ASoC: Merge fixes
[platform/kernel/linux-rpi.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
71 int kvm_arch_hardware_setup(void *opaque)
72 {
73         return 0;
74 }
75
76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78         return 0;
79 }
80
81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82                             struct kvm_enable_cap *cap)
83 {
84         int r;
85
86         if (cap->flags)
87                 return -EINVAL;
88
89         switch (cap->cap) {
90         case KVM_CAP_ARM_NISV_TO_USER:
91                 r = 0;
92                 kvm->arch.return_nisv_io_abort_to_user = true;
93                 break;
94         case KVM_CAP_ARM_MTE:
95                 mutex_lock(&kvm->lock);
96                 if (!system_supports_mte() || kvm->created_vcpus) {
97                         r = -EINVAL;
98                 } else {
99                         r = 0;
100                         kvm->arch.mte_enabled = true;
101                 }
102                 mutex_unlock(&kvm->lock);
103                 break;
104         default:
105                 r = -EINVAL;
106                 break;
107         }
108
109         return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119         /*
120          * The default is to expose CSV2 == 1 if the HW isn't affected.
121          * Although this is a per-CPU feature, we make it global because
122          * asymmetric systems are just a nuisance.
123          *
124          * Userspace can override this as long as it doesn't promise
125          * the impossible.
126          */
127         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128                 kvm->arch.pfr0_csv2 = 1;
129         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130                 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:        pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         int ret;
140
141         ret = kvm_arm_setup_stage2(kvm, type);
142         if (ret)
143                 return ret;
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146         if (ret)
147                 return ret;
148
149         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150         if (ret)
151                 goto out_free_stage2_pgd;
152
153         kvm_vgic_early_init(kvm);
154
155         /* The maximum number of VCPUs is limited by the host's GIC model */
156         kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158         set_default_spectre(kvm);
159
160         return ret;
161 out_free_stage2_pgd:
162         kvm_free_stage2_pgd(&kvm->arch.mmu);
163         return ret;
164 }
165
166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         bitmap_free(kvm->arch.pmu_filter);
181
182         kvm_vgic_destroy(kvm);
183
184         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
185                 if (kvm->vcpus[i]) {
186                         kvm_vcpu_destroy(kvm->vcpus[i]);
187                         kvm->vcpus[i] = NULL;
188                 }
189         }
190         atomic_set(&kvm->online_vcpus, 0);
191 }
192
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195         int r;
196         switch (ext) {
197         case KVM_CAP_IRQCHIP:
198                 r = vgic_present;
199                 break;
200         case KVM_CAP_IOEVENTFD:
201         case KVM_CAP_DEVICE_CTRL:
202         case KVM_CAP_USER_MEMORY:
203         case KVM_CAP_SYNC_MMU:
204         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205         case KVM_CAP_ONE_REG:
206         case KVM_CAP_ARM_PSCI:
207         case KVM_CAP_ARM_PSCI_0_2:
208         case KVM_CAP_READONLY_MEM:
209         case KVM_CAP_MP_STATE:
210         case KVM_CAP_IMMEDIATE_EXIT:
211         case KVM_CAP_VCPU_EVENTS:
212         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213         case KVM_CAP_ARM_NISV_TO_USER:
214         case KVM_CAP_ARM_INJECT_EXT_DABT:
215         case KVM_CAP_SET_GUEST_DEBUG:
216         case KVM_CAP_VCPU_ATTRIBUTES:
217         case KVM_CAP_PTP_KVM:
218                 r = 1;
219                 break;
220         case KVM_CAP_SET_GUEST_DEBUG2:
221                 return KVM_GUESTDBG_VALID_MASK;
222         case KVM_CAP_ARM_SET_DEVICE_ADDR:
223                 r = 1;
224                 break;
225         case KVM_CAP_NR_VCPUS:
226                 r = num_online_cpus();
227                 break;
228         case KVM_CAP_MAX_VCPUS:
229         case KVM_CAP_MAX_VCPU_ID:
230                 if (kvm)
231                         r = kvm->arch.max_vcpus;
232                 else
233                         r = kvm_arm_default_max_vcpus();
234                 break;
235         case KVM_CAP_MSI_DEVID:
236                 if (!kvm)
237                         r = -EINVAL;
238                 else
239                         r = kvm->arch.vgic.msis_require_devid;
240                 break;
241         case KVM_CAP_ARM_USER_IRQ:
242                 /*
243                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
244                  * (bump this number if adding more devices)
245                  */
246                 r = 1;
247                 break;
248         case KVM_CAP_ARM_MTE:
249                 r = system_supports_mte();
250                 break;
251         case KVM_CAP_STEAL_TIME:
252                 r = kvm_arm_pvtime_supported();
253                 break;
254         case KVM_CAP_ARM_EL1_32BIT:
255                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
256                 break;
257         case KVM_CAP_GUEST_DEBUG_HW_BPS:
258                 r = get_num_brps();
259                 break;
260         case KVM_CAP_GUEST_DEBUG_HW_WPS:
261                 r = get_num_wrps();
262                 break;
263         case KVM_CAP_ARM_PMU_V3:
264                 r = kvm_arm_support_pmu_v3();
265                 break;
266         case KVM_CAP_ARM_INJECT_SERROR_ESR:
267                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
268                 break;
269         case KVM_CAP_ARM_VM_IPA_SIZE:
270                 r = get_kvm_ipa_limit();
271                 break;
272         case KVM_CAP_ARM_SVE:
273                 r = system_supports_sve();
274                 break;
275         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
276         case KVM_CAP_ARM_PTRAUTH_GENERIC:
277                 r = system_has_full_ptr_auth();
278                 break;
279         default:
280                 r = 0;
281         }
282
283         return r;
284 }
285
286 long kvm_arch_dev_ioctl(struct file *filp,
287                         unsigned int ioctl, unsigned long arg)
288 {
289         return -EINVAL;
290 }
291
292 struct kvm *kvm_arch_alloc_vm(void)
293 {
294         size_t sz = sizeof(struct kvm);
295
296         if (!has_vhe())
297                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
298
299         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
300 }
301
302 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
303 {
304         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
305                 return -EBUSY;
306
307         if (id >= kvm->arch.max_vcpus)
308                 return -EINVAL;
309
310         return 0;
311 }
312
313 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
314 {
315         int err;
316
317         /* Force users to call KVM_ARM_VCPU_INIT */
318         vcpu->arch.target = -1;
319         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
320
321         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
322
323         /* Set up the timer */
324         kvm_timer_vcpu_init(vcpu);
325
326         kvm_pmu_vcpu_init(vcpu);
327
328         kvm_arm_reset_debug_ptr(vcpu);
329
330         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
331
332         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
333
334         err = kvm_vgic_vcpu_init(vcpu);
335         if (err)
336                 return err;
337
338         return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
339 }
340
341 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
342 {
343 }
344
345 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
346 {
347         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
348                 static_branch_dec(&userspace_irqchip_in_use);
349
350         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
351         kvm_timer_vcpu_terminate(vcpu);
352         kvm_pmu_vcpu_destroy(vcpu);
353
354         kvm_arm_vcpu_destroy(vcpu);
355 }
356
357 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
358 {
359         return kvm_timer_is_pending(vcpu);
360 }
361
362 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
363 {
364         /*
365          * If we're about to block (most likely because we've just hit a
366          * WFI), we need to sync back the state of the GIC CPU interface
367          * so that we have the latest PMR and group enables. This ensures
368          * that kvm_arch_vcpu_runnable has up-to-date data to decide
369          * whether we have pending interrupts.
370          *
371          * For the same reason, we want to tell GICv4 that we need
372          * doorbells to be signalled, should an interrupt become pending.
373          */
374         preempt_disable();
375         kvm_vgic_vmcr_sync(vcpu);
376         vgic_v4_put(vcpu, true);
377         preempt_enable();
378 }
379
380 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
381 {
382         preempt_disable();
383         vgic_v4_load(vcpu);
384         preempt_enable();
385 }
386
387 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
388 {
389         struct kvm_s2_mmu *mmu;
390         int *last_ran;
391
392         mmu = vcpu->arch.hw_mmu;
393         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
394
395         /*
396          * We guarantee that both TLBs and I-cache are private to each
397          * vcpu. If detecting that a vcpu from the same VM has
398          * previously run on the same physical CPU, call into the
399          * hypervisor code to nuke the relevant contexts.
400          *
401          * We might get preempted before the vCPU actually runs, but
402          * over-invalidation doesn't affect correctness.
403          */
404         if (*last_ran != vcpu->vcpu_id) {
405                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
406                 *last_ran = vcpu->vcpu_id;
407         }
408
409         vcpu->cpu = cpu;
410
411         kvm_vgic_load(vcpu);
412         kvm_timer_vcpu_load(vcpu);
413         if (has_vhe())
414                 kvm_vcpu_load_sysregs_vhe(vcpu);
415         kvm_arch_vcpu_load_fp(vcpu);
416         kvm_vcpu_pmu_restore_guest(vcpu);
417         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
418                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
419
420         if (single_task_running())
421                 vcpu_clear_wfx_traps(vcpu);
422         else
423                 vcpu_set_wfx_traps(vcpu);
424
425         if (vcpu_has_ptrauth(vcpu))
426                 vcpu_ptrauth_disable(vcpu);
427         kvm_arch_vcpu_load_debug_state_flags(vcpu);
428 }
429
430 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
431 {
432         kvm_arch_vcpu_put_debug_state_flags(vcpu);
433         kvm_arch_vcpu_put_fp(vcpu);
434         if (has_vhe())
435                 kvm_vcpu_put_sysregs_vhe(vcpu);
436         kvm_timer_vcpu_put(vcpu);
437         kvm_vgic_put(vcpu);
438         kvm_vcpu_pmu_restore_host(vcpu);
439
440         vcpu->cpu = -1;
441 }
442
443 static void vcpu_power_off(struct kvm_vcpu *vcpu)
444 {
445         vcpu->arch.power_off = true;
446         kvm_make_request(KVM_REQ_SLEEP, vcpu);
447         kvm_vcpu_kick(vcpu);
448 }
449
450 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
451                                     struct kvm_mp_state *mp_state)
452 {
453         if (vcpu->arch.power_off)
454                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
455         else
456                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
457
458         return 0;
459 }
460
461 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
462                                     struct kvm_mp_state *mp_state)
463 {
464         int ret = 0;
465
466         switch (mp_state->mp_state) {
467         case KVM_MP_STATE_RUNNABLE:
468                 vcpu->arch.power_off = false;
469                 break;
470         case KVM_MP_STATE_STOPPED:
471                 vcpu_power_off(vcpu);
472                 break;
473         default:
474                 ret = -EINVAL;
475         }
476
477         return ret;
478 }
479
480 /**
481  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
482  * @v:          The VCPU pointer
483  *
484  * If the guest CPU is not waiting for interrupts or an interrupt line is
485  * asserted, the CPU is by definition runnable.
486  */
487 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
488 {
489         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
490         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
491                 && !v->arch.power_off && !v->arch.pause);
492 }
493
494 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
495 {
496         return vcpu_mode_priv(vcpu);
497 }
498
499 /* Just ensure a guest exit from a particular CPU */
500 static void exit_vm_noop(void *info)
501 {
502 }
503
504 void force_vm_exit(const cpumask_t *mask)
505 {
506         preempt_disable();
507         smp_call_function_many(mask, exit_vm_noop, NULL, true);
508         preempt_enable();
509 }
510
511 /**
512  * need_new_vmid_gen - check that the VMID is still valid
513  * @vmid: The VMID to check
514  *
515  * return true if there is a new generation of VMIDs being used
516  *
517  * The hardware supports a limited set of values with the value zero reserved
518  * for the host, so we check if an assigned value belongs to a previous
519  * generation, which requires us to assign a new value. If we're the first to
520  * use a VMID for the new generation, we must flush necessary caches and TLBs
521  * on all CPUs.
522  */
523 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
524 {
525         u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
526         smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
527         return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
528 }
529
530 /**
531  * update_vmid - Update the vmid with a valid VMID for the current generation
532  * @vmid: The stage-2 VMID information struct
533  */
534 static void update_vmid(struct kvm_vmid *vmid)
535 {
536         if (!need_new_vmid_gen(vmid))
537                 return;
538
539         spin_lock(&kvm_vmid_lock);
540
541         /*
542          * We need to re-check the vmid_gen here to ensure that if another vcpu
543          * already allocated a valid vmid for this vm, then this vcpu should
544          * use the same vmid.
545          */
546         if (!need_new_vmid_gen(vmid)) {
547                 spin_unlock(&kvm_vmid_lock);
548                 return;
549         }
550
551         /* First user of a new VMID generation? */
552         if (unlikely(kvm_next_vmid == 0)) {
553                 atomic64_inc(&kvm_vmid_gen);
554                 kvm_next_vmid = 1;
555
556                 /*
557                  * On SMP we know no other CPUs can use this CPU's or each
558                  * other's VMID after force_vm_exit returns since the
559                  * kvm_vmid_lock blocks them from reentry to the guest.
560                  */
561                 force_vm_exit(cpu_all_mask);
562                 /*
563                  * Now broadcast TLB + ICACHE invalidation over the inner
564                  * shareable domain to make sure all data structures are
565                  * clean.
566                  */
567                 kvm_call_hyp(__kvm_flush_vm_context);
568         }
569
570         WRITE_ONCE(vmid->vmid, kvm_next_vmid);
571         kvm_next_vmid++;
572         kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
573
574         smp_wmb();
575         WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
576
577         spin_unlock(&kvm_vmid_lock);
578 }
579
580 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
581 {
582         struct kvm *kvm = vcpu->kvm;
583         int ret = 0;
584
585         if (likely(vcpu->arch.has_run_once))
586                 return 0;
587
588         if (!kvm_arm_vcpu_is_finalized(vcpu))
589                 return -EPERM;
590
591         vcpu->arch.has_run_once = true;
592
593         kvm_arm_vcpu_init_debug(vcpu);
594
595         if (likely(irqchip_in_kernel(kvm))) {
596                 /*
597                  * Map the VGIC hardware resources before running a vcpu the
598                  * first time on this VM.
599                  */
600                 ret = kvm_vgic_map_resources(kvm);
601                 if (ret)
602                         return ret;
603         } else {
604                 /*
605                  * Tell the rest of the code that there are userspace irqchip
606                  * VMs in the wild.
607                  */
608                 static_branch_inc(&userspace_irqchip_in_use);
609         }
610
611         ret = kvm_timer_enable(vcpu);
612         if (ret)
613                 return ret;
614
615         ret = kvm_arm_pmu_v3_enable(vcpu);
616
617         /*
618          * Initialize traps for protected VMs.
619          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
620          * the code is in place for first run initialization at EL2.
621          */
622         if (kvm_vm_is_protected(kvm))
623                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
624
625         return ret;
626 }
627
628 bool kvm_arch_intc_initialized(struct kvm *kvm)
629 {
630         return vgic_initialized(kvm);
631 }
632
633 void kvm_arm_halt_guest(struct kvm *kvm)
634 {
635         int i;
636         struct kvm_vcpu *vcpu;
637
638         kvm_for_each_vcpu(i, vcpu, kvm)
639                 vcpu->arch.pause = true;
640         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
641 }
642
643 void kvm_arm_resume_guest(struct kvm *kvm)
644 {
645         int i;
646         struct kvm_vcpu *vcpu;
647
648         kvm_for_each_vcpu(i, vcpu, kvm) {
649                 vcpu->arch.pause = false;
650                 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
651         }
652 }
653
654 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
655 {
656         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
657
658         rcuwait_wait_event(wait,
659                            (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
660                            TASK_INTERRUPTIBLE);
661
662         if (vcpu->arch.power_off || vcpu->arch.pause) {
663                 /* Awaken to handle a signal, request we sleep again later. */
664                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
665         }
666
667         /*
668          * Make sure we will observe a potential reset request if we've
669          * observed a change to the power state. Pairs with the smp_wmb() in
670          * kvm_psci_vcpu_on().
671          */
672         smp_rmb();
673 }
674
675 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
676 {
677         return vcpu->arch.target >= 0;
678 }
679
680 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
681 {
682         if (kvm_request_pending(vcpu)) {
683                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
684                         vcpu_req_sleep(vcpu);
685
686                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
687                         kvm_reset_vcpu(vcpu);
688
689                 /*
690                  * Clear IRQ_PENDING requests that were made to guarantee
691                  * that a VCPU sees new virtual interrupts.
692                  */
693                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
694
695                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
696                         kvm_update_stolen_time(vcpu);
697
698                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
699                         /* The distributor enable bits were changed */
700                         preempt_disable();
701                         vgic_v4_put(vcpu, false);
702                         vgic_v4_load(vcpu);
703                         preempt_enable();
704                 }
705
706                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
707                         kvm_pmu_handle_pmcr(vcpu,
708                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
709         }
710 }
711
712 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
713 {
714         if (likely(!vcpu_mode_is_32bit(vcpu)))
715                 return false;
716
717         return !system_supports_32bit_el0() ||
718                 static_branch_unlikely(&arm64_mismatched_32bit_el0);
719 }
720
721 /**
722  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
723  * @vcpu:       The VCPU pointer
724  * @ret:        Pointer to write optional return code
725  *
726  * Returns: true if the VCPU needs to return to a preemptible + interruptible
727  *          and skip guest entry.
728  *
729  * This function disambiguates between two different types of exits: exits to a
730  * preemptible + interruptible kernel context and exits to userspace. For an
731  * exit to userspace, this function will write the return code to ret and return
732  * true. For an exit to preemptible + interruptible kernel context (i.e. check
733  * for pending work and re-enter), return true without writing to ret.
734  */
735 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
736 {
737         struct kvm_run *run = vcpu->run;
738
739         /*
740          * If we're using a userspace irqchip, then check if we need
741          * to tell a userspace irqchip about timer or PMU level
742          * changes and if so, exit to userspace (the actual level
743          * state gets updated in kvm_timer_update_run and
744          * kvm_pmu_update_run below).
745          */
746         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
747                 if (kvm_timer_should_notify_user(vcpu) ||
748                     kvm_pmu_should_notify_user(vcpu)) {
749                         *ret = -EINTR;
750                         run->exit_reason = KVM_EXIT_INTR;
751                         return true;
752                 }
753         }
754
755         return kvm_request_pending(vcpu) ||
756                         need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
757                         xfer_to_guest_mode_work_pending();
758 }
759
760 /**
761  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
762  * @vcpu:       The VCPU pointer
763  *
764  * This function is called through the VCPU_RUN ioctl called from user space. It
765  * will execute VM code in a loop until the time slice for the process is used
766  * or some emulation is needed from user space in which case the function will
767  * return with return value 0 and with the kvm_run structure filled in with the
768  * required data for the requested emulation.
769  */
770 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
771 {
772         struct kvm_run *run = vcpu->run;
773         int ret;
774
775         if (unlikely(!kvm_vcpu_initialized(vcpu)))
776                 return -ENOEXEC;
777
778         ret = kvm_vcpu_first_run_init(vcpu);
779         if (ret)
780                 return ret;
781
782         if (run->exit_reason == KVM_EXIT_MMIO) {
783                 ret = kvm_handle_mmio_return(vcpu);
784                 if (ret)
785                         return ret;
786         }
787
788         vcpu_load(vcpu);
789
790         if (run->immediate_exit) {
791                 ret = -EINTR;
792                 goto out;
793         }
794
795         kvm_sigset_activate(vcpu);
796
797         ret = 1;
798         run->exit_reason = KVM_EXIT_UNKNOWN;
799         while (ret > 0) {
800                 /*
801                  * Check conditions before entering the guest
802                  */
803                 ret = xfer_to_guest_mode_handle_work(vcpu);
804                 if (!ret)
805                         ret = 1;
806
807                 update_vmid(&vcpu->arch.hw_mmu->vmid);
808
809                 check_vcpu_requests(vcpu);
810
811                 /*
812                  * Preparing the interrupts to be injected also
813                  * involves poking the GIC, which must be done in a
814                  * non-preemptible context.
815                  */
816                 preempt_disable();
817
818                 kvm_pmu_flush_hwstate(vcpu);
819
820                 local_irq_disable();
821
822                 kvm_vgic_flush_hwstate(vcpu);
823
824                 /*
825                  * Ensure we set mode to IN_GUEST_MODE after we disable
826                  * interrupts and before the final VCPU requests check.
827                  * See the comment in kvm_vcpu_exiting_guest_mode() and
828                  * Documentation/virt/kvm/vcpu-requests.rst
829                  */
830                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
831
832                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
833                         vcpu->mode = OUTSIDE_GUEST_MODE;
834                         isb(); /* Ensure work in x_flush_hwstate is committed */
835                         kvm_pmu_sync_hwstate(vcpu);
836                         if (static_branch_unlikely(&userspace_irqchip_in_use))
837                                 kvm_timer_sync_user(vcpu);
838                         kvm_vgic_sync_hwstate(vcpu);
839                         local_irq_enable();
840                         preempt_enable();
841                         continue;
842                 }
843
844                 kvm_arm_setup_debug(vcpu);
845
846                 /**************************************************************
847                  * Enter the guest
848                  */
849                 trace_kvm_entry(*vcpu_pc(vcpu));
850                 guest_enter_irqoff();
851
852                 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
853
854                 vcpu->mode = OUTSIDE_GUEST_MODE;
855                 vcpu->stat.exits++;
856                 /*
857                  * Back from guest
858                  *************************************************************/
859
860                 kvm_arm_clear_debug(vcpu);
861
862                 /*
863                  * We must sync the PMU state before the vgic state so
864                  * that the vgic can properly sample the updated state of the
865                  * interrupt line.
866                  */
867                 kvm_pmu_sync_hwstate(vcpu);
868
869                 /*
870                  * Sync the vgic state before syncing the timer state because
871                  * the timer code needs to know if the virtual timer
872                  * interrupts are active.
873                  */
874                 kvm_vgic_sync_hwstate(vcpu);
875
876                 /*
877                  * Sync the timer hardware state before enabling interrupts as
878                  * we don't want vtimer interrupts to race with syncing the
879                  * timer virtual interrupt state.
880                  */
881                 if (static_branch_unlikely(&userspace_irqchip_in_use))
882                         kvm_timer_sync_user(vcpu);
883
884                 kvm_arch_vcpu_ctxsync_fp(vcpu);
885
886                 /*
887                  * We may have taken a host interrupt in HYP mode (ie
888                  * while executing the guest). This interrupt is still
889                  * pending, as we haven't serviced it yet!
890                  *
891                  * We're now back in SVC mode, with interrupts
892                  * disabled.  Enabling the interrupts now will have
893                  * the effect of taking the interrupt again, in SVC
894                  * mode this time.
895                  */
896                 local_irq_enable();
897
898                 /*
899                  * We do local_irq_enable() before calling guest_exit() so
900                  * that if a timer interrupt hits while running the guest we
901                  * account that tick as being spent in the guest.  We enable
902                  * preemption after calling guest_exit() so that if we get
903                  * preempted we make sure ticks after that is not counted as
904                  * guest time.
905                  */
906                 guest_exit();
907                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
908
909                 /* Exit types that need handling before we can be preempted */
910                 handle_exit_early(vcpu, ret);
911
912                 preempt_enable();
913
914                 /*
915                  * The ARMv8 architecture doesn't give the hypervisor
916                  * a mechanism to prevent a guest from dropping to AArch32 EL0
917                  * if implemented by the CPU. If we spot the guest in such
918                  * state and that we decided it wasn't supposed to do so (like
919                  * with the asymmetric AArch32 case), return to userspace with
920                  * a fatal error.
921                  */
922                 if (vcpu_mode_is_bad_32bit(vcpu)) {
923                         /*
924                          * As we have caught the guest red-handed, decide that
925                          * it isn't fit for purpose anymore by making the vcpu
926                          * invalid. The VMM can try and fix it by issuing  a
927                          * KVM_ARM_VCPU_INIT if it really wants to.
928                          */
929                         vcpu->arch.target = -1;
930                         ret = ARM_EXCEPTION_IL;
931                 }
932
933                 ret = handle_exit(vcpu, ret);
934         }
935
936         /* Tell userspace about in-kernel device output levels */
937         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
938                 kvm_timer_update_run(vcpu);
939                 kvm_pmu_update_run(vcpu);
940         }
941
942         kvm_sigset_deactivate(vcpu);
943
944 out:
945         /*
946          * In the unlikely event that we are returning to userspace
947          * with pending exceptions or PC adjustment, commit these
948          * adjustments in order to give userspace a consistent view of
949          * the vcpu state. Note that this relies on __kvm_adjust_pc()
950          * being preempt-safe on VHE.
951          */
952         if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
953                                          KVM_ARM64_INCREMENT_PC)))
954                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
955
956         vcpu_put(vcpu);
957         return ret;
958 }
959
960 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
961 {
962         int bit_index;
963         bool set;
964         unsigned long *hcr;
965
966         if (number == KVM_ARM_IRQ_CPU_IRQ)
967                 bit_index = __ffs(HCR_VI);
968         else /* KVM_ARM_IRQ_CPU_FIQ */
969                 bit_index = __ffs(HCR_VF);
970
971         hcr = vcpu_hcr(vcpu);
972         if (level)
973                 set = test_and_set_bit(bit_index, hcr);
974         else
975                 set = test_and_clear_bit(bit_index, hcr);
976
977         /*
978          * If we didn't change anything, no need to wake up or kick other CPUs
979          */
980         if (set == level)
981                 return 0;
982
983         /*
984          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
985          * trigger a world-switch round on the running physical CPU to set the
986          * virtual IRQ/FIQ fields in the HCR appropriately.
987          */
988         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
989         kvm_vcpu_kick(vcpu);
990
991         return 0;
992 }
993
994 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
995                           bool line_status)
996 {
997         u32 irq = irq_level->irq;
998         unsigned int irq_type, vcpu_idx, irq_num;
999         int nrcpus = atomic_read(&kvm->online_vcpus);
1000         struct kvm_vcpu *vcpu = NULL;
1001         bool level = irq_level->level;
1002
1003         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1004         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1005         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1006         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1007
1008         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1009
1010         switch (irq_type) {
1011         case KVM_ARM_IRQ_TYPE_CPU:
1012                 if (irqchip_in_kernel(kvm))
1013                         return -ENXIO;
1014
1015                 if (vcpu_idx >= nrcpus)
1016                         return -EINVAL;
1017
1018                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1019                 if (!vcpu)
1020                         return -EINVAL;
1021
1022                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1023                         return -EINVAL;
1024
1025                 return vcpu_interrupt_line(vcpu, irq_num, level);
1026         case KVM_ARM_IRQ_TYPE_PPI:
1027                 if (!irqchip_in_kernel(kvm))
1028                         return -ENXIO;
1029
1030                 if (vcpu_idx >= nrcpus)
1031                         return -EINVAL;
1032
1033                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1034                 if (!vcpu)
1035                         return -EINVAL;
1036
1037                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1038                         return -EINVAL;
1039
1040                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1041         case KVM_ARM_IRQ_TYPE_SPI:
1042                 if (!irqchip_in_kernel(kvm))
1043                         return -ENXIO;
1044
1045                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1046                         return -EINVAL;
1047
1048                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1049         }
1050
1051         return -EINVAL;
1052 }
1053
1054 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1055                                const struct kvm_vcpu_init *init)
1056 {
1057         unsigned int i, ret;
1058         u32 phys_target = kvm_target_cpu();
1059
1060         if (init->target != phys_target)
1061                 return -EINVAL;
1062
1063         /*
1064          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1065          * use the same target.
1066          */
1067         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1068                 return -EINVAL;
1069
1070         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1071         for (i = 0; i < sizeof(init->features) * 8; i++) {
1072                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1073
1074                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1075                         return -ENOENT;
1076
1077                 /*
1078                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1079                  * use the same feature set.
1080                  */
1081                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1082                     test_bit(i, vcpu->arch.features) != set)
1083                         return -EINVAL;
1084
1085                 if (set)
1086                         set_bit(i, vcpu->arch.features);
1087         }
1088
1089         vcpu->arch.target = phys_target;
1090
1091         /* Now we know what it is, we can reset it. */
1092         ret = kvm_reset_vcpu(vcpu);
1093         if (ret) {
1094                 vcpu->arch.target = -1;
1095                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1096         }
1097
1098         return ret;
1099 }
1100
1101 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1102                                          struct kvm_vcpu_init *init)
1103 {
1104         int ret;
1105
1106         ret = kvm_vcpu_set_target(vcpu, init);
1107         if (ret)
1108                 return ret;
1109
1110         /*
1111          * Ensure a rebooted VM will fault in RAM pages and detect if the
1112          * guest MMU is turned off and flush the caches as needed.
1113          *
1114          * S2FWB enforces all memory accesses to RAM being cacheable,
1115          * ensuring that the data side is always coherent. We still
1116          * need to invalidate the I-cache though, as FWB does *not*
1117          * imply CTR_EL0.DIC.
1118          */
1119         if (vcpu->arch.has_run_once) {
1120                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1121                         stage2_unmap_vm(vcpu->kvm);
1122                 else
1123                         icache_inval_all_pou();
1124         }
1125
1126         vcpu_reset_hcr(vcpu);
1127         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1128
1129         /*
1130          * Handle the "start in power-off" case.
1131          */
1132         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1133                 vcpu_power_off(vcpu);
1134         else
1135                 vcpu->arch.power_off = false;
1136
1137         return 0;
1138 }
1139
1140 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1141                                  struct kvm_device_attr *attr)
1142 {
1143         int ret = -ENXIO;
1144
1145         switch (attr->group) {
1146         default:
1147                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1148                 break;
1149         }
1150
1151         return ret;
1152 }
1153
1154 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1155                                  struct kvm_device_attr *attr)
1156 {
1157         int ret = -ENXIO;
1158
1159         switch (attr->group) {
1160         default:
1161                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1162                 break;
1163         }
1164
1165         return ret;
1166 }
1167
1168 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1169                                  struct kvm_device_attr *attr)
1170 {
1171         int ret = -ENXIO;
1172
1173         switch (attr->group) {
1174         default:
1175                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1176                 break;
1177         }
1178
1179         return ret;
1180 }
1181
1182 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1183                                    struct kvm_vcpu_events *events)
1184 {
1185         memset(events, 0, sizeof(*events));
1186
1187         return __kvm_arm_vcpu_get_events(vcpu, events);
1188 }
1189
1190 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1191                                    struct kvm_vcpu_events *events)
1192 {
1193         int i;
1194
1195         /* check whether the reserved field is zero */
1196         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1197                 if (events->reserved[i])
1198                         return -EINVAL;
1199
1200         /* check whether the pad field is zero */
1201         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1202                 if (events->exception.pad[i])
1203                         return -EINVAL;
1204
1205         return __kvm_arm_vcpu_set_events(vcpu, events);
1206 }
1207
1208 long kvm_arch_vcpu_ioctl(struct file *filp,
1209                          unsigned int ioctl, unsigned long arg)
1210 {
1211         struct kvm_vcpu *vcpu = filp->private_data;
1212         void __user *argp = (void __user *)arg;
1213         struct kvm_device_attr attr;
1214         long r;
1215
1216         switch (ioctl) {
1217         case KVM_ARM_VCPU_INIT: {
1218                 struct kvm_vcpu_init init;
1219
1220                 r = -EFAULT;
1221                 if (copy_from_user(&init, argp, sizeof(init)))
1222                         break;
1223
1224                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1225                 break;
1226         }
1227         case KVM_SET_ONE_REG:
1228         case KVM_GET_ONE_REG: {
1229                 struct kvm_one_reg reg;
1230
1231                 r = -ENOEXEC;
1232                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1233                         break;
1234
1235                 r = -EFAULT;
1236                 if (copy_from_user(&reg, argp, sizeof(reg)))
1237                         break;
1238
1239                 /*
1240                  * We could owe a reset due to PSCI. Handle the pending reset
1241                  * here to ensure userspace register accesses are ordered after
1242                  * the reset.
1243                  */
1244                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1245                         kvm_reset_vcpu(vcpu);
1246
1247                 if (ioctl == KVM_SET_ONE_REG)
1248                         r = kvm_arm_set_reg(vcpu, &reg);
1249                 else
1250                         r = kvm_arm_get_reg(vcpu, &reg);
1251                 break;
1252         }
1253         case KVM_GET_REG_LIST: {
1254                 struct kvm_reg_list __user *user_list = argp;
1255                 struct kvm_reg_list reg_list;
1256                 unsigned n;
1257
1258                 r = -ENOEXEC;
1259                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1260                         break;
1261
1262                 r = -EPERM;
1263                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1264                         break;
1265
1266                 r = -EFAULT;
1267                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1268                         break;
1269                 n = reg_list.n;
1270                 reg_list.n = kvm_arm_num_regs(vcpu);
1271                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1272                         break;
1273                 r = -E2BIG;
1274                 if (n < reg_list.n)
1275                         break;
1276                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1277                 break;
1278         }
1279         case KVM_SET_DEVICE_ATTR: {
1280                 r = -EFAULT;
1281                 if (copy_from_user(&attr, argp, sizeof(attr)))
1282                         break;
1283                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1284                 break;
1285         }
1286         case KVM_GET_DEVICE_ATTR: {
1287                 r = -EFAULT;
1288                 if (copy_from_user(&attr, argp, sizeof(attr)))
1289                         break;
1290                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1291                 break;
1292         }
1293         case KVM_HAS_DEVICE_ATTR: {
1294                 r = -EFAULT;
1295                 if (copy_from_user(&attr, argp, sizeof(attr)))
1296                         break;
1297                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1298                 break;
1299         }
1300         case KVM_GET_VCPU_EVENTS: {
1301                 struct kvm_vcpu_events events;
1302
1303                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1304                         return -EINVAL;
1305
1306                 if (copy_to_user(argp, &events, sizeof(events)))
1307                         return -EFAULT;
1308
1309                 return 0;
1310         }
1311         case KVM_SET_VCPU_EVENTS: {
1312                 struct kvm_vcpu_events events;
1313
1314                 if (copy_from_user(&events, argp, sizeof(events)))
1315                         return -EFAULT;
1316
1317                 return kvm_arm_vcpu_set_events(vcpu, &events);
1318         }
1319         case KVM_ARM_VCPU_FINALIZE: {
1320                 int what;
1321
1322                 if (!kvm_vcpu_initialized(vcpu))
1323                         return -ENOEXEC;
1324
1325                 if (get_user(what, (const int __user *)argp))
1326                         return -EFAULT;
1327
1328                 return kvm_arm_vcpu_finalize(vcpu, what);
1329         }
1330         default:
1331                 r = -EINVAL;
1332         }
1333
1334         return r;
1335 }
1336
1337 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1338 {
1339
1340 }
1341
1342 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1343                                         const struct kvm_memory_slot *memslot)
1344 {
1345         kvm_flush_remote_tlbs(kvm);
1346 }
1347
1348 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1349                                         struct kvm_arm_device_addr *dev_addr)
1350 {
1351         unsigned long dev_id, type;
1352
1353         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1354                 KVM_ARM_DEVICE_ID_SHIFT;
1355         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1356                 KVM_ARM_DEVICE_TYPE_SHIFT;
1357
1358         switch (dev_id) {
1359         case KVM_ARM_DEVICE_VGIC_V2:
1360                 if (!vgic_present)
1361                         return -ENXIO;
1362                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1363         default:
1364                 return -ENODEV;
1365         }
1366 }
1367
1368 long kvm_arch_vm_ioctl(struct file *filp,
1369                        unsigned int ioctl, unsigned long arg)
1370 {
1371         struct kvm *kvm = filp->private_data;
1372         void __user *argp = (void __user *)arg;
1373
1374         switch (ioctl) {
1375         case KVM_CREATE_IRQCHIP: {
1376                 int ret;
1377                 if (!vgic_present)
1378                         return -ENXIO;
1379                 mutex_lock(&kvm->lock);
1380                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1381                 mutex_unlock(&kvm->lock);
1382                 return ret;
1383         }
1384         case KVM_ARM_SET_DEVICE_ADDR: {
1385                 struct kvm_arm_device_addr dev_addr;
1386
1387                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1388                         return -EFAULT;
1389                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1390         }
1391         case KVM_ARM_PREFERRED_TARGET: {
1392                 struct kvm_vcpu_init init;
1393
1394                 kvm_vcpu_preferred_target(&init);
1395
1396                 if (copy_to_user(argp, &init, sizeof(init)))
1397                         return -EFAULT;
1398
1399                 return 0;
1400         }
1401         case KVM_ARM_MTE_COPY_TAGS: {
1402                 struct kvm_arm_copy_mte_tags copy_tags;
1403
1404                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1405                         return -EFAULT;
1406                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1407         }
1408         default:
1409                 return -EINVAL;
1410         }
1411 }
1412
1413 static unsigned long nvhe_percpu_size(void)
1414 {
1415         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1416                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1417 }
1418
1419 static unsigned long nvhe_percpu_order(void)
1420 {
1421         unsigned long size = nvhe_percpu_size();
1422
1423         return size ? get_order(size) : 0;
1424 }
1425
1426 /* A lookup table holding the hypervisor VA for each vector slot */
1427 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1428
1429 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1430 {
1431         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1432 }
1433
1434 static int kvm_init_vector_slots(void)
1435 {
1436         int err;
1437         void *base;
1438
1439         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1440         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1441
1442         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1443         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1444
1445         if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1446                 return 0;
1447
1448         if (!has_vhe()) {
1449                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1450                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1451                 if (err)
1452                         return err;
1453         }
1454
1455         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1456         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1457         return 0;
1458 }
1459
1460 static void cpu_prepare_hyp_mode(int cpu)
1461 {
1462         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1463         unsigned long tcr;
1464
1465         /*
1466          * Calculate the raw per-cpu offset without a translation from the
1467          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1468          * so that we can use adr_l to access per-cpu variables in EL2.
1469          * Also drop the KASAN tag which gets in the way...
1470          */
1471         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1472                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1473
1474         params->mair_el2 = read_sysreg(mair_el1);
1475
1476         /*
1477          * The ID map may be configured to use an extended virtual address
1478          * range. This is only the case if system RAM is out of range for the
1479          * currently configured page size and VA_BITS, in which case we will
1480          * also need the extended virtual range for the HYP ID map, or we won't
1481          * be able to enable the EL2 MMU.
1482          *
1483          * However, at EL2, there is only one TTBR register, and we can't switch
1484          * between translation tables *and* update TCR_EL2.T0SZ at the same
1485          * time. Bottom line: we need to use the extended range with *both* our
1486          * translation tables.
1487          *
1488          * So use the same T0SZ value we use for the ID map.
1489          */
1490         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1491         tcr &= ~TCR_T0SZ_MASK;
1492         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1493         params->tcr_el2 = tcr;
1494
1495         params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1496         params->pgd_pa = kvm_mmu_get_httbr();
1497         if (is_protected_kvm_enabled())
1498                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1499         else
1500                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1501         params->vttbr = params->vtcr = 0;
1502
1503         /*
1504          * Flush the init params from the data cache because the struct will
1505          * be read while the MMU is off.
1506          */
1507         kvm_flush_dcache_to_poc(params, sizeof(*params));
1508 }
1509
1510 static void hyp_install_host_vector(void)
1511 {
1512         struct kvm_nvhe_init_params *params;
1513         struct arm_smccc_res res;
1514
1515         /* Switch from the HYP stub to our own HYP init vector */
1516         __hyp_set_vectors(kvm_get_idmap_vector());
1517
1518         /*
1519          * Call initialization code, and switch to the full blown HYP code.
1520          * If the cpucaps haven't been finalized yet, something has gone very
1521          * wrong, and hyp will crash and burn when it uses any
1522          * cpus_have_const_cap() wrapper.
1523          */
1524         BUG_ON(!system_capabilities_finalized());
1525         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1526         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1527         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1528 }
1529
1530 static void cpu_init_hyp_mode(void)
1531 {
1532         hyp_install_host_vector();
1533
1534         /*
1535          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1536          * at EL2.
1537          */
1538         if (this_cpu_has_cap(ARM64_SSBS) &&
1539             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1540                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1541         }
1542 }
1543
1544 static void cpu_hyp_reset(void)
1545 {
1546         if (!is_kernel_in_hyp_mode())
1547                 __hyp_reset_vectors();
1548 }
1549
1550 /*
1551  * EL2 vectors can be mapped and rerouted in a number of ways,
1552  * depending on the kernel configuration and CPU present:
1553  *
1554  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1555  *   placed in one of the vector slots, which is executed before jumping
1556  *   to the real vectors.
1557  *
1558  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1559  *   containing the hardening sequence is mapped next to the idmap page,
1560  *   and executed before jumping to the real vectors.
1561  *
1562  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1563  *   empty slot is selected, mapped next to the idmap page, and
1564  *   executed before jumping to the real vectors.
1565  *
1566  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1567  * VHE, as we don't have hypervisor-specific mappings. If the system
1568  * is VHE and yet selects this capability, it will be ignored.
1569  */
1570 static void cpu_set_hyp_vector(void)
1571 {
1572         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1573         void *vector = hyp_spectre_vector_selector[data->slot];
1574
1575         if (!is_protected_kvm_enabled())
1576                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1577         else
1578                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1579 }
1580
1581 static void cpu_hyp_init_context(void)
1582 {
1583         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1584
1585         if (!is_kernel_in_hyp_mode())
1586                 cpu_init_hyp_mode();
1587 }
1588
1589 static void cpu_hyp_init_features(void)
1590 {
1591         cpu_set_hyp_vector();
1592         kvm_arm_init_debug();
1593
1594         if (is_kernel_in_hyp_mode())
1595                 kvm_timer_init_vhe();
1596
1597         if (vgic_present)
1598                 kvm_vgic_init_cpu_hardware();
1599 }
1600
1601 static void cpu_hyp_reinit(void)
1602 {
1603         cpu_hyp_reset();
1604         cpu_hyp_init_context();
1605         cpu_hyp_init_features();
1606 }
1607
1608 static void _kvm_arch_hardware_enable(void *discard)
1609 {
1610         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1611                 cpu_hyp_reinit();
1612                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1613         }
1614 }
1615
1616 int kvm_arch_hardware_enable(void)
1617 {
1618         _kvm_arch_hardware_enable(NULL);
1619         return 0;
1620 }
1621
1622 static void _kvm_arch_hardware_disable(void *discard)
1623 {
1624         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1625                 cpu_hyp_reset();
1626                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1627         }
1628 }
1629
1630 void kvm_arch_hardware_disable(void)
1631 {
1632         if (!is_protected_kvm_enabled())
1633                 _kvm_arch_hardware_disable(NULL);
1634 }
1635
1636 #ifdef CONFIG_CPU_PM
1637 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1638                                     unsigned long cmd,
1639                                     void *v)
1640 {
1641         /*
1642          * kvm_arm_hardware_enabled is left with its old value over
1643          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1644          * re-enable hyp.
1645          */
1646         switch (cmd) {
1647         case CPU_PM_ENTER:
1648                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1649                         /*
1650                          * don't update kvm_arm_hardware_enabled here
1651                          * so that the hardware will be re-enabled
1652                          * when we resume. See below.
1653                          */
1654                         cpu_hyp_reset();
1655
1656                 return NOTIFY_OK;
1657         case CPU_PM_ENTER_FAILED:
1658         case CPU_PM_EXIT:
1659                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1660                         /* The hardware was enabled before suspend. */
1661                         cpu_hyp_reinit();
1662
1663                 return NOTIFY_OK;
1664
1665         default:
1666                 return NOTIFY_DONE;
1667         }
1668 }
1669
1670 static struct notifier_block hyp_init_cpu_pm_nb = {
1671         .notifier_call = hyp_init_cpu_pm_notifier,
1672 };
1673
1674 static void hyp_cpu_pm_init(void)
1675 {
1676         if (!is_protected_kvm_enabled())
1677                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1678 }
1679 static void hyp_cpu_pm_exit(void)
1680 {
1681         if (!is_protected_kvm_enabled())
1682                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1683 }
1684 #else
1685 static inline void hyp_cpu_pm_init(void)
1686 {
1687 }
1688 static inline void hyp_cpu_pm_exit(void)
1689 {
1690 }
1691 #endif
1692
1693 static void init_cpu_logical_map(void)
1694 {
1695         unsigned int cpu;
1696
1697         /*
1698          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1699          * Only copy the set of online CPUs whose features have been chacked
1700          * against the finalized system capabilities. The hypervisor will not
1701          * allow any other CPUs from the `possible` set to boot.
1702          */
1703         for_each_online_cpu(cpu)
1704                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1705 }
1706
1707 #define init_psci_0_1_impl_state(config, what)  \
1708         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1709
1710 static bool init_psci_relay(void)
1711 {
1712         /*
1713          * If PSCI has not been initialized, protected KVM cannot install
1714          * itself on newly booted CPUs.
1715          */
1716         if (!psci_ops.get_version) {
1717                 kvm_err("Cannot initialize protected mode without PSCI\n");
1718                 return false;
1719         }
1720
1721         kvm_host_psci_config.version = psci_ops.get_version();
1722
1723         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1724                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1725                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1726                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1727                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1728                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1729         }
1730         return true;
1731 }
1732
1733 static int init_subsystems(void)
1734 {
1735         int err = 0;
1736
1737         /*
1738          * Enable hardware so that subsystem initialisation can access EL2.
1739          */
1740         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1741
1742         /*
1743          * Register CPU lower-power notifier
1744          */
1745         hyp_cpu_pm_init();
1746
1747         /*
1748          * Init HYP view of VGIC
1749          */
1750         err = kvm_vgic_hyp_init();
1751         switch (err) {
1752         case 0:
1753                 vgic_present = true;
1754                 break;
1755         case -ENODEV:
1756         case -ENXIO:
1757                 vgic_present = false;
1758                 err = 0;
1759                 break;
1760         default:
1761                 goto out;
1762         }
1763
1764         /*
1765          * Init HYP architected timer support
1766          */
1767         err = kvm_timer_hyp_init(vgic_present);
1768         if (err)
1769                 goto out;
1770
1771         kvm_perf_init();
1772         kvm_sys_reg_table_init();
1773
1774 out:
1775         if (err || !is_protected_kvm_enabled())
1776                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1777
1778         return err;
1779 }
1780
1781 static void teardown_hyp_mode(void)
1782 {
1783         int cpu;
1784
1785         free_hyp_pgds();
1786         for_each_possible_cpu(cpu) {
1787                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1788                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1789         }
1790 }
1791
1792 static int do_pkvm_init(u32 hyp_va_bits)
1793 {
1794         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1795         int ret;
1796
1797         preempt_disable();
1798         cpu_hyp_init_context();
1799         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1800                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1801                                 hyp_va_bits);
1802         cpu_hyp_init_features();
1803
1804         /*
1805          * The stub hypercalls are now disabled, so set our local flag to
1806          * prevent a later re-init attempt in kvm_arch_hardware_enable().
1807          */
1808         __this_cpu_write(kvm_arm_hardware_enabled, 1);
1809         preempt_enable();
1810
1811         return ret;
1812 }
1813
1814 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1815 {
1816         void *addr = phys_to_virt(hyp_mem_base);
1817         int ret;
1818
1819         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1820         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1821         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1822         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1823         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1824         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1825         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1826
1827         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1828         if (ret)
1829                 return ret;
1830
1831         ret = do_pkvm_init(hyp_va_bits);
1832         if (ret)
1833                 return ret;
1834
1835         free_hyp_pgds();
1836
1837         return 0;
1838 }
1839
1840 /**
1841  * Inits Hyp-mode on all online CPUs
1842  */
1843 static int init_hyp_mode(void)
1844 {
1845         u32 hyp_va_bits;
1846         int cpu;
1847         int err = -ENOMEM;
1848
1849         /*
1850          * The protected Hyp-mode cannot be initialized if the memory pool
1851          * allocation has failed.
1852          */
1853         if (is_protected_kvm_enabled() && !hyp_mem_base)
1854                 goto out_err;
1855
1856         /*
1857          * Allocate Hyp PGD and setup Hyp identity mapping
1858          */
1859         err = kvm_mmu_init(&hyp_va_bits);
1860         if (err)
1861                 goto out_err;
1862
1863         /*
1864          * Allocate stack pages for Hypervisor-mode
1865          */
1866         for_each_possible_cpu(cpu) {
1867                 unsigned long stack_page;
1868
1869                 stack_page = __get_free_page(GFP_KERNEL);
1870                 if (!stack_page) {
1871                         err = -ENOMEM;
1872                         goto out_err;
1873                 }
1874
1875                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1876         }
1877
1878         /*
1879          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1880          */
1881         for_each_possible_cpu(cpu) {
1882                 struct page *page;
1883                 void *page_addr;
1884
1885                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1886                 if (!page) {
1887                         err = -ENOMEM;
1888                         goto out_err;
1889                 }
1890
1891                 page_addr = page_address(page);
1892                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1893                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1894         }
1895
1896         /*
1897          * Map the Hyp-code called directly from the host
1898          */
1899         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1900                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1901         if (err) {
1902                 kvm_err("Cannot map world-switch code\n");
1903                 goto out_err;
1904         }
1905
1906         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1907                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1908         if (err) {
1909                 kvm_err("Cannot map .hyp.rodata section\n");
1910                 goto out_err;
1911         }
1912
1913         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1914                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1915         if (err) {
1916                 kvm_err("Cannot map rodata section\n");
1917                 goto out_err;
1918         }
1919
1920         /*
1921          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1922          * section thanks to an assertion in the linker script. Map it RW and
1923          * the rest of .bss RO.
1924          */
1925         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1926                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1927         if (err) {
1928                 kvm_err("Cannot map hyp bss section: %d\n", err);
1929                 goto out_err;
1930         }
1931
1932         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1933                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1934         if (err) {
1935                 kvm_err("Cannot map bss section\n");
1936                 goto out_err;
1937         }
1938
1939         /*
1940          * Map the Hyp stack pages
1941          */
1942         for_each_possible_cpu(cpu) {
1943                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1944                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1945                                           PAGE_HYP);
1946
1947                 if (err) {
1948                         kvm_err("Cannot map hyp stack\n");
1949                         goto out_err;
1950                 }
1951         }
1952
1953         for_each_possible_cpu(cpu) {
1954                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1955                 char *percpu_end = percpu_begin + nvhe_percpu_size();
1956
1957                 /* Map Hyp percpu pages */
1958                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1959                 if (err) {
1960                         kvm_err("Cannot map hyp percpu region\n");
1961                         goto out_err;
1962                 }
1963
1964                 /* Prepare the CPU initialization parameters */
1965                 cpu_prepare_hyp_mode(cpu);
1966         }
1967
1968         if (is_protected_kvm_enabled()) {
1969                 init_cpu_logical_map();
1970
1971                 if (!init_psci_relay()) {
1972                         err = -ENODEV;
1973                         goto out_err;
1974                 }
1975         }
1976
1977         if (is_protected_kvm_enabled()) {
1978                 err = kvm_hyp_init_protection(hyp_va_bits);
1979                 if (err) {
1980                         kvm_err("Failed to init hyp memory protection\n");
1981                         goto out_err;
1982                 }
1983         }
1984
1985         return 0;
1986
1987 out_err:
1988         teardown_hyp_mode();
1989         kvm_err("error initializing Hyp mode: %d\n", err);
1990         return err;
1991 }
1992
1993 static void _kvm_host_prot_finalize(void *arg)
1994 {
1995         int *err = arg;
1996
1997         if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
1998                 WRITE_ONCE(*err, -EINVAL);
1999 }
2000
2001 static int pkvm_drop_host_privileges(void)
2002 {
2003         int ret = 0;
2004
2005         /*
2006          * Flip the static key upfront as that may no longer be possible
2007          * once the host stage 2 is installed.
2008          */
2009         static_branch_enable(&kvm_protected_mode_initialized);
2010         on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2011         return ret;
2012 }
2013
2014 static int finalize_hyp_mode(void)
2015 {
2016         if (!is_protected_kvm_enabled())
2017                 return 0;
2018
2019         /*
2020          * Exclude HYP BSS from kmemleak so that it doesn't get peeked
2021          * at, which would end badly once the section is inaccessible.
2022          * None of other sections should ever be introspected.
2023          */
2024         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2025         return pkvm_drop_host_privileges();
2026 }
2027
2028 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2029 {
2030         struct kvm_vcpu *vcpu;
2031         int i;
2032
2033         mpidr &= MPIDR_HWID_BITMASK;
2034         kvm_for_each_vcpu(i, vcpu, kvm) {
2035                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2036                         return vcpu;
2037         }
2038         return NULL;
2039 }
2040
2041 bool kvm_arch_has_irq_bypass(void)
2042 {
2043         return true;
2044 }
2045
2046 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2047                                       struct irq_bypass_producer *prod)
2048 {
2049         struct kvm_kernel_irqfd *irqfd =
2050                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2051
2052         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2053                                           &irqfd->irq_entry);
2054 }
2055 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2056                                       struct irq_bypass_producer *prod)
2057 {
2058         struct kvm_kernel_irqfd *irqfd =
2059                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2060
2061         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2062                                      &irqfd->irq_entry);
2063 }
2064
2065 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2066 {
2067         struct kvm_kernel_irqfd *irqfd =
2068                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2069
2070         kvm_arm_halt_guest(irqfd->kvm);
2071 }
2072
2073 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2074 {
2075         struct kvm_kernel_irqfd *irqfd =
2076                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2077
2078         kvm_arm_resume_guest(irqfd->kvm);
2079 }
2080
2081 /**
2082  * Initialize Hyp-mode and memory mappings on all CPUs.
2083  */
2084 int kvm_arch_init(void *opaque)
2085 {
2086         int err;
2087         bool in_hyp_mode;
2088
2089         if (!is_hyp_mode_available()) {
2090                 kvm_info("HYP mode not available\n");
2091                 return -ENODEV;
2092         }
2093
2094         if (kvm_get_mode() == KVM_MODE_NONE) {
2095                 kvm_info("KVM disabled from command line\n");
2096                 return -ENODEV;
2097         }
2098
2099         in_hyp_mode = is_kernel_in_hyp_mode();
2100
2101         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2102             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2103                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2104                          "Only trusted guests should be used on this system.\n");
2105
2106         err = kvm_set_ipa_limit();
2107         if (err)
2108                 return err;
2109
2110         err = kvm_arm_init_sve();
2111         if (err)
2112                 return err;
2113
2114         if (!in_hyp_mode) {
2115                 err = init_hyp_mode();
2116                 if (err)
2117                         goto out_err;
2118         }
2119
2120         err = kvm_init_vector_slots();
2121         if (err) {
2122                 kvm_err("Cannot initialise vector slots\n");
2123                 goto out_err;
2124         }
2125
2126         err = init_subsystems();
2127         if (err)
2128                 goto out_hyp;
2129
2130         if (!in_hyp_mode) {
2131                 err = finalize_hyp_mode();
2132                 if (err) {
2133                         kvm_err("Failed to finalize Hyp protection\n");
2134                         goto out_hyp;
2135                 }
2136         }
2137
2138         if (is_protected_kvm_enabled()) {
2139                 kvm_info("Protected nVHE mode initialized successfully\n");
2140         } else if (in_hyp_mode) {
2141                 kvm_info("VHE mode initialized successfully\n");
2142         } else {
2143                 kvm_info("Hyp mode initialized successfully\n");
2144         }
2145
2146         return 0;
2147
2148 out_hyp:
2149         hyp_cpu_pm_exit();
2150         if (!in_hyp_mode)
2151                 teardown_hyp_mode();
2152 out_err:
2153         return err;
2154 }
2155
2156 /* NOP: Compiling as a module not supported */
2157 void kvm_arch_exit(void)
2158 {
2159         kvm_perf_teardown();
2160 }
2161
2162 static int __init early_kvm_mode_cfg(char *arg)
2163 {
2164         if (!arg)
2165                 return -EINVAL;
2166
2167         if (strcmp(arg, "protected") == 0) {
2168                 kvm_mode = KVM_MODE_PROTECTED;
2169                 return 0;
2170         }
2171
2172         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2173                 kvm_mode = KVM_MODE_DEFAULT;
2174                 return 0;
2175         }
2176
2177         if (strcmp(arg, "none") == 0) {
2178                 kvm_mode = KVM_MODE_NONE;
2179                 return 0;
2180         }
2181
2182         return -EINVAL;
2183 }
2184 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2185
2186 enum kvm_mode kvm_get_mode(void)
2187 {
2188         return kvm_mode;
2189 }
2190
2191 static int arm_init(void)
2192 {
2193         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2194         return rc;
2195 }
2196
2197 module_init(arm_init);