drm/nouveau: fence: fix undefined fence state after emit
[platform/kernel/linux-rpi.git] / arch / arm64 / kvm / hyp / include / hyp / switch.h
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18
19 #include <kvm/arm_psci.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33
34 struct kvm_exception_table_entry {
35         int insn, fixup;
36 };
37
38 extern struct kvm_exception_table_entry __start___kvm_ex_table;
39 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
40
41 /* Check whether the FP regs are owned by the guest */
42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
43 {
44         return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
45 }
46
47 /* Save the 32-bit only FPSIMD system register state */
48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
49 {
50         if (!vcpu_el1_is_32bit(vcpu))
51                 return;
52
53         __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
54 }
55
56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
57 {
58         /*
59          * We are about to set CPTR_EL2.TFP to trap all floating point
60          * register accesses to EL2, however, the ARM ARM clearly states that
61          * traps are only taken to EL2 if the operation would not otherwise
62          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
63          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
64          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
65          * it will cause an exception.
66          */
67         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
68                 write_sysreg(1 << 30, fpexc32_el2);
69                 isb();
70         }
71 }
72
73 static inline bool __hfgxtr_traps_required(void)
74 {
75         if (cpus_have_final_cap(ARM64_SME))
76                 return true;
77
78         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
79                 return true;
80
81         return false;
82 }
83
84 static inline void __activate_traps_hfgxtr(void)
85 {
86         u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
87
88         if (cpus_have_final_cap(ARM64_SME)) {
89                 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
90
91                 r_clr |= tmp;
92                 w_clr |= tmp;
93         }
94
95         /*
96          * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD.
97          */
98         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
99                 w_set |= HFGxTR_EL2_TCR_EL1_MASK;
100
101         sysreg_clear_set_s(SYS_HFGRTR_EL2, r_clr, r_set);
102         sysreg_clear_set_s(SYS_HFGWTR_EL2, w_clr, w_set);
103 }
104
105 static inline void __deactivate_traps_hfgxtr(void)
106 {
107         u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
108
109         if (cpus_have_final_cap(ARM64_SME)) {
110                 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
111
112                 r_set |= tmp;
113                 w_set |= tmp;
114         }
115
116         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
117                 w_clr |= HFGxTR_EL2_TCR_EL1_MASK;
118
119         sysreg_clear_set_s(SYS_HFGRTR_EL2, r_clr, r_set);
120         sysreg_clear_set_s(SYS_HFGWTR_EL2, w_clr, w_set);
121 }
122
123 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
124 {
125         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
126         write_sysreg(1 << 15, hstr_el2);
127
128         /*
129          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
130          * PMSELR_EL0 to make sure it never contains the cycle
131          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
132          * EL1 instead of being trapped to EL2.
133          */
134         if (kvm_arm_support_pmu_v3()) {
135                 struct kvm_cpu_context *hctxt;
136
137                 write_sysreg(0, pmselr_el0);
138
139                 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
140                 ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
141                 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
142                 vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
143         }
144
145         vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
146         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
147
148         if (__hfgxtr_traps_required())
149                 __activate_traps_hfgxtr();
150 }
151
152 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
153 {
154         write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
155
156         write_sysreg(0, hstr_el2);
157         if (kvm_arm_support_pmu_v3()) {
158                 struct kvm_cpu_context *hctxt;
159
160                 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
161                 write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
162                 vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
163         }
164
165         if (__hfgxtr_traps_required())
166                 __deactivate_traps_hfgxtr();
167 }
168
169 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
170 {
171         u64 hcr = vcpu->arch.hcr_el2;
172
173         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
174                 hcr |= HCR_TVM;
175
176         write_sysreg(hcr, hcr_el2);
177
178         if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
179                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
180
181         if (cpus_have_final_cap(ARM64_HAS_HCX))
182                 write_sysreg_s(HCRX_GUEST_FLAGS, SYS_HCRX_EL2);
183 }
184
185 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
186 {
187         /*
188          * If we pended a virtual abort, preserve it until it gets
189          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
190          * the crucial bit is "On taking a vSError interrupt,
191          * HCR_EL2.VSE is cleared to 0."
192          */
193         if (vcpu->arch.hcr_el2 & HCR_VSE) {
194                 vcpu->arch.hcr_el2 &= ~HCR_VSE;
195                 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
196         }
197
198         if (cpus_have_final_cap(ARM64_HAS_HCX))
199                 write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
200 }
201
202 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
203 {
204         return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
205 }
206
207 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
208 {
209         sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
210         __sve_restore_state(vcpu_sve_pffr(vcpu),
211                             &vcpu->arch.ctxt.fp_regs.fpsr);
212         write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
213 }
214
215 /*
216  * We trap the first access to the FP/SIMD to save the host context and
217  * restore the guest context lazily.
218  * If FP/SIMD is not implemented, handle the trap and inject an undefined
219  * instruction exception to the guest. Similarly for trapped SVE accesses.
220  */
221 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
222 {
223         bool sve_guest;
224         u8 esr_ec;
225         u64 reg;
226
227         if (!system_supports_fpsimd())
228                 return false;
229
230         sve_guest = vcpu_has_sve(vcpu);
231         esr_ec = kvm_vcpu_trap_get_class(vcpu);
232
233         /* Only handle traps the vCPU can support here: */
234         switch (esr_ec) {
235         case ESR_ELx_EC_FP_ASIMD:
236                 break;
237         case ESR_ELx_EC_SVE:
238                 if (!sve_guest)
239                         return false;
240                 break;
241         default:
242                 return false;
243         }
244
245         /* Valid trap.  Switch the context: */
246
247         /* First disable enough traps to allow us to update the registers */
248         if (has_vhe() || has_hvhe()) {
249                 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
250                 if (sve_guest)
251                         reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
252
253                 sysreg_clear_set(cpacr_el1, 0, reg);
254         } else {
255                 reg = CPTR_EL2_TFP;
256                 if (sve_guest)
257                         reg |= CPTR_EL2_TZ;
258
259                 sysreg_clear_set(cptr_el2, reg, 0);
260         }
261         isb();
262
263         /* Write out the host state if it's in the registers */
264         if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
265                 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
266
267         /* Restore the guest state */
268         if (sve_guest)
269                 __hyp_sve_restore_guest(vcpu);
270         else
271                 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
272
273         /* Skip restoring fpexc32 for AArch64 guests */
274         if (!(read_sysreg(hcr_el2) & HCR_RW))
275                 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
276
277         vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
278
279         return true;
280 }
281
282 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
283 {
284         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
285         int rt = kvm_vcpu_sys_get_rt(vcpu);
286         u64 val = vcpu_get_reg(vcpu, rt);
287
288         /*
289          * The normal sysreg handling code expects to see the traps,
290          * let's not do anything here.
291          */
292         if (vcpu->arch.hcr_el2 & HCR_TVM)
293                 return false;
294
295         switch (sysreg) {
296         case SYS_SCTLR_EL1:
297                 write_sysreg_el1(val, SYS_SCTLR);
298                 break;
299         case SYS_TTBR0_EL1:
300                 write_sysreg_el1(val, SYS_TTBR0);
301                 break;
302         case SYS_TTBR1_EL1:
303                 write_sysreg_el1(val, SYS_TTBR1);
304                 break;
305         case SYS_TCR_EL1:
306                 write_sysreg_el1(val, SYS_TCR);
307                 break;
308         case SYS_ESR_EL1:
309                 write_sysreg_el1(val, SYS_ESR);
310                 break;
311         case SYS_FAR_EL1:
312                 write_sysreg_el1(val, SYS_FAR);
313                 break;
314         case SYS_AFSR0_EL1:
315                 write_sysreg_el1(val, SYS_AFSR0);
316                 break;
317         case SYS_AFSR1_EL1:
318                 write_sysreg_el1(val, SYS_AFSR1);
319                 break;
320         case SYS_MAIR_EL1:
321                 write_sysreg_el1(val, SYS_MAIR);
322                 break;
323         case SYS_AMAIR_EL1:
324                 write_sysreg_el1(val, SYS_AMAIR);
325                 break;
326         case SYS_CONTEXTIDR_EL1:
327                 write_sysreg_el1(val, SYS_CONTEXTIDR);
328                 break;
329         default:
330                 return false;
331         }
332
333         __kvm_skip_instr(vcpu);
334         return true;
335 }
336
337 static inline bool esr_is_ptrauth_trap(u64 esr)
338 {
339         switch (esr_sys64_to_sysreg(esr)) {
340         case SYS_APIAKEYLO_EL1:
341         case SYS_APIAKEYHI_EL1:
342         case SYS_APIBKEYLO_EL1:
343         case SYS_APIBKEYHI_EL1:
344         case SYS_APDAKEYLO_EL1:
345         case SYS_APDAKEYHI_EL1:
346         case SYS_APDBKEYLO_EL1:
347         case SYS_APDBKEYHI_EL1:
348         case SYS_APGAKEYLO_EL1:
349         case SYS_APGAKEYHI_EL1:
350                 return true;
351         }
352
353         return false;
354 }
355
356 #define __ptrauth_save_key(ctxt, key)                                   \
357         do {                                                            \
358         u64 __val;                                                      \
359         __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
360         ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
361         __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
362         ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
363 } while(0)
364
365 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
366
367 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
368 {
369         struct kvm_cpu_context *ctxt;
370         u64 val;
371
372         if (!vcpu_has_ptrauth(vcpu))
373                 return false;
374
375         ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
376         __ptrauth_save_key(ctxt, APIA);
377         __ptrauth_save_key(ctxt, APIB);
378         __ptrauth_save_key(ctxt, APDA);
379         __ptrauth_save_key(ctxt, APDB);
380         __ptrauth_save_key(ctxt, APGA);
381
382         vcpu_ptrauth_enable(vcpu);
383
384         val = read_sysreg(hcr_el2);
385         val |= (HCR_API | HCR_APK);
386         write_sysreg(val, hcr_el2);
387
388         return true;
389 }
390
391 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
392 {
393         struct arch_timer_context *ctxt;
394         u32 sysreg;
395         u64 val;
396
397         /*
398          * We only get here for 64bit guests, 32bit guests will hit
399          * the long and winding road all the way to the standard
400          * handling. Yes, it sucks to be irrelevant.
401          */
402         sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
403
404         switch (sysreg) {
405         case SYS_CNTPCT_EL0:
406         case SYS_CNTPCTSS_EL0:
407                 if (vcpu_has_nv(vcpu)) {
408                         if (is_hyp_ctxt(vcpu)) {
409                                 ctxt = vcpu_hptimer(vcpu);
410                                 break;
411                         }
412
413                         /* Check for guest hypervisor trapping */
414                         val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
415                         if (!vcpu_el2_e2h_is_set(vcpu))
416                                 val = (val & CNTHCTL_EL1PCTEN) << 10;
417
418                         if (!(val & (CNTHCTL_EL1PCTEN << 10)))
419                                 return false;
420                 }
421
422                 ctxt = vcpu_ptimer(vcpu);
423                 break;
424         default:
425                 return false;
426         }
427
428         val = arch_timer_read_cntpct_el0();
429
430         if (ctxt->offset.vm_offset)
431                 val -= *kern_hyp_va(ctxt->offset.vm_offset);
432         if (ctxt->offset.vcpu_offset)
433                 val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
434
435         vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
436         __kvm_skip_instr(vcpu);
437         return true;
438 }
439
440 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
441 {
442         u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
443         int rt = kvm_vcpu_sys_get_rt(vcpu);
444         u64 val = vcpu_get_reg(vcpu, rt);
445
446         if (sysreg != SYS_TCR_EL1)
447                 return false;
448
449         /*
450          * Affected parts do not advertise support for hardware Access Flag /
451          * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
452          * control bits are still functional. The architecture requires these be
453          * RES0 on systems that do not implement FEAT_HAFDBS.
454          *
455          * Uphold the requirements of the architecture by masking guest writes
456          * to TCR_EL1.{HA,HD} here.
457          */
458         val &= ~(TCR_HD | TCR_HA);
459         write_sysreg_el1(val, SYS_TCR);
460         return true;
461 }
462
463 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
464 {
465         if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
466             handle_tx2_tvm(vcpu))
467                 return true;
468
469         if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
470             handle_ampere1_tcr(vcpu))
471                 return true;
472
473         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
474             __vgic_v3_perform_cpuif_access(vcpu) == 1)
475                 return true;
476
477         if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
478                 return kvm_hyp_handle_ptrauth(vcpu, exit_code);
479
480         if (kvm_hyp_handle_cntpct(vcpu))
481                 return true;
482
483         return false;
484 }
485
486 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
487 {
488         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
489             __vgic_v3_perform_cpuif_access(vcpu) == 1)
490                 return true;
491
492         return false;
493 }
494
495 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
496 {
497         if (!__populate_fault_info(vcpu))
498                 return true;
499
500         return false;
501 }
502 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
503         __alias(kvm_hyp_handle_memory_fault);
504 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
505         __alias(kvm_hyp_handle_memory_fault);
506
507 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
508 {
509         if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
510                 return true;
511
512         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
513                 bool valid;
514
515                 valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
516                         kvm_vcpu_dabt_isvalid(vcpu) &&
517                         !kvm_vcpu_abt_issea(vcpu) &&
518                         !kvm_vcpu_abt_iss1tw(vcpu);
519
520                 if (valid) {
521                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
522
523                         if (ret == 1)
524                                 return true;
525
526                         /* Promote an illegal access to an SError.*/
527                         if (ret == -1)
528                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
529                 }
530         }
531
532         return false;
533 }
534
535 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
536
537 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
538
539 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
540
541 /*
542  * Allow the hypervisor to handle the exit with an exit handler if it has one.
543  *
544  * Returns true if the hypervisor handled the exit, and control should go back
545  * to the guest, or false if it hasn't.
546  */
547 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
548 {
549         const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
550         exit_handler_fn fn;
551
552         fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
553
554         if (fn)
555                 return fn(vcpu, exit_code);
556
557         return false;
558 }
559
560 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
561 {
562         /*
563          * Check for the conditions of Cortex-A510's #2077057. When these occur
564          * SPSR_EL2 can't be trusted, but isn't needed either as it is
565          * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
566          * Are we single-stepping the guest, and took a PAC exception from the
567          * active-not-pending state?
568          */
569         if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)               &&
570             vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP                 &&
571             *vcpu_cpsr(vcpu) & DBG_SPSR_SS                              &&
572             ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
573                 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
574
575         vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
576 }
577
578 /*
579  * Return true when we were able to fixup the guest exit and should return to
580  * the guest, false when we should restore the host state and return to the
581  * main run loop.
582  */
583 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
584 {
585         /*
586          * Save PSTATE early so that we can evaluate the vcpu mode
587          * early on.
588          */
589         synchronize_vcpu_pstate(vcpu, exit_code);
590
591         /*
592          * Check whether we want to repaint the state one way or
593          * another.
594          */
595         early_exit_filter(vcpu, exit_code);
596
597         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
598                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
599
600         if (ARM_SERROR_PENDING(*exit_code) &&
601             ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
602                 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
603
604                 /*
605                  * HVC already have an adjusted PC, which we need to
606                  * correct in order to return to after having injected
607                  * the SError.
608                  *
609                  * SMC, on the other hand, is *trapped*, meaning its
610                  * preferred return address is the SMC itself.
611                  */
612                 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
613                         write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
614         }
615
616         /*
617          * We're using the raw exception code in order to only process
618          * the trap if no SError is pending. We will come back to the
619          * same PC once the SError has been injected, and replay the
620          * trapping instruction.
621          */
622         if (*exit_code != ARM_EXCEPTION_TRAP)
623                 goto exit;
624
625         /* Check if there's an exit handler and allow it to handle the exit. */
626         if (kvm_hyp_handle_exit(vcpu, exit_code))
627                 goto guest;
628 exit:
629         /* Return to the host kernel and handle the exit */
630         return false;
631
632 guest:
633         /* Re-enter the guest */
634         asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
635         return true;
636 }
637
638 static inline void __kvm_unexpected_el2_exception(void)
639 {
640         extern char __guest_exit_panic[];
641         unsigned long addr, fixup;
642         struct kvm_exception_table_entry *entry, *end;
643         unsigned long elr_el2 = read_sysreg(elr_el2);
644
645         entry = &__start___kvm_ex_table;
646         end = &__stop___kvm_ex_table;
647
648         while (entry < end) {
649                 addr = (unsigned long)&entry->insn + entry->insn;
650                 fixup = (unsigned long)&entry->fixup + entry->fixup;
651
652                 if (addr != elr_el2) {
653                         entry++;
654                         continue;
655                 }
656
657                 write_sysreg(fixup, elr_el2);
658                 return;
659         }
660
661         /* Trigger a panic after restoring the hyp context. */
662         write_sysreg(__guest_exit_panic, elr_el2);
663 }
664
665 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */