Merge tag 'linux-kselftest-kunit-5.17-rc1' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-rpi.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 int kvm_arch_hardware_setup(void *opaque)
72 {
73         return 0;
74 }
75
76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78         return 0;
79 }
80
81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82                             struct kvm_enable_cap *cap)
83 {
84         int r;
85
86         if (cap->flags)
87                 return -EINVAL;
88
89         switch (cap->cap) {
90         case KVM_CAP_ARM_NISV_TO_USER:
91                 r = 0;
92                 kvm->arch.return_nisv_io_abort_to_user = true;
93                 break;
94         case KVM_CAP_ARM_MTE:
95                 mutex_lock(&kvm->lock);
96                 if (!system_supports_mte() || kvm->created_vcpus) {
97                         r = -EINVAL;
98                 } else {
99                         r = 0;
100                         kvm->arch.mte_enabled = true;
101                 }
102                 mutex_unlock(&kvm->lock);
103                 break;
104         default:
105                 r = -EINVAL;
106                 break;
107         }
108
109         return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119         /*
120          * The default is to expose CSV2 == 1 if the HW isn't affected.
121          * Although this is a per-CPU feature, we make it global because
122          * asymmetric systems are just a nuisance.
123          *
124          * Userspace can override this as long as it doesn't promise
125          * the impossible.
126          */
127         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128                 kvm->arch.pfr0_csv2 = 1;
129         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130                 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:        pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         int ret;
140
141         ret = kvm_arm_setup_stage2(kvm, type);
142         if (ret)
143                 return ret;
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146         if (ret)
147                 return ret;
148
149         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150         if (ret)
151                 goto out_free_stage2_pgd;
152
153         kvm_vgic_early_init(kvm);
154
155         /* The maximum number of VCPUs is limited by the host's GIC model */
156         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158         set_default_spectre(kvm);
159
160         return ret;
161 out_free_stage2_pgd:
162         kvm_free_stage2_pgd(&kvm->arch.mmu);
163         return ret;
164 }
165
166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         bitmap_free(kvm->arch.pmu_filter);
181
182         kvm_vgic_destroy(kvm);
183
184         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
185                 if (kvm->vcpus[i]) {
186                         kvm_vcpu_destroy(kvm->vcpus[i]);
187                         kvm->vcpus[i] = NULL;
188                 }
189         }
190         atomic_set(&kvm->online_vcpus, 0);
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195         int r;
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198                 r = vgic_present;
199                 break;
200         case KVM_CAP_IOEVENTFD:
201         case KVM_CAP_DEVICE_CTRL:
202         case KVM_CAP_USER_MEMORY:
203         case KVM_CAP_SYNC_MMU:
204         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205         case KVM_CAP_ONE_REG:
206         case KVM_CAP_ARM_PSCI:
207         case KVM_CAP_ARM_PSCI_0_2:
208         case KVM_CAP_READONLY_MEM:
209         case KVM_CAP_MP_STATE:
210         case KVM_CAP_IMMEDIATE_EXIT:
211         case KVM_CAP_VCPU_EVENTS:
212         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213         case KVM_CAP_ARM_NISV_TO_USER:
214         case KVM_CAP_ARM_INJECT_EXT_DABT:
215         case KVM_CAP_SET_GUEST_DEBUG:
216         case KVM_CAP_VCPU_ATTRIBUTES:
217         case KVM_CAP_PTP_KVM:
218                 r = 1;
219                 break;
220         case KVM_CAP_SET_GUEST_DEBUG2:
221                 return KVM_GUESTDBG_VALID_MASK;
222         case KVM_CAP_ARM_SET_DEVICE_ADDR:
223                 r = 1;
224                 break;
225         case KVM_CAP_NR_VCPUS:
226                 /*
227                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
228                  * architectures, as it does not always bound it to
229                  * KVM_CAP_MAX_VCPUS. It should not matter much because
230                  * this is just an advisory value.
231                  */
232                 r = min_t(unsigned int, num_online_cpus(),
233                           kvm_arm_default_max_vcpus());
234                 break;
235         case KVM_CAP_MAX_VCPUS:
236         case KVM_CAP_MAX_VCPU_ID:
237                 if (kvm)
238                         r = kvm->arch.max_vcpus;
239                 else
240                         r = kvm_arm_default_max_vcpus();
241                 break;
242         case KVM_CAP_MSI_DEVID:
243                 if (!kvm)
244                         r = -EINVAL;
245                 else
246                         r = kvm->arch.vgic.msis_require_devid;
247                 break;
248         case KVM_CAP_ARM_USER_IRQ:
249                 /*
250                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
251                  * (bump this number if adding more devices)
252                  */
253                 r = 1;
254                 break;
255         case KVM_CAP_ARM_MTE:
256                 r = system_supports_mte();
257                 break;
258         case KVM_CAP_STEAL_TIME:
259                 r = kvm_arm_pvtime_supported();
260                 break;
261         case KVM_CAP_ARM_EL1_32BIT:
262                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
263                 break;
264         case KVM_CAP_GUEST_DEBUG_HW_BPS:
265                 r = get_num_brps();
266                 break;
267         case KVM_CAP_GUEST_DEBUG_HW_WPS:
268                 r = get_num_wrps();
269                 break;
270         case KVM_CAP_ARM_PMU_V3:
271                 r = kvm_arm_support_pmu_v3();
272                 break;
273         case KVM_CAP_ARM_INJECT_SERROR_ESR:
274                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
275                 break;
276         case KVM_CAP_ARM_VM_IPA_SIZE:
277                 r = get_kvm_ipa_limit();
278                 break;
279         case KVM_CAP_ARM_SVE:
280                 r = system_supports_sve();
281                 break;
282         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
283         case KVM_CAP_ARM_PTRAUTH_GENERIC:
284                 r = system_has_full_ptr_auth();
285                 break;
286         default:
287                 r = 0;
288         }
289
290         return r;
291 }
292
293 long kvm_arch_dev_ioctl(struct file *filp,
294                         unsigned int ioctl, unsigned long arg)
295 {
296         return -EINVAL;
297 }
298
299 struct kvm *kvm_arch_alloc_vm(void)
300 {
301         size_t sz = sizeof(struct kvm);
302
303         if (!has_vhe())
304                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
305
306         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
307 }
308
309 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
310 {
311         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
312                 return -EBUSY;
313
314         if (id >= kvm->arch.max_vcpus)
315                 return -EINVAL;
316
317         return 0;
318 }
319
320 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
321 {
322         int err;
323
324         /* Force users to call KVM_ARM_VCPU_INIT */
325         vcpu->arch.target = -1;
326         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
327
328         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
329
330         /* Set up the timer */
331         kvm_timer_vcpu_init(vcpu);
332
333         kvm_pmu_vcpu_init(vcpu);
334
335         kvm_arm_reset_debug_ptr(vcpu);
336
337         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
338
339         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
340
341         err = kvm_vgic_vcpu_init(vcpu);
342         if (err)
343                 return err;
344
345         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
346 }
347
348 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
349 {
350 }
351
352 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
353 {
354         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
355                 static_branch_dec(&userspace_irqchip_in_use);
356
357         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
358         kvm_timer_vcpu_terminate(vcpu);
359         kvm_pmu_vcpu_destroy(vcpu);
360
361         kvm_arm_vcpu_destroy(vcpu);
362 }
363
364 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
365 {
366         return kvm_timer_is_pending(vcpu);
367 }
368
369 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
370 {
371         /*
372          * If we're about to block (most likely because we've just hit a
373          * WFI), we need to sync back the state of the GIC CPU interface
374          * so that we have the latest PMR and group enables. This ensures
375          * that kvm_arch_vcpu_runnable has up-to-date data to decide
376          * whether we have pending interrupts.
377          *
378          * For the same reason, we want to tell GICv4 that we need
379          * doorbells to be signalled, should an interrupt become pending.
380          */
381         preempt_disable();
382         kvm_vgic_vmcr_sync(vcpu);
383         vgic_v4_put(vcpu, true);
384         preempt_enable();
385 }
386
387 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
388 {
389         preempt_disable();
390         vgic_v4_load(vcpu);
391         preempt_enable();
392 }
393
394 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
395 {
396         struct kvm_s2_mmu *mmu;
397         int *last_ran;
398
399         mmu = vcpu->arch.hw_mmu;
400         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
401
402         /*
403          * We guarantee that both TLBs and I-cache are private to each
404          * vcpu. If detecting that a vcpu from the same VM has
405          * previously run on the same physical CPU, call into the
406          * hypervisor code to nuke the relevant contexts.
407          *
408          * We might get preempted before the vCPU actually runs, but
409          * over-invalidation doesn't affect correctness.
410          */
411         if (*last_ran != vcpu->vcpu_id) {
412                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
413                 *last_ran = vcpu->vcpu_id;
414         }
415
416         vcpu->cpu = cpu;
417
418         kvm_vgic_load(vcpu);
419         kvm_timer_vcpu_load(vcpu);
420         if (has_vhe())
421                 kvm_vcpu_load_sysregs_vhe(vcpu);
422         kvm_arch_vcpu_load_fp(vcpu);
423         kvm_vcpu_pmu_restore_guest(vcpu);
424         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
425                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
426
427         if (single_task_running())
428                 vcpu_clear_wfx_traps(vcpu);
429         else
430                 vcpu_set_wfx_traps(vcpu);
431
432         if (vcpu_has_ptrauth(vcpu))
433                 vcpu_ptrauth_disable(vcpu);
434         kvm_arch_vcpu_load_debug_state_flags(vcpu);
435 }
436
437 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
438 {
439         kvm_arch_vcpu_put_debug_state_flags(vcpu);
440         kvm_arch_vcpu_put_fp(vcpu);
441         if (has_vhe())
442                 kvm_vcpu_put_sysregs_vhe(vcpu);
443         kvm_timer_vcpu_put(vcpu);
444         kvm_vgic_put(vcpu);
445         kvm_vcpu_pmu_restore_host(vcpu);
446
447         vcpu->cpu = -1;
448 }
449
450 static void vcpu_power_off(struct kvm_vcpu *vcpu)
451 {
452         vcpu->arch.power_off = true;
453         kvm_make_request(KVM_REQ_SLEEP, vcpu);
454         kvm_vcpu_kick(vcpu);
455 }
456
457 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
458                                     struct kvm_mp_state *mp_state)
459 {
460         if (vcpu->arch.power_off)
461                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
462         else
463                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
464
465         return 0;
466 }
467
468 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
469                                     struct kvm_mp_state *mp_state)
470 {
471         int ret = 0;
472
473         switch (mp_state->mp_state) {
474         case KVM_MP_STATE_RUNNABLE:
475                 vcpu->arch.power_off = false;
476                 break;
477         case KVM_MP_STATE_STOPPED:
478                 vcpu_power_off(vcpu);
479                 break;
480         default:
481                 ret = -EINVAL;
482         }
483
484         return ret;
485 }
486
487 /**
488  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
489  * @v:          The VCPU pointer
490  *
491  * If the guest CPU is not waiting for interrupts or an interrupt line is
492  * asserted, the CPU is by definition runnable.
493  */
494 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
495 {
496         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
497         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
498                 && !v->arch.power_off && !v->arch.pause);
499 }
500
501 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
502 {
503         return vcpu_mode_priv(vcpu);
504 }
505
506 /* Just ensure a guest exit from a particular CPU */
507 static void exit_vm_noop(void *info)
508 {
509 }
510
511 void force_vm_exit(const cpumask_t *mask)
512 {
513         preempt_disable();
514         smp_call_function_many(mask, exit_vm_noop, NULL, true);
515         preempt_enable();
516 }
517
518 /**
519  * need_new_vmid_gen - check that the VMID is still valid
520  * @vmid: The VMID to check
521  *
522  * return true if there is a new generation of VMIDs being used
523  *
524  * The hardware supports a limited set of values with the value zero reserved
525  * for the host, so we check if an assigned value belongs to a previous
526  * generation, which requires us to assign a new value. If we're the first to
527  * use a VMID for the new generation, we must flush necessary caches and TLBs
528  * on all CPUs.
529  */
530 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
531 {
532         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
533         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
534         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
535 }
536
537 /**
538  * update_vmid - Update the vmid with a valid VMID for the current generation
539  * @vmid: The stage-2 VMID information struct
540  */
541 static void update_vmid(struct kvm_vmid *vmid)
542 {
543         if (!need_new_vmid_gen(vmid))
544                 return;
545
546         spin_lock(&kvm_vmid_lock);
547
548         /*
549          * We need to re-check the vmid_gen here to ensure that if another vcpu
550          * already allocated a valid vmid for this vm, then this vcpu should
551          * use the same vmid.
552          */
553         if (!need_new_vmid_gen(vmid)) {
554                 spin_unlock(&kvm_vmid_lock);
555                 return;
556         }
557
558         /* First user of a new VMID generation? */
559         if (unlikely(kvm_next_vmid == 0)) {
560                 atomic64_inc(&kvm_vmid_gen);
561                 kvm_next_vmid = 1;
562
563                 /*
564                  * On SMP we know no other CPUs can use this CPU's or each
565                  * other's VMID after force_vm_exit returns since the
566                  * kvm_vmid_lock blocks them from reentry to the guest.
567                  */
568                 force_vm_exit(cpu_all_mask);
569                 /*
570                  * Now broadcast TLB + ICACHE invalidation over the inner
571                  * shareable domain to make sure all data structures are
572                  * clean.
573                  */
574                 kvm_call_hyp(__kvm_flush_vm_context);
575         }
576
577         WRITE_ONCE(vmid->vmid, kvm_next_vmid);
578         kvm_next_vmid++;
579         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
580
581         smp_wmb();
582         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
583
584         spin_unlock(&kvm_vmid_lock);
585 }
586
587 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
588 {
589         struct kvm *kvm = vcpu->kvm;
590         int ret = 0;
591
592         if (likely(vcpu->arch.has_run_once))
593                 return 0;
594
595         if (!kvm_arm_vcpu_is_finalized(vcpu))
596                 return -EPERM;
597
598         vcpu->arch.has_run_once = true;
599
600         kvm_arm_vcpu_init_debug(vcpu);
601
602         if (likely(irqchip_in_kernel(kvm))) {
603                 /*
604                  * Map the VGIC hardware resources before running a vcpu the
605                  * first time on this VM.
606                  */
607                 ret = kvm_vgic_map_resources(kvm);
608                 if (ret)
609                         return ret;
610         } else {
611                 /*
612                  * Tell the rest of the code that there are userspace irqchip
613                  * VMs in the wild.
614                  */
615                 static_branch_inc(&userspace_irqchip_in_use);
616         }
617
618         ret = kvm_timer_enable(vcpu);
619         if (ret)
620                 return ret;
621
622         ret = kvm_arm_pmu_v3_enable(vcpu);
623
624         /*
625          * Initialize traps for protected VMs.
626          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
627          * the code is in place for first run initialization at EL2.
628          */
629         if (kvm_vm_is_protected(kvm))
630                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
631
632         return ret;
633 }
634
635 bool kvm_arch_intc_initialized(struct kvm *kvm)
636 {
637         return vgic_initialized(kvm);
638 }
639
640 void kvm_arm_halt_guest(struct kvm *kvm)
641 {
642         int i;
643         struct kvm_vcpu *vcpu;
644
645         kvm_for_each_vcpu(i, vcpu, kvm)
646                 vcpu->arch.pause = true;
647         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
648 }
649
650 void kvm_arm_resume_guest(struct kvm *kvm)
651 {
652         int i;
653         struct kvm_vcpu *vcpu;
654
655         kvm_for_each_vcpu(i, vcpu, kvm) {
656                 vcpu->arch.pause = false;
657                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
658         }
659 }
660
661 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
662 {
663         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
664
665         rcuwait_wait_event(wait,
666                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
667                            TASK_INTERRUPTIBLE);
668
669         if (vcpu->arch.power_off || vcpu->arch.pause) {
670                 /* Awaken to handle a signal, request we sleep again later. */
671                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
672         }
673
674         /*
675          * Make sure we will observe a potential reset request if we've
676          * observed a change to the power state. Pairs with the smp_wmb() in
677          * kvm_psci_vcpu_on().
678          */
679         smp_rmb();
680 }
681
682 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
683 {
684         return vcpu->arch.target >= 0;
685 }
686
687 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
688 {
689         if (kvm_request_pending(vcpu)) {
690                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
691                         vcpu_req_sleep(vcpu);
692
693                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
694                         kvm_reset_vcpu(vcpu);
695
696                 /*
697                  * Clear IRQ_PENDING requests that were made to guarantee
698                  * that a VCPU sees new virtual interrupts.
699                  */
700                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
701
702                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
703                         kvm_update_stolen_time(vcpu);
704
705                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
706                         /* The distributor enable bits were changed */
707                         preempt_disable();
708                         vgic_v4_put(vcpu, false);
709                         vgic_v4_load(vcpu);
710                         preempt_enable();
711                 }
712
713                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
714                         kvm_pmu_handle_pmcr(vcpu,
715                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
716         }
717 }
718
719 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
720 {
721         if (likely(!vcpu_mode_is_32bit(vcpu)))
722                 return false;
723
724         return !system_supports_32bit_el0() ||
725                 static_branch_unlikely(&arm64_mismatched_32bit_el0);
726 }
727
728 /**
729  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
730  * @vcpu:       The VCPU pointer
731  * @ret:        Pointer to write optional return code
732  *
733  * Returns: true if the VCPU needs to return to a preemptible + interruptible
734  *          and skip guest entry.
735  *
736  * This function disambiguates between two different types of exits: exits to a
737  * preemptible + interruptible kernel context and exits to userspace. For an
738  * exit to userspace, this function will write the return code to ret and return
739  * true. For an exit to preemptible + interruptible kernel context (i.e. check
740  * for pending work and re-enter), return true without writing to ret.
741  */
742 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
743 {
744         struct kvm_run *run = vcpu->run;
745
746         /*
747          * If we're using a userspace irqchip, then check if we need
748          * to tell a userspace irqchip about timer or PMU level
749          * changes and if so, exit to userspace (the actual level
750          * state gets updated in kvm_timer_update_run and
751          * kvm_pmu_update_run below).
752          */
753         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
754                 if (kvm_timer_should_notify_user(vcpu) ||
755                     kvm_pmu_should_notify_user(vcpu)) {
756                         *ret = -EINTR;
757                         run->exit_reason = KVM_EXIT_INTR;
758                         return true;
759                 }
760         }
761
762         return kvm_request_pending(vcpu) ||
763                         need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
764                         xfer_to_guest_mode_work_pending();
765 }
766
767 /**
768  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
769  * @vcpu:       The VCPU pointer
770  *
771  * This function is called through the VCPU_RUN ioctl called from user space. It
772  * will execute VM code in a loop until the time slice for the process is used
773  * or some emulation is needed from user space in which case the function will
774  * return with return value 0 and with the kvm_run structure filled in with the
775  * required data for the requested emulation.
776  */
777 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
778 {
779         struct kvm_run *run = vcpu->run;
780         int ret;
781
782         if (unlikely(!kvm_vcpu_initialized(vcpu)))
783                 return -ENOEXEC;
784
785         ret = kvm_vcpu_first_run_init(vcpu);
786         if (ret)
787                 return ret;
788
789         if (run->exit_reason == KVM_EXIT_MMIO) {
790                 ret = kvm_handle_mmio_return(vcpu);
791                 if (ret)
792                         return ret;
793         }
794
795         vcpu_load(vcpu);
796
797         if (run->immediate_exit) {
798                 ret = -EINTR;
799                 goto out;
800         }
801
802         kvm_sigset_activate(vcpu);
803
804         ret = 1;
805         run->exit_reason = KVM_EXIT_UNKNOWN;
806         while (ret > 0) {
807                 /*
808                  * Check conditions before entering the guest
809                  */
810                 ret = xfer_to_guest_mode_handle_work(vcpu);
811                 if (!ret)
812                         ret = 1;
813
814                 update_vmid(&vcpu->arch.hw_mmu->vmid);
815
816                 check_vcpu_requests(vcpu);
817
818                 /*
819                  * Preparing the interrupts to be injected also
820                  * involves poking the GIC, which must be done in a
821                  * non-preemptible context.
822                  */
823                 preempt_disable();
824
825                 kvm_pmu_flush_hwstate(vcpu);
826
827                 local_irq_disable();
828
829                 kvm_vgic_flush_hwstate(vcpu);
830
831                 /*
832                  * Ensure we set mode to IN_GUEST_MODE after we disable
833                  * interrupts and before the final VCPU requests check.
834                  * See the comment in kvm_vcpu_exiting_guest_mode() and
835                  * Documentation/virt/kvm/vcpu-requests.rst
836                  */
837                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
838
839                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
840                         vcpu->mode = OUTSIDE_GUEST_MODE;
841                         isb(); /* Ensure work in x_flush_hwstate is committed */
842                         kvm_pmu_sync_hwstate(vcpu);
843                         if (static_branch_unlikely(&userspace_irqchip_in_use))
844                                 kvm_timer_sync_user(vcpu);
845                         kvm_vgic_sync_hwstate(vcpu);
846                         local_irq_enable();
847                         preempt_enable();
848                         continue;
849                 }
850
851                 kvm_arm_setup_debug(vcpu);
852
853                 /**************************************************************
854                  * Enter the guest
855                  */
856                 trace_kvm_entry(*vcpu_pc(vcpu));
857                 guest_enter_irqoff();
858
859                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
860
861                 vcpu->mode = OUTSIDE_GUEST_MODE;
862                 vcpu->stat.exits++;
863                 /*
864                  * Back from guest
865                  *************************************************************/
866
867                 kvm_arm_clear_debug(vcpu);
868
869                 /*
870                  * We must sync the PMU state before the vgic state so
871                  * that the vgic can properly sample the updated state of the
872                  * interrupt line.
873                  */
874                 kvm_pmu_sync_hwstate(vcpu);
875
876                 /*
877                  * Sync the vgic state before syncing the timer state because
878                  * the timer code needs to know if the virtual timer
879                  * interrupts are active.
880                  */
881                 kvm_vgic_sync_hwstate(vcpu);
882
883                 /*
884                  * Sync the timer hardware state before enabling interrupts as
885                  * we don't want vtimer interrupts to race with syncing the
886                  * timer virtual interrupt state.
887                  */
888                 if (static_branch_unlikely(&userspace_irqchip_in_use))
889                         kvm_timer_sync_user(vcpu);
890
891                 kvm_arch_vcpu_ctxsync_fp(vcpu);
892
893                 /*
894                  * We may have taken a host interrupt in HYP mode (ie
895                  * while executing the guest). This interrupt is still
896                  * pending, as we haven't serviced it yet!
897                  *
898                  * We're now back in SVC mode, with interrupts
899                  * disabled.  Enabling the interrupts now will have
900                  * the effect of taking the interrupt again, in SVC
901                  * mode this time.
902                  */
903                 local_irq_enable();
904
905                 /*
906                  * We do local_irq_enable() before calling guest_exit() so
907                  * that if a timer interrupt hits while running the guest we
908                  * account that tick as being spent in the guest.  We enable
909                  * preemption after calling guest_exit() so that if we get
910                  * preempted we make sure ticks after that is not counted as
911                  * guest time.
912                  */
913                 guest_exit();
914                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
915
916                 /* Exit types that need handling before we can be preempted */
917                 handle_exit_early(vcpu, ret);
918
919                 preempt_enable();
920
921                 /*
922                  * The ARMv8 architecture doesn't give the hypervisor
923                  * a mechanism to prevent a guest from dropping to AArch32 EL0
924                  * if implemented by the CPU. If we spot the guest in such
925                  * state and that we decided it wasn't supposed to do so (like
926                  * with the asymmetric AArch32 case), return to userspace with
927                  * a fatal error.
928                  */
929                 if (vcpu_mode_is_bad_32bit(vcpu)) {
930                         /*
931                          * As we have caught the guest red-handed, decide that
932                          * it isn't fit for purpose anymore by making the vcpu
933                          * invalid. The VMM can try and fix it by issuing  a
934                          * KVM_ARM_VCPU_INIT if it really wants to.
935                          */
936                         vcpu->arch.target = -1;
937                         ret = ARM_EXCEPTION_IL;
938                 }
939
940                 ret = handle_exit(vcpu, ret);
941         }
942
943         /* Tell userspace about in-kernel device output levels */
944         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
945                 kvm_timer_update_run(vcpu);
946                 kvm_pmu_update_run(vcpu);
947         }
948
949         kvm_sigset_deactivate(vcpu);
950
951 out:
952         /*
953          * In the unlikely event that we are returning to userspace
954          * with pending exceptions or PC adjustment, commit these
955          * adjustments in order to give userspace a consistent view of
956          * the vcpu state. Note that this relies on __kvm_adjust_pc()
957          * being preempt-safe on VHE.
958          */
959         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
960                                          KVM_ARM64_INCREMENT_PC)))
961                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
962
963         vcpu_put(vcpu);
964         return ret;
965 }
966
967 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
968 {
969         int bit_index;
970         bool set;
971         unsigned long *hcr;
972
973         if (number == KVM_ARM_IRQ_CPU_IRQ)
974                 bit_index = __ffs(HCR_VI);
975         else /* KVM_ARM_IRQ_CPU_FIQ */
976                 bit_index = __ffs(HCR_VF);
977
978         hcr = vcpu_hcr(vcpu);
979         if (level)
980                 set = test_and_set_bit(bit_index, hcr);
981         else
982                 set = test_and_clear_bit(bit_index, hcr);
983
984         /*
985          * If we didn't change anything, no need to wake up or kick other CPUs
986          */
987         if (set == level)
988                 return 0;
989
990         /*
991          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
992          * trigger a world-switch round on the running physical CPU to set the
993          * virtual IRQ/FIQ fields in the HCR appropriately.
994          */
995         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
996         kvm_vcpu_kick(vcpu);
997
998         return 0;
999 }
1000
1001 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1002                           bool line_status)
1003 {
1004         u32 irq = irq_level->irq;
1005         unsigned int irq_type, vcpu_idx, irq_num;
1006         int nrcpus = atomic_read(&kvm->online_vcpus);
1007         struct kvm_vcpu *vcpu = NULL;
1008         bool level = irq_level->level;
1009
1010         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1011         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1012         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1013         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1014
1015         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1016
1017         switch (irq_type) {
1018         case KVM_ARM_IRQ_TYPE_CPU:
1019                 if (irqchip_in_kernel(kvm))
1020                         return -ENXIO;
1021
1022                 if (vcpu_idx >= nrcpus)
1023                         return -EINVAL;
1024
1025                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1026                 if (!vcpu)
1027                         return -EINVAL;
1028
1029                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1030                         return -EINVAL;
1031
1032                 return vcpu_interrupt_line(vcpu, irq_num, level);
1033         case KVM_ARM_IRQ_TYPE_PPI:
1034                 if (!irqchip_in_kernel(kvm))
1035                         return -ENXIO;
1036
1037                 if (vcpu_idx >= nrcpus)
1038                         return -EINVAL;
1039
1040                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1041                 if (!vcpu)
1042                         return -EINVAL;
1043
1044                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1045                         return -EINVAL;
1046
1047                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1048         case KVM_ARM_IRQ_TYPE_SPI:
1049                 if (!irqchip_in_kernel(kvm))
1050                         return -ENXIO;
1051
1052                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1053                         return -EINVAL;
1054
1055                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1056         }
1057
1058         return -EINVAL;
1059 }
1060
1061 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1062                                const struct kvm_vcpu_init *init)
1063 {
1064         unsigned int i, ret;
1065         u32 phys_target = kvm_target_cpu();
1066
1067         if (init->target != phys_target)
1068                 return -EINVAL;
1069
1070         /*
1071          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1072          * use the same target.
1073          */
1074         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1075                 return -EINVAL;
1076
1077         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1078         for (i = 0; i < sizeof(init->features) * 8; i++) {
1079                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1080
1081                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1082                         return -ENOENT;
1083
1084                 /*
1085                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1086                  * use the same feature set.
1087                  */
1088                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1089                     test_bit(i, vcpu->arch.features) != set)
1090                         return -EINVAL;
1091
1092                 if (set)
1093                         set_bit(i, vcpu->arch.features);
1094         }
1095
1096         vcpu->arch.target = phys_target;
1097
1098         /* Now we know what it is, we can reset it. */
1099         ret = kvm_reset_vcpu(vcpu);
1100         if (ret) {
1101                 vcpu->arch.target = -1;
1102                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1103         }
1104
1105         return ret;
1106 }
1107
1108 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1109                                          struct kvm_vcpu_init *init)
1110 {
1111         int ret;
1112
1113         ret = kvm_vcpu_set_target(vcpu, init);
1114         if (ret)
1115                 return ret;
1116
1117         /*
1118          * Ensure a rebooted VM will fault in RAM pages and detect if the
1119          * guest MMU is turned off and flush the caches as needed.
1120          *
1121          * S2FWB enforces all memory accesses to RAM being cacheable,
1122          * ensuring that the data side is always coherent. We still
1123          * need to invalidate the I-cache though, as FWB does *not*
1124          * imply CTR_EL0.DIC.
1125          */
1126         if (vcpu->arch.has_run_once) {
1127                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1128                         stage2_unmap_vm(vcpu->kvm);
1129                 else
1130                         icache_inval_all_pou();
1131         }
1132
1133         vcpu_reset_hcr(vcpu);
1134         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1135
1136         /*
1137          * Handle the "start in power-off" case.
1138          */
1139         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1140                 vcpu_power_off(vcpu);
1141         else
1142                 vcpu->arch.power_off = false;
1143
1144         return 0;
1145 }
1146
1147 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1148                                  struct kvm_device_attr *attr)
1149 {
1150         int ret = -ENXIO;
1151
1152         switch (attr->group) {
1153         default:
1154                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1155                 break;
1156         }
1157
1158         return ret;
1159 }
1160
1161 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1162                                  struct kvm_device_attr *attr)
1163 {
1164         int ret = -ENXIO;
1165
1166         switch (attr->group) {
1167         default:
1168                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1169                 break;
1170         }
1171
1172         return ret;
1173 }
1174
1175 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1176                                  struct kvm_device_attr *attr)
1177 {
1178         int ret = -ENXIO;
1179
1180         switch (attr->group) {
1181         default:
1182                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1183                 break;
1184         }
1185
1186         return ret;
1187 }
1188
1189 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1190                                    struct kvm_vcpu_events *events)
1191 {
1192         memset(events, 0, sizeof(*events));
1193
1194         return __kvm_arm_vcpu_get_events(vcpu, events);
1195 }
1196
1197 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1198                                    struct kvm_vcpu_events *events)
1199 {
1200         int i;
1201
1202         /* check whether the reserved field is zero */
1203         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1204                 if (events->reserved[i])
1205                         return -EINVAL;
1206
1207         /* check whether the pad field is zero */
1208         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1209                 if (events->exception.pad[i])
1210                         return -EINVAL;
1211
1212         return __kvm_arm_vcpu_set_events(vcpu, events);
1213 }
1214
1215 long kvm_arch_vcpu_ioctl(struct file *filp,
1216                          unsigned int ioctl, unsigned long arg)
1217 {
1218         struct kvm_vcpu *vcpu = filp->private_data;
1219         void __user *argp = (void __user *)arg;
1220         struct kvm_device_attr attr;
1221         long r;
1222
1223         switch (ioctl) {
1224         case KVM_ARM_VCPU_INIT: {
1225                 struct kvm_vcpu_init init;
1226
1227                 r = -EFAULT;
1228                 if (copy_from_user(&init, argp, sizeof(init)))
1229                         break;
1230
1231                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1232                 break;
1233         }
1234         case KVM_SET_ONE_REG:
1235         case KVM_GET_ONE_REG: {
1236                 struct kvm_one_reg reg;
1237
1238                 r = -ENOEXEC;
1239                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1240                         break;
1241
1242                 r = -EFAULT;
1243                 if (copy_from_user(&reg, argp, sizeof(reg)))
1244                         break;
1245
1246                 /*
1247                  * We could owe a reset due to PSCI. Handle the pending reset
1248                  * here to ensure userspace register accesses are ordered after
1249                  * the reset.
1250                  */
1251                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1252                         kvm_reset_vcpu(vcpu);
1253
1254                 if (ioctl == KVM_SET_ONE_REG)
1255                         r = kvm_arm_set_reg(vcpu, &reg);
1256                 else
1257                         r = kvm_arm_get_reg(vcpu, &reg);
1258                 break;
1259         }
1260         case KVM_GET_REG_LIST: {
1261                 struct kvm_reg_list __user *user_list = argp;
1262                 struct kvm_reg_list reg_list;
1263                 unsigned n;
1264
1265                 r = -ENOEXEC;
1266                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1267                         break;
1268
1269                 r = -EPERM;
1270                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1271                         break;
1272
1273                 r = -EFAULT;
1274                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1275                         break;
1276                 n = reg_list.n;
1277                 reg_list.n = kvm_arm_num_regs(vcpu);
1278                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1279                         break;
1280                 r = -E2BIG;
1281                 if (n < reg_list.n)
1282                         break;
1283                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1284                 break;
1285         }
1286         case KVM_SET_DEVICE_ATTR: {
1287                 r = -EFAULT;
1288                 if (copy_from_user(&attr, argp, sizeof(attr)))
1289                         break;
1290                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1291                 break;
1292         }
1293         case KVM_GET_DEVICE_ATTR: {
1294                 r = -EFAULT;
1295                 if (copy_from_user(&attr, argp, sizeof(attr)))
1296                         break;
1297                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1298                 break;
1299         }
1300         case KVM_HAS_DEVICE_ATTR: {
1301                 r = -EFAULT;
1302                 if (copy_from_user(&attr, argp, sizeof(attr)))
1303                         break;
1304                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1305                 break;
1306         }
1307         case KVM_GET_VCPU_EVENTS: {
1308                 struct kvm_vcpu_events events;
1309
1310                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1311                         return -EINVAL;
1312
1313                 if (copy_to_user(argp, &events, sizeof(events)))
1314                         return -EFAULT;
1315
1316                 return 0;
1317         }
1318         case KVM_SET_VCPU_EVENTS: {
1319                 struct kvm_vcpu_events events;
1320
1321                 if (copy_from_user(&events, argp, sizeof(events)))
1322                         return -EFAULT;
1323
1324                 return kvm_arm_vcpu_set_events(vcpu, &events);
1325         }
1326         case KVM_ARM_VCPU_FINALIZE: {
1327                 int what;
1328
1329                 if (!kvm_vcpu_initialized(vcpu))
1330                         return -ENOEXEC;
1331
1332                 if (get_user(what, (const int __user *)argp))
1333                         return -EFAULT;
1334
1335                 return kvm_arm_vcpu_finalize(vcpu, what);
1336         }
1337         default:
1338                 r = -EINVAL;
1339         }
1340
1341         return r;
1342 }
1343
1344 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1345 {
1346
1347 }
1348
1349 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1350                                         const struct kvm_memory_slot *memslot)
1351 {
1352         kvm_flush_remote_tlbs(kvm);
1353 }
1354
1355 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1356                                         struct kvm_arm_device_addr *dev_addr)
1357 {
1358         unsigned long dev_id, type;
1359
1360         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1361                 KVM_ARM_DEVICE_ID_SHIFT;
1362         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1363                 KVM_ARM_DEVICE_TYPE_SHIFT;
1364
1365         switch (dev_id) {
1366         case KVM_ARM_DEVICE_VGIC_V2:
1367                 if (!vgic_present)
1368                         return -ENXIO;
1369                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1370         default:
1371                 return -ENODEV;
1372         }
1373 }
1374
1375 long kvm_arch_vm_ioctl(struct file *filp,
1376                        unsigned int ioctl, unsigned long arg)
1377 {
1378         struct kvm *kvm = filp->private_data;
1379         void __user *argp = (void __user *)arg;
1380
1381         switch (ioctl) {
1382         case KVM_CREATE_IRQCHIP: {
1383                 int ret;
1384                 if (!vgic_present)
1385                         return -ENXIO;
1386                 mutex_lock(&kvm->lock);
1387                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1388                 mutex_unlock(&kvm->lock);
1389                 return ret;
1390         }
1391         case KVM_ARM_SET_DEVICE_ADDR: {
1392                 struct kvm_arm_device_addr dev_addr;
1393
1394                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1395                         return -EFAULT;
1396                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1397         }
1398         case KVM_ARM_PREFERRED_TARGET: {
1399                 struct kvm_vcpu_init init;
1400
1401                 kvm_vcpu_preferred_target(&init);
1402
1403                 if (copy_to_user(argp, &init, sizeof(init)))
1404                         return -EFAULT;
1405
1406                 return 0;
1407         }
1408         case KVM_ARM_MTE_COPY_TAGS: {
1409                 struct kvm_arm_copy_mte_tags copy_tags;
1410
1411                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1412                         return -EFAULT;
1413                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1414         }
1415         default:
1416                 return -EINVAL;
1417         }
1418 }
1419
1420 static unsigned long nvhe_percpu_size(void)
1421 {
1422         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1423                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1424 }
1425
1426 static unsigned long nvhe_percpu_order(void)
1427 {
1428         unsigned long size = nvhe_percpu_size();
1429
1430         return size ? get_order(size) : 0;
1431 }
1432
1433 /* A lookup table holding the hypervisor VA for each vector slot */
1434 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1435
1436 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1437 {
1438         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1439 }
1440
1441 static int kvm_init_vector_slots(void)
1442 {
1443         int err;
1444         void *base;
1445
1446         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1447         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1448
1449         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1450         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1451
1452         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1453                 return 0;
1454
1455         if (!has_vhe()) {
1456                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1457                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1458                 if (err)
1459                         return err;
1460         }
1461
1462         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1463         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1464         return 0;
1465 }
1466
1467 static void cpu_prepare_hyp_mode(int cpu)
1468 {
1469         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1470         unsigned long tcr;
1471
1472         /*
1473          * Calculate the raw per-cpu offset without a translation from the
1474          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1475          * so that we can use adr_l to access per-cpu variables in EL2.
1476          * Also drop the KASAN tag which gets in the way...
1477          */
1478         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1479                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1480
1481         params->mair_el2 = read_sysreg(mair_el1);
1482
1483         /*
1484          * The ID map may be configured to use an extended virtual address
1485          * range. This is only the case if system RAM is out of range for the
1486          * currently configured page size and VA_BITS, in which case we will
1487          * also need the extended virtual range for the HYP ID map, or we won't
1488          * be able to enable the EL2 MMU.
1489          *
1490          * However, at EL2, there is only one TTBR register, and we can't switch
1491          * between translation tables *and* update TCR_EL2.T0SZ at the same
1492          * time. Bottom line: we need to use the extended range with *both* our
1493          * translation tables.
1494          *
1495          * So use the same T0SZ value we use for the ID map.
1496          */
1497         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1498         tcr &= ~TCR_T0SZ_MASK;
1499         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1500         params->tcr_el2 = tcr;
1501
1502         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1503         params->pgd_pa = kvm_mmu_get_httbr();
1504         if (is_protected_kvm_enabled())
1505                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1506         else
1507                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1508         params->vttbr = params->vtcr = 0;
1509
1510         /*
1511          * Flush the init params from the data cache because the struct will
1512          * be read while the MMU is off.
1513          */
1514         kvm_flush_dcache_to_poc(params, sizeof(*params));
1515 }
1516
1517 static void hyp_install_host_vector(void)
1518 {
1519         struct kvm_nvhe_init_params *params;
1520         struct arm_smccc_res res;
1521
1522         /* Switch from the HYP stub to our own HYP init vector */
1523         __hyp_set_vectors(kvm_get_idmap_vector());
1524
1525         /*
1526          * Call initialization code, and switch to the full blown HYP code.
1527          * If the cpucaps haven't been finalized yet, something has gone very
1528          * wrong, and hyp will crash and burn when it uses any
1529          * cpus_have_const_cap() wrapper.
1530          */
1531         BUG_ON(!system_capabilities_finalized());
1532         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1533         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1534         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1535 }
1536
1537 static void cpu_init_hyp_mode(void)
1538 {
1539         hyp_install_host_vector();
1540
1541         /*
1542          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1543          * at EL2.
1544          */
1545         if (this_cpu_has_cap(ARM64_SSBS) &&
1546             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1547                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1548         }
1549 }
1550
1551 static void cpu_hyp_reset(void)
1552 {
1553         if (!is_kernel_in_hyp_mode())
1554                 __hyp_reset_vectors();
1555 }
1556
1557 /*
1558  * EL2 vectors can be mapped and rerouted in a number of ways,
1559  * depending on the kernel configuration and CPU present:
1560  *
1561  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1562  *   placed in one of the vector slots, which is executed before jumping
1563  *   to the real vectors.
1564  *
1565  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1566  *   containing the hardening sequence is mapped next to the idmap page,
1567  *   and executed before jumping to the real vectors.
1568  *
1569  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1570  *   empty slot is selected, mapped next to the idmap page, and
1571  *   executed before jumping to the real vectors.
1572  *
1573  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1574  * VHE, as we don't have hypervisor-specific mappings. If the system
1575  * is VHE and yet selects this capability, it will be ignored.
1576  */
1577 static void cpu_set_hyp_vector(void)
1578 {
1579         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1580         void *vector = hyp_spectre_vector_selector[data->slot];
1581
1582         if (!is_protected_kvm_enabled())
1583                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1584         else
1585                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1586 }
1587
1588 static void cpu_hyp_init_context(void)
1589 {
1590         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1591
1592         if (!is_kernel_in_hyp_mode())
1593                 cpu_init_hyp_mode();
1594 }
1595
1596 static void cpu_hyp_init_features(void)
1597 {
1598         cpu_set_hyp_vector();
1599         kvm_arm_init_debug();
1600
1601         if (is_kernel_in_hyp_mode())
1602                 kvm_timer_init_vhe();
1603
1604         if (vgic_present)
1605                 kvm_vgic_init_cpu_hardware();
1606 }
1607
1608 static void cpu_hyp_reinit(void)
1609 {
1610         cpu_hyp_reset();
1611         cpu_hyp_init_context();
1612         cpu_hyp_init_features();
1613 }
1614
1615 static void _kvm_arch_hardware_enable(void *discard)
1616 {
1617         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1618                 cpu_hyp_reinit();
1619                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1620         }
1621 }
1622
1623 int kvm_arch_hardware_enable(void)
1624 {
1625         _kvm_arch_hardware_enable(NULL);
1626         return 0;
1627 }
1628
1629 static void _kvm_arch_hardware_disable(void *discard)
1630 {
1631         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1632                 cpu_hyp_reset();
1633                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1634         }
1635 }
1636
1637 void kvm_arch_hardware_disable(void)
1638 {
1639         if (!is_protected_kvm_enabled())
1640                 _kvm_arch_hardware_disable(NULL);
1641 }
1642
1643 #ifdef CONFIG_CPU_PM
1644 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1645                                     unsigned long cmd,
1646                                     void *v)
1647 {
1648         /*
1649          * kvm_arm_hardware_enabled is left with its old value over
1650          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1651          * re-enable hyp.
1652          */
1653         switch (cmd) {
1654         case CPU_PM_ENTER:
1655                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1656                         /*
1657                          * don't update kvm_arm_hardware_enabled here
1658                          * so that the hardware will be re-enabled
1659                          * when we resume. See below.
1660                          */
1661                         cpu_hyp_reset();
1662
1663                 return NOTIFY_OK;
1664         case CPU_PM_ENTER_FAILED:
1665         case CPU_PM_EXIT:
1666                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1667                         /* The hardware was enabled before suspend. */
1668                         cpu_hyp_reinit();
1669
1670                 return NOTIFY_OK;
1671
1672         default:
1673                 return NOTIFY_DONE;
1674         }
1675 }
1676
1677 static struct notifier_block hyp_init_cpu_pm_nb = {
1678         .notifier_call = hyp_init_cpu_pm_notifier,
1679 };
1680
1681 static void hyp_cpu_pm_init(void)
1682 {
1683         if (!is_protected_kvm_enabled())
1684                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1685 }
1686 static void hyp_cpu_pm_exit(void)
1687 {
1688         if (!is_protected_kvm_enabled())
1689                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1690 }
1691 #else
1692 static inline void hyp_cpu_pm_init(void)
1693 {
1694 }
1695 static inline void hyp_cpu_pm_exit(void)
1696 {
1697 }
1698 #endif
1699
1700 static void init_cpu_logical_map(void)
1701 {
1702         unsigned int cpu;
1703
1704         /*
1705          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1706          * Only copy the set of online CPUs whose features have been chacked
1707          * against the finalized system capabilities. The hypervisor will not
1708          * allow any other CPUs from the `possible` set to boot.
1709          */
1710         for_each_online_cpu(cpu)
1711                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1712 }
1713
1714 #define init_psci_0_1_impl_state(config, what)  \
1715         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1716
1717 static bool init_psci_relay(void)
1718 {
1719         /*
1720          * If PSCI has not been initialized, protected KVM cannot install
1721          * itself on newly booted CPUs.
1722          */
1723         if (!psci_ops.get_version) {
1724                 kvm_err("Cannot initialize protected mode without PSCI\n");
1725                 return false;
1726         }
1727
1728         kvm_host_psci_config.version = psci_ops.get_version();
1729
1730         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1731                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1732                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1733                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1734                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1735                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1736         }
1737         return true;
1738 }
1739
1740 static int init_subsystems(void)
1741 {
1742         int err = 0;
1743
1744         /*
1745          * Enable hardware so that subsystem initialisation can access EL2.
1746          */
1747         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1748
1749         /*
1750          * Register CPU lower-power notifier
1751          */
1752         hyp_cpu_pm_init();
1753
1754         /*
1755          * Init HYP view of VGIC
1756          */
1757         err = kvm_vgic_hyp_init();
1758         switch (err) {
1759         case 0:
1760                 vgic_present = true;
1761                 break;
1762         case -ENODEV:
1763         case -ENXIO:
1764                 vgic_present = false;
1765                 err = 0;
1766                 break;
1767         default:
1768                 goto out;
1769         }
1770
1771         /*
1772          * Init HYP architected timer support
1773          */
1774         err = kvm_timer_hyp_init(vgic_present);
1775         if (err)
1776                 goto out;
1777
1778         kvm_perf_init();
1779         kvm_sys_reg_table_init();
1780
1781 out:
1782         if (err || !is_protected_kvm_enabled())
1783                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1784
1785         return err;
1786 }
1787
1788 static void teardown_hyp_mode(void)
1789 {
1790         int cpu;
1791
1792         free_hyp_pgds();
1793         for_each_possible_cpu(cpu) {
1794                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1795                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1796         }
1797 }
1798
1799 static int do_pkvm_init(u32 hyp_va_bits)
1800 {
1801         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1802         int ret;
1803
1804         preempt_disable();
1805         cpu_hyp_init_context();
1806         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1807                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1808                                 hyp_va_bits);
1809         cpu_hyp_init_features();
1810
1811         /*
1812          * The stub hypercalls are now disabled, so set our local flag to
1813          * prevent a later re-init attempt in kvm_arch_hardware_enable().
1814          */
1815         __this_cpu_write(kvm_arm_hardware_enabled, 1);
1816         preempt_enable();
1817
1818         return ret;
1819 }
1820
1821 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1822 {
1823         void *addr = phys_to_virt(hyp_mem_base);
1824         int ret;
1825
1826         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1827         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1828         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1829         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1830         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1831         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1832         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1833
1834         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1835         if (ret)
1836                 return ret;
1837
1838         ret = do_pkvm_init(hyp_va_bits);
1839         if (ret)
1840                 return ret;
1841
1842         free_hyp_pgds();
1843
1844         return 0;
1845 }
1846
1847 /**
1848  * Inits Hyp-mode on all online CPUs
1849  */
1850 static int init_hyp_mode(void)
1851 {
1852         u32 hyp_va_bits;
1853         int cpu;
1854         int err = -ENOMEM;
1855
1856         /*
1857          * The protected Hyp-mode cannot be initialized if the memory pool
1858          * allocation has failed.
1859          */
1860         if (is_protected_kvm_enabled() && !hyp_mem_base)
1861                 goto out_err;
1862
1863         /*
1864          * Allocate Hyp PGD and setup Hyp identity mapping
1865          */
1866         err = kvm_mmu_init(&hyp_va_bits);
1867         if (err)
1868                 goto out_err;
1869
1870         /*
1871          * Allocate stack pages for Hypervisor-mode
1872          */
1873         for_each_possible_cpu(cpu) {
1874                 unsigned long stack_page;
1875
1876                 stack_page = __get_free_page(GFP_KERNEL);
1877                 if (!stack_page) {
1878                         err = -ENOMEM;
1879                         goto out_err;
1880                 }
1881
1882                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1883         }
1884
1885         /*
1886          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1887          */
1888         for_each_possible_cpu(cpu) {
1889                 struct page *page;
1890                 void *page_addr;
1891
1892                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1893                 if (!page) {
1894                         err = -ENOMEM;
1895                         goto out_err;
1896                 }
1897
1898                 page_addr = page_address(page);
1899                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1900                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1901         }
1902
1903         /*
1904          * Map the Hyp-code called directly from the host
1905          */
1906         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1907                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1908         if (err) {
1909                 kvm_err("Cannot map world-switch code\n");
1910                 goto out_err;
1911         }
1912
1913         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1914                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1915         if (err) {
1916                 kvm_err("Cannot map .hyp.rodata section\n");
1917                 goto out_err;
1918         }
1919
1920         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1921                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1922         if (err) {
1923                 kvm_err("Cannot map rodata section\n");
1924                 goto out_err;
1925         }
1926
1927         /*
1928          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1929          * section thanks to an assertion in the linker script. Map it RW and
1930          * the rest of .bss RO.
1931          */
1932         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1933                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1934         if (err) {
1935                 kvm_err("Cannot map hyp bss section: %d\n", err);
1936                 goto out_err;
1937         }
1938
1939         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1940                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1941         if (err) {
1942                 kvm_err("Cannot map bss section\n");
1943                 goto out_err;
1944         }
1945
1946         /*
1947          * Map the Hyp stack pages
1948          */
1949         for_each_possible_cpu(cpu) {
1950                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1951                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1952                                           PAGE_HYP);
1953
1954                 if (err) {
1955                         kvm_err("Cannot map hyp stack\n");
1956                         goto out_err;
1957                 }
1958         }
1959
1960         for_each_possible_cpu(cpu) {
1961                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1962                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1963
1964                 /* Map Hyp percpu pages */
1965                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1966                 if (err) {
1967                         kvm_err("Cannot map hyp percpu region\n");
1968                         goto out_err;
1969                 }
1970
1971                 /* Prepare the CPU initialization parameters */
1972                 cpu_prepare_hyp_mode(cpu);
1973         }
1974
1975         if (is_protected_kvm_enabled()) {
1976                 init_cpu_logical_map();
1977
1978                 if (!init_psci_relay()) {
1979                         err = -ENODEV;
1980                         goto out_err;
1981                 }
1982         }
1983
1984         if (is_protected_kvm_enabled()) {
1985                 err = kvm_hyp_init_protection(hyp_va_bits);
1986                 if (err) {
1987                         kvm_err("Failed to init hyp memory protection\n");
1988                         goto out_err;
1989                 }
1990         }
1991
1992         return 0;
1993
1994 out_err:
1995         teardown_hyp_mode();
1996         kvm_err("error initializing Hyp mode: %d\n", err);
1997         return err;
1998 }
1999
2000 static void _kvm_host_prot_finalize(void *arg)
2001 {
2002         int *err = arg;
2003
2004         if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2005                 WRITE_ONCE(*err, -EINVAL);
2006 }
2007
2008 static int pkvm_drop_host_privileges(void)
2009 {
2010         int ret = 0;
2011
2012         /*
2013          * Flip the static key upfront as that may no longer be possible
2014          * once the host stage 2 is installed.
2015          */
2016         static_branch_enable(&kvm_protected_mode_initialized);
2017         on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2018         return ret;
2019 }
2020
2021 static int finalize_hyp_mode(void)
2022 {
2023         if (!is_protected_kvm_enabled())
2024                 return 0;
2025
2026         /*
2027          * Exclude HYP BSS from kmemleak so that it doesn't get peeked
2028          * at, which would end badly once the section is inaccessible.
2029          * None of other sections should ever be introspected.
2030          */
2031         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2032         return pkvm_drop_host_privileges();
2033 }
2034
2035 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2036 {
2037         struct kvm_vcpu *vcpu;
2038         int i;
2039
2040         mpidr &= MPIDR_HWID_BITMASK;
2041         kvm_for_each_vcpu(i, vcpu, kvm) {
2042                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2043                         return vcpu;
2044         }
2045         return NULL;
2046 }
2047
2048 bool kvm_arch_has_irq_bypass(void)
2049 {
2050         return true;
2051 }
2052
2053 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2054                                       struct irq_bypass_producer *prod)
2055 {
2056         struct kvm_kernel_irqfd *irqfd =
2057                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2058
2059         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2060                                           &irqfd->irq_entry);
2061 }
2062 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2063                                       struct irq_bypass_producer *prod)
2064 {
2065         struct kvm_kernel_irqfd *irqfd =
2066                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2067
2068         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2069                                      &irqfd->irq_entry);
2070 }
2071
2072 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2073 {
2074         struct kvm_kernel_irqfd *irqfd =
2075                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2076
2077         kvm_arm_halt_guest(irqfd->kvm);
2078 }
2079
2080 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2081 {
2082         struct kvm_kernel_irqfd *irqfd =
2083                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2084
2085         kvm_arm_resume_guest(irqfd->kvm);
2086 }
2087
2088 /**
2089  * Initialize Hyp-mode and memory mappings on all CPUs.
2090  */
2091 int kvm_arch_init(void *opaque)
2092 {
2093         int err;
2094         bool in_hyp_mode;
2095
2096         if (!is_hyp_mode_available()) {
2097                 kvm_info("HYP mode not available\n");
2098                 return -ENODEV;
2099         }
2100
2101         if (kvm_get_mode() == KVM_MODE_NONE) {
2102                 kvm_info("KVM disabled from command line\n");
2103                 return -ENODEV;
2104         }
2105
2106         in_hyp_mode = is_kernel_in_hyp_mode();
2107
2108         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2109             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2110                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2111                          "Only trusted guests should be used on this system.\n");
2112
2113         err = kvm_set_ipa_limit();
2114         if (err)
2115                 return err;
2116
2117         err = kvm_arm_init_sve();
2118         if (err)
2119                 return err;
2120
2121         if (!in_hyp_mode) {
2122                 err = init_hyp_mode();
2123                 if (err)
2124                         goto out_err;
2125         }
2126
2127         err = kvm_init_vector_slots();
2128         if (err) {
2129                 kvm_err("Cannot initialise vector slots\n");
2130                 goto out_err;
2131         }
2132
2133         err = init_subsystems();
2134         if (err)
2135                 goto out_hyp;
2136
2137         if (!in_hyp_mode) {
2138                 err = finalize_hyp_mode();
2139                 if (err) {
2140                         kvm_err("Failed to finalize Hyp protection\n");
2141                         goto out_hyp;
2142                 }
2143         }
2144
2145         if (is_protected_kvm_enabled()) {
2146                 kvm_info("Protected nVHE mode initialized successfully\n");
2147         } else if (in_hyp_mode) {
2148                 kvm_info("VHE mode initialized successfully\n");
2149         } else {
2150                 kvm_info("Hyp mode initialized successfully\n");
2151         }
2152
2153         return 0;
2154
2155 out_hyp:
2156         hyp_cpu_pm_exit();
2157         if (!in_hyp_mode)
2158                 teardown_hyp_mode();
2159 out_err:
2160         return err;
2161 }
2162
2163 /* NOP: Compiling as a module not supported */
2164 void kvm_arch_exit(void)
2165 {
2166         kvm_perf_teardown();
2167 }
2168
2169 static int __init early_kvm_mode_cfg(char *arg)
2170 {
2171         if (!arg)
2172                 return -EINVAL;
2173
2174         if (strcmp(arg, "protected") == 0) {
2175                 kvm_mode = KVM_MODE_PROTECTED;
2176                 return 0;
2177         }
2178
2179         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2180                 kvm_mode = KVM_MODE_DEFAULT;
2181                 return 0;
2182         }
2183
2184         if (strcmp(arg, "none") == 0) {
2185                 kvm_mode = KVM_MODE_NONE;
2186                 return 0;
2187         }
2188
2189         return -EINVAL;
2190 }
2191 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2192
2193 enum kvm_mode kvm_get_mode(void)
2194 {
2195         return kvm_mode;
2196 }
2197
2198 static int arm_init(void)
2199 {
2200         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2201         return rc;
2202 }
2203
2204 module_init(arm_init);