu, rt);
289 * The normal sysreg handling code expects to see the traps,
290 * let's not do anything here.
292 if (vcpu->arch.hcr_el2 & HCR_TVM)
297 write_sysreg_el1(val, SYS_SCTLR);
300 write_sysreg_el1(val, SYS_TTBR0);
303 write_sysreg_el1(val, SYS_TTBR1);
306 write_sysreg_el1(val, SYS_TCR);
309 write_sysreg_el1(val, SYS_ESR);
312 write_sysreg_el1(val, SYS_FAR);
315 write_sysreg_el1(val, SYS_AFSR0);
318 write_sysreg_el1(val, SYS_AFSR1);
321 write_sysreg_el1(val, SYS_MAIR);
324 write_sysreg_el1(val, SYS_AMAIR);
326 case SYS_CONTEXTIDR_EL1:
327 write_sysreg_el1(val, SYS_CONTEXTIDR);
333 __kvm_skip_instr(vcpu);
337 static inline bool esr_is_ptrauth_trap(u64 esr)
339 switch (esr_sys64_to_sysreg(esr)) {
340 case SYS_APIAKEYLO_EL1:
341 case SYS_APIAKEYHI_EL1:
342 case SYS_APIBKEYLO_EL1:
343 case SYS_APIBKEYHI_EL1:
344 case SYS_APDAKEYLO_EL1:
345 case SYS_APDAKEYHI_EL1:
346 case SYS_APDBKEYLO_EL1:
347 case SYS_APDBKEYHI_EL1:
348 case SYS_APGAKEYLO_EL1:
349 case SYS_APGAKEYHI_EL1:
356 #define __ptrauth_save_key(ctxt, key) \
359 __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
360 ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \
361 __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
362 ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \
365 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
367 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
369 struct kvm_cpu_context *ctxt;
372 if (!vcpu_has_ptrauth(vcpu))
375 ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
376 __ptrauth_save_key(ctxt, APIA);
377 __ptrauth_save_key(ctxt, APIB);
378 __ptrauth_save_key(ctxt, APDA);
379 __ptrauth_save_key(ctxt, APDB);
380 __ptrauth_save_key(ctxt, APGA);
382 vcpu_ptrauth_enable(vcpu);
384 val = read_sysreg(hcr_el2);
385 val |= (HCR_API | HCR_APK);
386 write_sysreg(val, hcr_el2);
391 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
393 struct arch_timer_context *ctxt;
398 * We only get here for 64bit guests, 32bit guests will hit
399 * the long and winding road all the way to the standard
400 * handling. Yes, it sucks to be irrelevant.
402 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
406 case SYS_CNTPCTSS_EL0:
407 if (vcpu_has_nv(vcpu)) {
408 if (is_hyp_ctxt(vcpu)) {
409 ctxt = vcpu_hptimer(vcpu);
413 /* Check for guest hypervisor trapping */
414 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
415 if (!vcpu_el2_e2h_is_set(vcpu))
416 val = (val & CNTHCTL_EL1PCTEN) << 10;
418 if (!(val & (CNTHCTL_EL1PCTEN << 10)))
422 ctxt = vcpu_ptimer(vcpu);
428 val = arch_timer_read_cntpct_el0();
430 if (ctxt->offset.vm_offset)
431 val -= *kern_hyp_va(ctxt->offset.vm_offset);
432 if (ctxt->offset.vcpu_offset)
433 val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
435 vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
436 __kvm_skip_instr(vcpu);
440 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
442 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
443 int rt = kvm_vcpu_sys_get_rt(vcpu);
444 u64 val = vcpu_get_reg(vcpu, rt);
446 if (sysreg != SYS_TCR_EL1)
450 * Affected parts do not advertise support for hardware Access Flag /
451 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
452 * control bits are still functional. The architecture requires these be
453 * RES0 on systems that do not implement FEAT_HAFDBS.
455 * Uphold the requirements of the architecture by masking guest writes
456 * to TCR_EL1.{HA,HD} here.
458 val &= ~(TCR_HD | TCR_HA);
459 write_sysreg_el1(val, SYS_TCR);
463 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
465 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
466 handle_tx2_tvm(vcpu))
469 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
470 handle_ampere1_tcr(vcpu))
473 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
474 __vgic_v3_perform_cpuif_access(vcpu) == 1)
477 if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
478 return kvm_hyp_handle_ptrauth(vcpu, exit_code);
480 if (kvm_hyp_handle_cntpct(vcpu))
486 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
488 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
489 __vgic_v3_perform_cpuif_access(vcpu) == 1)
495 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
497 if (!__populate_fault_info(vcpu))
502 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
503 __alias(kvm_hyp_handle_memory_fault);
504 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
505 __alias(kvm_hyp_handle_memory_fault);
507 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
509 if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
512 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
515 valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
516 kvm_vcpu_dabt_isvalid(vcpu) &&
517 !kvm_vcpu_abt_issea(vcpu) &&
518 !kvm_vcpu_abt_iss1tw(vcpu);
521 int ret = __vgic_v2_perform_cpuif_access(vcpu);
526 /* Promote an illegal access to an SError.*/
528 *exit_code = ARM_EXCEPTION_EL1_SERROR;
535 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
537 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
539 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
542 * Allow the hypervisor to handle the exit with an exit handler if it has one.
544 * Returns true if the hypervisor handled the exit, and control should go back
545 * to the guest, or false if it hasn't.
547 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
549 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
552 fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
555 return fn(vcpu, exit_code);
560 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
563 * Check for the conditions of Cortex-A510's #2077057. When these occur
564 * SPSR_EL2 can't be trusted, but isn't needed either as it is
565 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
566 * Are we single-stepping the guest, and took a PAC exception from the
567 * active-not-pending state?
569 if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) &&
570 vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
571 *vcpu_cpsr(vcpu) & DBG_SPSR_SS &&
572 ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
573 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
575 vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
579 * Return true when we were able to fixup the guest exit and should return to
580 * the guest, false when we should restore the host state and return to the
583 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
586 * Save PSTATE early so that we can evaluate the vcpu mode
589 synchronize_vcpu_pstate(vcpu, exit_code);
592 * Check whether we want to repaint the state one way or
595 early_exit_filter(vcpu, exit_code);
597 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
598 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
600 if (ARM_SERROR_PENDING(*exit_code) &&
601 ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
602 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
605 * HVC already have an adjusted PC, which we need to
606 * correct in order to return to after having injected
609 * SMC, on the other hand, is *trapped*, meaning its
610 * preferred return address is the SMC itself.
612 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
613 write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
617 * We're using the raw exception code in order to only process
618 * the trap if no SError is pending. We will come back to the
619 * same PC once the SError has been injected, and replay the
620 * trapping instruction.
622 if (*exit_code != ARM_EXCEPTION_TRAP)
625 /* Check if there's an exit handler and allow it to handle the exit. */
626 if (kvm_hyp_handle_exit(vcpu, exit_code))
629 /* Return to the host kernel and handle the exit */
633 /* Re-enter the guest */
634 asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
638 static inline void __kvm_unexpected_el2_exception(void)
640 extern char __guest_exit_panic[];
641 unsigned long addr, fixup;
642 struct kvm_exception_table_entry *entry, *end;
643 unsigned long elr_el2 = read_sysreg(elr_el2);
645 entry = &__start___kvm_ex_table;
646 end = &__stop___kvm_ex_table;
648 while (entry < end) {
649 addr = (unsigned long)&entry->insn + entry->insn;
650 fixup = (unsigned long)&entry->fixup + entry->fixup;
652 if (addr != elr_el2) {
657 write_sysreg(fixup, elr_el2);
661 /* Trigger a panic after restoring the hyp context. */
662 write_sysreg(__guest_exit_panic, elr_el2);
665 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */