Merge branch '6.1/scsi-queue' into 6.1/scsi-fixes
[platform/kernel/linux-rpi.git] / arch / arm64 / kvm / arm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 static bool vgic_present;
57
58 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
59 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
60
61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
62 {
63         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
64 }
65
66 int kvm_arch_hardware_setup(void *opaque)
67 {
68         return 0;
69 }
70
71 int kvm_arch_check_processor_compat(void *opaque)
72 {
73         return 0;
74 }
75
76 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
77                             struct kvm_enable_cap *cap)
78 {
79         int r;
80
81         if (cap->flags)
82                 return -EINVAL;
83
84         switch (cap->cap) {
85         case KVM_CAP_ARM_NISV_TO_USER:
86                 r = 0;
87                 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
88                         &kvm->arch.flags);
89                 break;
90         case KVM_CAP_ARM_MTE:
91                 mutex_lock(&kvm->lock);
92                 if (!system_supports_mte() || kvm->created_vcpus) {
93                         r = -EINVAL;
94                 } else {
95                         r = 0;
96                         set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
97                 }
98                 mutex_unlock(&kvm->lock);
99                 break;
100         case KVM_CAP_ARM_SYSTEM_SUSPEND:
101                 r = 0;
102                 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
103                 break;
104         default:
105                 r = -EINVAL;
106                 break;
107         }
108
109         return r;
110 }
111
112 static int kvm_arm_default_max_vcpus(void)
113 {
114         return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
117 static void set_default_spectre(struct kvm *kvm)
118 {
119         /*
120          * The default is to expose CSV2 == 1 if the HW isn't affected.
121          * Although this is a per-CPU feature, we make it global because
122          * asymmetric systems are just a nuisance.
123          *
124          * Userspace can override this as long as it doesn't promise
125          * the impossible.
126          */
127         if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128                 kvm->arch.pfr0_csv2 = 1;
129         if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130                 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:        pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139         int ret;
140
141         ret = kvm_arm_setup_stage2(kvm, type);
142         if (ret)
143                 return ret;
144
145         ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146         if (ret)
147                 return ret;
148
149         ret = kvm_share_hyp(kvm, kvm + 1);
150         if (ret)
151                 goto out_free_stage2_pgd;
152
153         if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL)) {
154                 ret = -ENOMEM;
155                 goto out_free_stage2_pgd;
156         }
157         cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
158
159         kvm_vgic_early_init(kvm);
160
161         /* The maximum number of VCPUs is limited by the host's GIC model */
162         kvm->max_vcpus = kvm_arm_default_max_vcpus();
163
164         set_default_spectre(kvm);
165         kvm_arm_init_hypercalls(kvm);
166
167         return ret;
168 out_free_stage2_pgd:
169         kvm_free_stage2_pgd(&kvm->arch.mmu);
170         return ret;
171 }
172
173 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
174 {
175         return VM_FAULT_SIGBUS;
176 }
177
178
179 /**
180  * kvm_arch_destroy_vm - destroy the VM data structure
181  * @kvm:        pointer to the KVM struct
182  */
183 void kvm_arch_destroy_vm(struct kvm *kvm)
184 {
185         bitmap_free(kvm->arch.pmu_filter);
186         free_cpumask_var(kvm->arch.supported_cpus);
187
188         kvm_vgic_destroy(kvm);
189
190         kvm_destroy_vcpus(kvm);
191
192         kvm_unshare_hyp(kvm, kvm + 1);
193 }
194
195 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
196 {
197         int r;
198         switch (ext) {
199         case KVM_CAP_IRQCHIP:
200                 r = vgic_present;
201                 break;
202         case KVM_CAP_IOEVENTFD:
203         case KVM_CAP_DEVICE_CTRL:
204         case KVM_CAP_USER_MEMORY:
205         case KVM_CAP_SYNC_MMU:
206         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
207         case KVM_CAP_ONE_REG:
208         case KVM_CAP_ARM_PSCI:
209         case KVM_CAP_ARM_PSCI_0_2:
210         case KVM_CAP_READONLY_MEM:
211         case KVM_CAP_MP_STATE:
212         case KVM_CAP_IMMEDIATE_EXIT:
213         case KVM_CAP_VCPU_EVENTS:
214         case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
215         case KVM_CAP_ARM_NISV_TO_USER:
216         case KVM_CAP_ARM_INJECT_EXT_DABT:
217         case KVM_CAP_SET_GUEST_DEBUG:
218         case KVM_CAP_VCPU_ATTRIBUTES:
219         case KVM_CAP_PTP_KVM:
220         case KVM_CAP_ARM_SYSTEM_SUSPEND:
221                 r = 1;
222                 break;
223         case KVM_CAP_SET_GUEST_DEBUG2:
224                 return KVM_GUESTDBG_VALID_MASK;
225         case KVM_CAP_ARM_SET_DEVICE_ADDR:
226                 r = 1;
227                 break;
228         case KVM_CAP_NR_VCPUS:
229                 /*
230                  * ARM64 treats KVM_CAP_NR_CPUS differently from all other
231                  * architectures, as it does not always bound it to
232                  * KVM_CAP_MAX_VCPUS. It should not matter much because
233                  * this is just an advisory value.
234                  */
235                 r = min_t(unsigned int, num_online_cpus(),
236                           kvm_arm_default_max_vcpus());
237                 break;
238         case KVM_CAP_MAX_VCPUS:
239         case KVM_CAP_MAX_VCPU_ID:
240                 if (kvm)
241                         r = kvm->max_vcpus;
242                 else
243                         r = kvm_arm_default_max_vcpus();
244                 break;
245         case KVM_CAP_MSI_DEVID:
246                 if (!kvm)
247                         r = -EINVAL;
248                 else
249                         r = kvm->arch.vgic.msis_require_devid;
250                 break;
251         case KVM_CAP_ARM_USER_IRQ:
252                 /*
253                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
254                  * (bump this number if adding more devices)
255                  */
256                 r = 1;
257                 break;
258         case KVM_CAP_ARM_MTE:
259                 r = system_supports_mte();
260                 break;
261         case KVM_CAP_STEAL_TIME:
262                 r = kvm_arm_pvtime_supported();
263                 break;
264         case KVM_CAP_ARM_EL1_32BIT:
265                 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
266                 break;
267         case KVM_CAP_GUEST_DEBUG_HW_BPS:
268                 r = get_num_brps();
269                 break;
270         case KVM_CAP_GUEST_DEBUG_HW_WPS:
271                 r = get_num_wrps();
272                 break;
273         case KVM_CAP_ARM_PMU_V3:
274                 r = kvm_arm_support_pmu_v3();
275                 break;
276         case KVM_CAP_ARM_INJECT_SERROR_ESR:
277                 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
278                 break;
279         case KVM_CAP_ARM_VM_IPA_SIZE:
280                 r = get_kvm_ipa_limit();
281                 break;
282         case KVM_CAP_ARM_SVE:
283                 r = system_supports_sve();
284                 break;
285         case KVM_CAP_ARM_PTRAUTH_ADDRESS:
286         case KVM_CAP_ARM_PTRAUTH_GENERIC:
287                 r = system_has_full_ptr_auth();
288                 break;
289         default:
290                 r = 0;
291         }
292
293         return r;
294 }
295
296 long kvm_arch_dev_ioctl(struct file *filp,
297                         unsigned int ioctl, unsigned long arg)
298 {
299         return -EINVAL;
300 }
301
302 struct kvm *kvm_arch_alloc_vm(void)
303 {
304         size_t sz = sizeof(struct kvm);
305
306         if (!has_vhe())
307                 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
308
309         return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
310 }
311
312 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
313 {
314         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
315                 return -EBUSY;
316
317         if (id >= kvm->max_vcpus)
318                 return -EINVAL;
319
320         return 0;
321 }
322
323 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
324 {
325         int err;
326
327         /* Force users to call KVM_ARM_VCPU_INIT */
328         vcpu->arch.target = -1;
329         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
330
331         vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
332
333         /*
334          * Default value for the FP state, will be overloaded at load
335          * time if we support FP (pretty likely)
336          */
337         vcpu->arch.fp_state = FP_STATE_FREE;
338
339         /* Set up the timer */
340         kvm_timer_vcpu_init(vcpu);
341
342         kvm_pmu_vcpu_init(vcpu);
343
344         kvm_arm_reset_debug_ptr(vcpu);
345
346         kvm_arm_pvtime_vcpu_init(&vcpu->arch);
347
348         vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
349
350         err = kvm_vgic_vcpu_init(vcpu);
351         if (err)
352                 return err;
353
354         return kvm_share_hyp(vcpu, vcpu + 1);
355 }
356
357 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
358 {
359 }
360
361 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
362 {
363         if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
364                 static_branch_dec(&userspace_irqchip_in_use);
365
366         kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
367         kvm_timer_vcpu_terminate(vcpu);
368         kvm_pmu_vcpu_destroy(vcpu);
369
370         kvm_arm_vcpu_destroy(vcpu);
371 }
372
373 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
374 {
375
376 }
377
378 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
379 {
380
381 }
382
383 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
384 {
385         struct kvm_s2_mmu *mmu;
386         int *last_ran;
387
388         mmu = vcpu->arch.hw_mmu;
389         last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
390
391         /*
392          * We guarantee that both TLBs and I-cache are private to each
393          * vcpu. If detecting that a vcpu from the same VM has
394          * previously run on the same physical CPU, call into the
395          * hypervisor code to nuke the relevant contexts.
396          *
397          * We might get preempted before the vCPU actually runs, but
398          * over-invalidation doesn't affect correctness.
399          */
400         if (*last_ran != vcpu->vcpu_id) {
401                 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
402                 *last_ran = vcpu->vcpu_id;
403         }
404
405         vcpu->cpu = cpu;
406
407         kvm_vgic_load(vcpu);
408         kvm_timer_vcpu_load(vcpu);
409         if (has_vhe())
410                 kvm_vcpu_load_sysregs_vhe(vcpu);
411         kvm_arch_vcpu_load_fp(vcpu);
412         kvm_vcpu_pmu_restore_guest(vcpu);
413         if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
414                 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
415
416         if (single_task_running())
417                 vcpu_clear_wfx_traps(vcpu);
418         else
419                 vcpu_set_wfx_traps(vcpu);
420
421         if (vcpu_has_ptrauth(vcpu))
422                 vcpu_ptrauth_disable(vcpu);
423         kvm_arch_vcpu_load_debug_state_flags(vcpu);
424
425         if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
426                 vcpu_set_on_unsupported_cpu(vcpu);
427 }
428
429 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
430 {
431         kvm_arch_vcpu_put_debug_state_flags(vcpu);
432         kvm_arch_vcpu_put_fp(vcpu);
433         if (has_vhe())
434                 kvm_vcpu_put_sysregs_vhe(vcpu);
435         kvm_timer_vcpu_put(vcpu);
436         kvm_vgic_put(vcpu);
437         kvm_vcpu_pmu_restore_host(vcpu);
438         kvm_arm_vmid_clear_active();
439
440         vcpu_clear_on_unsupported_cpu(vcpu);
441         vcpu->cpu = -1;
442 }
443
444 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
445 {
446         vcpu->arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
447         kvm_make_request(KVM_REQ_SLEEP, vcpu);
448         kvm_vcpu_kick(vcpu);
449 }
450
451 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
452 {
453         return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED;
454 }
455
456 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
457 {
458         vcpu->arch.mp_state.mp_state = KVM_MP_STATE_SUSPENDED;
459         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
460         kvm_vcpu_kick(vcpu);
461 }
462
463 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
464 {
465         return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_SUSPENDED;
466 }
467
468 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
469                                     struct kvm_mp_state *mp_state)
470 {
471         *mp_state = vcpu->arch.mp_state;
472
473         return 0;
474 }
475
476 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
477                                     struct kvm_mp_state *mp_state)
478 {
479         int ret = 0;
480
481         switch (mp_state->mp_state) {
482         case KVM_MP_STATE_RUNNABLE:
483                 vcpu->arch.mp_state = *mp_state;
484                 break;
485         case KVM_MP_STATE_STOPPED:
486                 kvm_arm_vcpu_power_off(vcpu);
487                 break;
488         case KVM_MP_STATE_SUSPENDED:
489                 kvm_arm_vcpu_suspend(vcpu);
490                 break;
491         default:
492                 ret = -EINVAL;
493         }
494
495         return ret;
496 }
497
498 /**
499  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
500  * @v:          The VCPU pointer
501  *
502  * If the guest CPU is not waiting for interrupts or an interrupt line is
503  * asserted, the CPU is by definition runnable.
504  */
505 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
506 {
507         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
508         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
509                 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
510 }
511
512 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
513 {
514         return vcpu_mode_priv(vcpu);
515 }
516
517 #ifdef CONFIG_GUEST_PERF_EVENTS
518 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
519 {
520         return *vcpu_pc(vcpu);
521 }
522 #endif
523
524 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
525 {
526         return vcpu->arch.target >= 0;
527 }
528
529 /*
530  * Handle both the initialisation that is being done when the vcpu is
531  * run for the first time, as well as the updates that must be
532  * performed each time we get a new thread dealing with this vcpu.
533  */
534 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
535 {
536         struct kvm *kvm = vcpu->kvm;
537         int ret;
538
539         if (!kvm_vcpu_initialized(vcpu))
540                 return -ENOEXEC;
541
542         if (!kvm_arm_vcpu_is_finalized(vcpu))
543                 return -EPERM;
544
545         ret = kvm_arch_vcpu_run_map_fp(vcpu);
546         if (ret)
547                 return ret;
548
549         if (likely(vcpu_has_run_once(vcpu)))
550                 return 0;
551
552         kvm_arm_vcpu_init_debug(vcpu);
553
554         if (likely(irqchip_in_kernel(kvm))) {
555                 /*
556                  * Map the VGIC hardware resources before running a vcpu the
557                  * first time on this VM.
558                  */
559                 ret = kvm_vgic_map_resources(kvm);
560                 if (ret)
561                         return ret;
562         }
563
564         ret = kvm_timer_enable(vcpu);
565         if (ret)
566                 return ret;
567
568         ret = kvm_arm_pmu_v3_enable(vcpu);
569         if (ret)
570                 return ret;
571
572         if (!irqchip_in_kernel(kvm)) {
573                 /*
574                  * Tell the rest of the code that there are userspace irqchip
575                  * VMs in the wild.
576                  */
577                 static_branch_inc(&userspace_irqchip_in_use);
578         }
579
580         /*
581          * Initialize traps for protected VMs.
582          * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
583          * the code is in place for first run initialization at EL2.
584          */
585         if (kvm_vm_is_protected(kvm))
586                 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
587
588         mutex_lock(&kvm->lock);
589         set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
590         mutex_unlock(&kvm->lock);
591
592         return ret;
593 }
594
595 bool kvm_arch_intc_initialized(struct kvm *kvm)
596 {
597         return vgic_initialized(kvm);
598 }
599
600 void kvm_arm_halt_guest(struct kvm *kvm)
601 {
602         unsigned long i;
603         struct kvm_vcpu *vcpu;
604
605         kvm_for_each_vcpu(i, vcpu, kvm)
606                 vcpu->arch.pause = true;
607         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
608 }
609
610 void kvm_arm_resume_guest(struct kvm *kvm)
611 {
612         unsigned long i;
613         struct kvm_vcpu *vcpu;
614
615         kvm_for_each_vcpu(i, vcpu, kvm) {
616                 vcpu->arch.pause = false;
617                 __kvm_vcpu_wake_up(vcpu);
618         }
619 }
620
621 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
622 {
623         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
624
625         rcuwait_wait_event(wait,
626                            (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
627                            TASK_INTERRUPTIBLE);
628
629         if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
630                 /* Awaken to handle a signal, request we sleep again later. */
631                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
632         }
633
634         /*
635          * Make sure we will observe a potential reset request if we've
636          * observed a change to the power state. Pairs with the smp_wmb() in
637          * kvm_psci_vcpu_on().
638          */
639         smp_rmb();
640 }
641
642 /**
643  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
644  * @vcpu:       The VCPU pointer
645  *
646  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
647  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
648  * on when a wake event arrives, e.g. there may already be a pending wake event.
649  */
650 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
651 {
652         /*
653          * Sync back the state of the GIC CPU interface so that we have
654          * the latest PMR and group enables. This ensures that
655          * kvm_arch_vcpu_runnable has up-to-date data to decide whether
656          * we have pending interrupts, e.g. when determining if the
657          * vCPU should block.
658          *
659          * For the same reason, we want to tell GICv4 that we need
660          * doorbells to be signalled, should an interrupt become pending.
661          */
662         preempt_disable();
663         kvm_vgic_vmcr_sync(vcpu);
664         vgic_v4_put(vcpu, true);
665         preempt_enable();
666
667         kvm_vcpu_halt(vcpu);
668         vcpu_clear_flag(vcpu, IN_WFIT);
669
670         preempt_disable();
671         vgic_v4_load(vcpu);
672         preempt_enable();
673 }
674
675 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
676 {
677         if (!kvm_arm_vcpu_suspended(vcpu))
678                 return 1;
679
680         kvm_vcpu_wfi(vcpu);
681
682         /*
683          * The suspend state is sticky; we do not leave it until userspace
684          * explicitly marks the vCPU as runnable. Request that we suspend again
685          * later.
686          */
687         kvm_make_request(KVM_REQ_SUSPEND, vcpu);
688
689         /*
690          * Check to make sure the vCPU is actually runnable. If so, exit to
691          * userspace informing it of the wakeup condition.
692          */
693         if (kvm_arch_vcpu_runnable(vcpu)) {
694                 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
695                 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
696                 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
697                 return 0;
698         }
699
700         /*
701          * Otherwise, we were unblocked to process a different event, such as a
702          * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
703          * process the event.
704          */
705         return 1;
706 }
707
708 /**
709  * check_vcpu_requests - check and handle pending vCPU requests
710  * @vcpu:       the VCPU pointer
711  *
712  * Return: 1 if we should enter the guest
713  *         0 if we should exit to userspace
714  *         < 0 if we should exit to userspace, where the return value indicates
715  *         an error
716  */
717 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
718 {
719         if (kvm_request_pending(vcpu)) {
720                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
721                         kvm_vcpu_sleep(vcpu);
722
723                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
724                         kvm_reset_vcpu(vcpu);
725
726                 /*
727                  * Clear IRQ_PENDING requests that were made to guarantee
728                  * that a VCPU sees new virtual interrupts.
729                  */
730                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
731
732                 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
733                         kvm_update_stolen_time(vcpu);
734
735                 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
736                         /* The distributor enable bits were changed */
737                         preempt_disable();
738                         vgic_v4_put(vcpu, false);
739                         vgic_v4_load(vcpu);
740                         preempt_enable();
741                 }
742
743                 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
744                         kvm_pmu_handle_pmcr(vcpu,
745                                             __vcpu_sys_reg(vcpu, PMCR_EL0));
746
747                 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
748                         return kvm_vcpu_suspend(vcpu);
749         }
750
751         return 1;
752 }
753
754 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
755 {
756         if (likely(!vcpu_mode_is_32bit(vcpu)))
757                 return false;
758
759         return !kvm_supports_32bit_el0();
760 }
761
762 /**
763  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
764  * @vcpu:       The VCPU pointer
765  * @ret:        Pointer to write optional return code
766  *
767  * Returns: true if the VCPU needs to return to a preemptible + interruptible
768  *          and skip guest entry.
769  *
770  * This function disambiguates between two different types of exits: exits to a
771  * preemptible + interruptible kernel context and exits to userspace. For an
772  * exit to userspace, this function will write the return code to ret and return
773  * true. For an exit to preemptible + interruptible kernel context (i.e. check
774  * for pending work and re-enter), return true without writing to ret.
775  */
776 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
777 {
778         struct kvm_run *run = vcpu->run;
779
780         /*
781          * If we're using a userspace irqchip, then check if we need
782          * to tell a userspace irqchip about timer or PMU level
783          * changes and if so, exit to userspace (the actual level
784          * state gets updated in kvm_timer_update_run and
785          * kvm_pmu_update_run below).
786          */
787         if (static_branch_unlikely(&userspace_irqchip_in_use)) {
788                 if (kvm_timer_should_notify_user(vcpu) ||
789                     kvm_pmu_should_notify_user(vcpu)) {
790                         *ret = -EINTR;
791                         run->exit_reason = KVM_EXIT_INTR;
792                         return true;
793                 }
794         }
795
796         if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
797                 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
798                 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
799                 run->fail_entry.cpu = smp_processor_id();
800                 *ret = 0;
801                 return true;
802         }
803
804         return kvm_request_pending(vcpu) ||
805                         xfer_to_guest_mode_work_pending();
806 }
807
808 /*
809  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
810  * the vCPU is running.
811  *
812  * This must be noinstr as instrumentation may make use of RCU, and this is not
813  * safe during the EQS.
814  */
815 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
816 {
817         int ret;
818
819         guest_state_enter_irqoff();
820         ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
821         guest_state_exit_irqoff();
822
823         return ret;
824 }
825
826 /**
827  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
828  * @vcpu:       The VCPU pointer
829  *
830  * This function is called through the VCPU_RUN ioctl called from user space. It
831  * will execute VM code in a loop until the time slice for the process is used
832  * or some emulation is needed from user space in which case the function will
833  * return with return value 0 and with the kvm_run structure filled in with the
834  * required data for the requested emulation.
835  */
836 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
837 {
838         struct kvm_run *run = vcpu->run;
839         int ret;
840
841         if (run->exit_reason == KVM_EXIT_MMIO) {
842                 ret = kvm_handle_mmio_return(vcpu);
843                 if (ret)
844                         return ret;
845         }
846
847         vcpu_load(vcpu);
848
849         if (run->immediate_exit) {
850                 ret = -EINTR;
851                 goto out;
852         }
853
854         kvm_sigset_activate(vcpu);
855
856         ret = 1;
857         run->exit_reason = KVM_EXIT_UNKNOWN;
858         run->flags = 0;
859         while (ret > 0) {
860                 /*
861                  * Check conditions before entering the guest
862                  */
863                 ret = xfer_to_guest_mode_handle_work(vcpu);
864                 if (!ret)
865                         ret = 1;
866
867                 if (ret > 0)
868                         ret = check_vcpu_requests(vcpu);
869
870                 /*
871                  * Preparing the interrupts to be injected also
872                  * involves poking the GIC, which must be done in a
873                  * non-preemptible context.
874                  */
875                 preempt_disable();
876
877                 /*
878                  * The VMID allocator only tracks active VMIDs per
879                  * physical CPU, and therefore the VMID allocated may not be
880                  * preserved on VMID roll-over if the task was preempted,
881                  * making a thread's VMID inactive. So we need to call
882                  * kvm_arm_vmid_update() in non-premptible context.
883                  */
884                 kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
885
886                 kvm_pmu_flush_hwstate(vcpu);
887
888                 local_irq_disable();
889
890                 kvm_vgic_flush_hwstate(vcpu);
891
892                 kvm_pmu_update_vcpu_events(vcpu);
893
894                 /*
895                  * Ensure we set mode to IN_GUEST_MODE after we disable
896                  * interrupts and before the final VCPU requests check.
897                  * See the comment in kvm_vcpu_exiting_guest_mode() and
898                  * Documentation/virt/kvm/vcpu-requests.rst
899                  */
900                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
901
902                 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
903                         vcpu->mode = OUTSIDE_GUEST_MODE;
904                         isb(); /* Ensure work in x_flush_hwstate is committed */
905                         kvm_pmu_sync_hwstate(vcpu);
906                         if (static_branch_unlikely(&userspace_irqchip_in_use))
907                                 kvm_timer_sync_user(vcpu);
908                         kvm_vgic_sync_hwstate(vcpu);
909                         local_irq_enable();
910                         preempt_enable();
911                         continue;
912                 }
913
914                 kvm_arm_setup_debug(vcpu);
915                 kvm_arch_vcpu_ctxflush_fp(vcpu);
916
917                 /**************************************************************
918                  * Enter the guest
919                  */
920                 trace_kvm_entry(*vcpu_pc(vcpu));
921                 guest_timing_enter_irqoff();
922
923                 ret = kvm_arm_vcpu_enter_exit(vcpu);
924
925                 vcpu->mode = OUTSIDE_GUEST_MODE;
926                 vcpu->stat.exits++;
927                 /*
928                  * Back from guest
929                  *************************************************************/
930
931                 kvm_arm_clear_debug(vcpu);
932
933                 /*
934                  * We must sync the PMU state before the vgic state so
935                  * that the vgic can properly sample the updated state of the
936                  * interrupt line.
937                  */
938                 kvm_pmu_sync_hwstate(vcpu);
939
940                 /*
941                  * Sync the vgic state before syncing the timer state because
942                  * the timer code needs to know if the virtual timer
943                  * interrupts are active.
944                  */
945                 kvm_vgic_sync_hwstate(vcpu);
946
947                 /*
948                  * Sync the timer hardware state before enabling interrupts as
949                  * we don't want vtimer interrupts to race with syncing the
950                  * timer virtual interrupt state.
951                  */
952                 if (static_branch_unlikely(&userspace_irqchip_in_use))
953                         kvm_timer_sync_user(vcpu);
954
955                 kvm_arch_vcpu_ctxsync_fp(vcpu);
956
957                 /*
958                  * We must ensure that any pending interrupts are taken before
959                  * we exit guest timing so that timer ticks are accounted as
960                  * guest time. Transiently unmask interrupts so that any
961                  * pending interrupts are taken.
962                  *
963                  * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
964                  * context synchronization event) is necessary to ensure that
965                  * pending interrupts are taken.
966                  */
967                 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
968                         local_irq_enable();
969                         isb();
970                         local_irq_disable();
971                 }
972
973                 guest_timing_exit_irqoff();
974
975                 local_irq_enable();
976
977                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
978
979                 /* Exit types that need handling before we can be preempted */
980                 handle_exit_early(vcpu, ret);
981
982                 preempt_enable();
983
984                 /*
985                  * The ARMv8 architecture doesn't give the hypervisor
986                  * a mechanism to prevent a guest from dropping to AArch32 EL0
987                  * if implemented by the CPU. If we spot the guest in such
988                  * state and that we decided it wasn't supposed to do so (like
989                  * with the asymmetric AArch32 case), return to userspace with
990                  * a fatal error.
991                  */
992                 if (vcpu_mode_is_bad_32bit(vcpu)) {
993                         /*
994                          * As we have caught the guest red-handed, decide that
995                          * it isn't fit for purpose anymore by making the vcpu
996                          * invalid. The VMM can try and fix it by issuing  a
997                          * KVM_ARM_VCPU_INIT if it really wants to.
998                          */
999                         vcpu->arch.target = -1;
1000                         ret = ARM_EXCEPTION_IL;
1001                 }
1002
1003                 ret = handle_exit(vcpu, ret);
1004         }
1005
1006         /* Tell userspace about in-kernel device output levels */
1007         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1008                 kvm_timer_update_run(vcpu);
1009                 kvm_pmu_update_run(vcpu);
1010         }
1011
1012         kvm_sigset_deactivate(vcpu);
1013
1014 out:
1015         /*
1016          * In the unlikely event that we are returning to userspace
1017          * with pending exceptions or PC adjustment, commit these
1018          * adjustments in order to give userspace a consistent view of
1019          * the vcpu state. Note that this relies on __kvm_adjust_pc()
1020          * being preempt-safe on VHE.
1021          */
1022         if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1023                      vcpu_get_flag(vcpu, INCREMENT_PC)))
1024                 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1025
1026         vcpu_put(vcpu);
1027         return ret;
1028 }
1029
1030 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1031 {
1032         int bit_index;
1033         bool set;
1034         unsigned long *hcr;
1035
1036         if (number == KVM_ARM_IRQ_CPU_IRQ)
1037                 bit_index = __ffs(HCR_VI);
1038         else /* KVM_ARM_IRQ_CPU_FIQ */
1039                 bit_index = __ffs(HCR_VF);
1040
1041         hcr = vcpu_hcr(vcpu);
1042         if (level)
1043                 set = test_and_set_bit(bit_index, hcr);
1044         else
1045                 set = test_and_clear_bit(bit_index, hcr);
1046
1047         /*
1048          * If we didn't change anything, no need to wake up or kick other CPUs
1049          */
1050         if (set == level)
1051                 return 0;
1052
1053         /*
1054          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1055          * trigger a world-switch round on the running physical CPU to set the
1056          * virtual IRQ/FIQ fields in the HCR appropriately.
1057          */
1058         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1059         kvm_vcpu_kick(vcpu);
1060
1061         return 0;
1062 }
1063
1064 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1065                           bool line_status)
1066 {
1067         u32 irq = irq_level->irq;
1068         unsigned int irq_type, vcpu_idx, irq_num;
1069         int nrcpus = atomic_read(&kvm->online_vcpus);
1070         struct kvm_vcpu *vcpu = NULL;
1071         bool level = irq_level->level;
1072
1073         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1074         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1075         vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1076         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1077
1078         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1079
1080         switch (irq_type) {
1081         case KVM_ARM_IRQ_TYPE_CPU:
1082                 if (irqchip_in_kernel(kvm))
1083                         return -ENXIO;
1084
1085                 if (vcpu_idx >= nrcpus)
1086                         return -EINVAL;
1087
1088                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1089                 if (!vcpu)
1090                         return -EINVAL;
1091
1092                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1093                         return -EINVAL;
1094
1095                 return vcpu_interrupt_line(vcpu, irq_num, level);
1096         case KVM_ARM_IRQ_TYPE_PPI:
1097                 if (!irqchip_in_kernel(kvm))
1098                         return -ENXIO;
1099
1100                 if (vcpu_idx >= nrcpus)
1101                         return -EINVAL;
1102
1103                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1104                 if (!vcpu)
1105                         return -EINVAL;
1106
1107                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1108                         return -EINVAL;
1109
1110                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1111         case KVM_ARM_IRQ_TYPE_SPI:
1112                 if (!irqchip_in_kernel(kvm))
1113                         return -ENXIO;
1114
1115                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1116                         return -EINVAL;
1117
1118                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1119         }
1120
1121         return -EINVAL;
1122 }
1123
1124 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1125                                const struct kvm_vcpu_init *init)
1126 {
1127         unsigned int i, ret;
1128         u32 phys_target = kvm_target_cpu();
1129
1130         if (init->target != phys_target)
1131                 return -EINVAL;
1132
1133         /*
1134          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1135          * use the same target.
1136          */
1137         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1138                 return -EINVAL;
1139
1140         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1141         for (i = 0; i < sizeof(init->features) * 8; i++) {
1142                 bool set = (init->features[i / 32] & (1 << (i % 32)));
1143
1144                 if (set && i >= KVM_VCPU_MAX_FEATURES)
1145                         return -ENOENT;
1146
1147                 /*
1148                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1149                  * use the same feature set.
1150                  */
1151                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1152                     test_bit(i, vcpu->arch.features) != set)
1153                         return -EINVAL;
1154
1155                 if (set)
1156                         set_bit(i, vcpu->arch.features);
1157         }
1158
1159         vcpu->arch.target = phys_target;
1160
1161         /* Now we know what it is, we can reset it. */
1162         ret = kvm_reset_vcpu(vcpu);
1163         if (ret) {
1164                 vcpu->arch.target = -1;
1165                 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1166         }
1167
1168         return ret;
1169 }
1170
1171 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1172                                          struct kvm_vcpu_init *init)
1173 {
1174         int ret;
1175
1176         ret = kvm_vcpu_set_target(vcpu, init);
1177         if (ret)
1178                 return ret;
1179
1180         /*
1181          * Ensure a rebooted VM will fault in RAM pages and detect if the
1182          * guest MMU is turned off and flush the caches as needed.
1183          *
1184          * S2FWB enforces all memory accesses to RAM being cacheable,
1185          * ensuring that the data side is always coherent. We still
1186          * need to invalidate the I-cache though, as FWB does *not*
1187          * imply CTR_EL0.DIC.
1188          */
1189         if (vcpu_has_run_once(vcpu)) {
1190                 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1191                         stage2_unmap_vm(vcpu->kvm);
1192                 else
1193                         icache_inval_all_pou();
1194         }
1195
1196         vcpu_reset_hcr(vcpu);
1197         vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1198
1199         /*
1200          * Handle the "start in power-off" case.
1201          */
1202         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1203                 kvm_arm_vcpu_power_off(vcpu);
1204         else
1205                 vcpu->arch.mp_state.mp_state = KVM_MP_STATE_RUNNABLE;
1206
1207         return 0;
1208 }
1209
1210 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1211                                  struct kvm_device_attr *attr)
1212 {
1213         int ret = -ENXIO;
1214
1215         switch (attr->group) {
1216         default:
1217                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1218                 break;
1219         }
1220
1221         return ret;
1222 }
1223
1224 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1225                                  struct kvm_device_attr *attr)
1226 {
1227         int ret = -ENXIO;
1228
1229         switch (attr->group) {
1230         default:
1231                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1232                 break;
1233         }
1234
1235         return ret;
1236 }
1237
1238 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1239                                  struct kvm_device_attr *attr)
1240 {
1241         int ret = -ENXIO;
1242
1243         switch (attr->group) {
1244         default:
1245                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1246                 break;
1247         }
1248
1249         return ret;
1250 }
1251
1252 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1253                                    struct kvm_vcpu_events *events)
1254 {
1255         memset(events, 0, sizeof(*events));
1256
1257         return __kvm_arm_vcpu_get_events(vcpu, events);
1258 }
1259
1260 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1261                                    struct kvm_vcpu_events *events)
1262 {
1263         int i;
1264
1265         /* check whether the reserved field is zero */
1266         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1267                 if (events->reserved[i])
1268                         return -EINVAL;
1269
1270         /* check whether the pad field is zero */
1271         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1272                 if (events->exception.pad[i])
1273                         return -EINVAL;
1274
1275         return __kvm_arm_vcpu_set_events(vcpu, events);
1276 }
1277
1278 long kvm_arch_vcpu_ioctl(struct file *filp,
1279                          unsigned int ioctl, unsigned long arg)
1280 {
1281         struct kvm_vcpu *vcpu = filp->private_data;
1282         void __user *argp = (void __user *)arg;
1283         struct kvm_device_attr attr;
1284         long r;
1285
1286         switch (ioctl) {
1287         case KVM_ARM_VCPU_INIT: {
1288                 struct kvm_vcpu_init init;
1289
1290                 r = -EFAULT;
1291                 if (copy_from_user(&init, argp, sizeof(init)))
1292                         break;
1293
1294                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1295                 break;
1296         }
1297         case KVM_SET_ONE_REG:
1298         case KVM_GET_ONE_REG: {
1299                 struct kvm_one_reg reg;
1300
1301                 r = -ENOEXEC;
1302                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1303                         break;
1304
1305                 r = -EFAULT;
1306                 if (copy_from_user(&reg, argp, sizeof(reg)))
1307                         break;
1308
1309                 /*
1310                  * We could owe a reset due to PSCI. Handle the pending reset
1311                  * here to ensure userspace register accesses are ordered after
1312                  * the reset.
1313                  */
1314                 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1315                         kvm_reset_vcpu(vcpu);
1316
1317                 if (ioctl == KVM_SET_ONE_REG)
1318                         r = kvm_arm_set_reg(vcpu, &reg);
1319                 else
1320                         r = kvm_arm_get_reg(vcpu, &reg);
1321                 break;
1322         }
1323         case KVM_GET_REG_LIST: {
1324                 struct kvm_reg_list __user *user_list = argp;
1325                 struct kvm_reg_list reg_list;
1326                 unsigned n;
1327
1328                 r = -ENOEXEC;
1329                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1330                         break;
1331
1332                 r = -EPERM;
1333                 if (!kvm_arm_vcpu_is_finalized(vcpu))
1334                         break;
1335
1336                 r = -EFAULT;
1337                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1338                         break;
1339                 n = reg_list.n;
1340                 reg_list.n = kvm_arm_num_regs(vcpu);
1341                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1342                         break;
1343                 r = -E2BIG;
1344                 if (n < reg_list.n)
1345                         break;
1346                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1347                 break;
1348         }
1349         case KVM_SET_DEVICE_ATTR: {
1350                 r = -EFAULT;
1351                 if (copy_from_user(&attr, argp, sizeof(attr)))
1352                         break;
1353                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1354                 break;
1355         }
1356         case KVM_GET_DEVICE_ATTR: {
1357                 r = -EFAULT;
1358                 if (copy_from_user(&attr, argp, sizeof(attr)))
1359                         break;
1360                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1361                 break;
1362         }
1363         case KVM_HAS_DEVICE_ATTR: {
1364                 r = -EFAULT;
1365                 if (copy_from_user(&attr, argp, sizeof(attr)))
1366                         break;
1367                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1368                 break;
1369         }
1370         case KVM_GET_VCPU_EVENTS: {
1371                 struct kvm_vcpu_events events;
1372
1373                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1374                         return -EINVAL;
1375
1376                 if (copy_to_user(argp, &events, sizeof(events)))
1377                         return -EFAULT;
1378
1379                 return 0;
1380         }
1381         case KVM_SET_VCPU_EVENTS: {
1382                 struct kvm_vcpu_events events;
1383
1384                 if (copy_from_user(&events, argp, sizeof(events)))
1385                         return -EFAULT;
1386
1387                 return kvm_arm_vcpu_set_events(vcpu, &events);
1388         }
1389         case KVM_ARM_VCPU_FINALIZE: {
1390                 int what;
1391
1392                 if (!kvm_vcpu_initialized(vcpu))
1393                         return -ENOEXEC;
1394
1395                 if (get_user(what, (const int __user *)argp))
1396                         return -EFAULT;
1397
1398                 return kvm_arm_vcpu_finalize(vcpu, what);
1399         }
1400         default:
1401                 r = -EINVAL;
1402         }
1403
1404         return r;
1405 }
1406
1407 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1408 {
1409
1410 }
1411
1412 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1413                                         const struct kvm_memory_slot *memslot)
1414 {
1415         kvm_flush_remote_tlbs(kvm);
1416 }
1417
1418 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1419                                         struct kvm_arm_device_addr *dev_addr)
1420 {
1421         switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1422         case KVM_ARM_DEVICE_VGIC_V2:
1423                 if (!vgic_present)
1424                         return -ENXIO;
1425                 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1426         default:
1427                 return -ENODEV;
1428         }
1429 }
1430
1431 long kvm_arch_vm_ioctl(struct file *filp,
1432                        unsigned int ioctl, unsigned long arg)
1433 {
1434         struct kvm *kvm = filp->private_data;
1435         void __user *argp = (void __user *)arg;
1436
1437         switch (ioctl) {
1438         case KVM_CREATE_IRQCHIP: {
1439                 int ret;
1440                 if (!vgic_present)
1441                         return -ENXIO;
1442                 mutex_lock(&kvm->lock);
1443                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1444                 mutex_unlock(&kvm->lock);
1445                 return ret;
1446         }
1447         case KVM_ARM_SET_DEVICE_ADDR: {
1448                 struct kvm_arm_device_addr dev_addr;
1449
1450                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1451                         return -EFAULT;
1452                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1453         }
1454         case KVM_ARM_PREFERRED_TARGET: {
1455                 struct kvm_vcpu_init init;
1456
1457                 kvm_vcpu_preferred_target(&init);
1458
1459                 if (copy_to_user(argp, &init, sizeof(init)))
1460                         return -EFAULT;
1461
1462                 return 0;
1463         }
1464         case KVM_ARM_MTE_COPY_TAGS: {
1465                 struct kvm_arm_copy_mte_tags copy_tags;
1466
1467                 if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1468                         return -EFAULT;
1469                 return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1470         }
1471         default:
1472                 return -EINVAL;
1473         }
1474 }
1475
1476 static unsigned long nvhe_percpu_size(void)
1477 {
1478         return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1479                 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1480 }
1481
1482 static unsigned long nvhe_percpu_order(void)
1483 {
1484         unsigned long size = nvhe_percpu_size();
1485
1486         return size ? get_order(size) : 0;
1487 }
1488
1489 /* A lookup table holding the hypervisor VA for each vector slot */
1490 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1491
1492 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1493 {
1494         hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1495 }
1496
1497 static int kvm_init_vector_slots(void)
1498 {
1499         int err;
1500         void *base;
1501
1502         base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1503         kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1504
1505         base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1506         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1507
1508         if (kvm_system_needs_idmapped_vectors() &&
1509             !is_protected_kvm_enabled()) {
1510                 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1511                                                __BP_HARDEN_HYP_VECS_SZ, &base);
1512                 if (err)
1513                         return err;
1514         }
1515
1516         kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1517         kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1518         return 0;
1519 }
1520
1521 static void cpu_prepare_hyp_mode(int cpu)
1522 {
1523         struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1524         unsigned long tcr;
1525
1526         /*
1527          * Calculate the raw per-cpu offset without a translation from the
1528          * kernel's mapping to the linear mapping, and store it in tpidr_el2
1529          * so that we can use adr_l to access per-cpu variables in EL2.
1530          * Also drop the KASAN tag which gets in the way...
1531          */
1532         params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1533                             (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1534
1535         params->mair_el2 = read_sysreg(mair_el1);
1536
1537         /*
1538          * The ID map may be configured to use an extended virtual address
1539          * range. This is only the case if system RAM is out of range for the
1540          * currently configured page size and VA_BITS, in which case we will
1541          * also need the extended virtual range for the HYP ID map, or we won't
1542          * be able to enable the EL2 MMU.
1543          *
1544          * However, at EL2, there is only one TTBR register, and we can't switch
1545          * between translation tables *and* update TCR_EL2.T0SZ at the same
1546          * time. Bottom line: we need to use the extended range with *both* our
1547          * translation tables.
1548          *
1549          * So use the same T0SZ value we use for the ID map.
1550          */
1551         tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1552         tcr &= ~TCR_T0SZ_MASK;
1553         tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1554         params->tcr_el2 = tcr;
1555
1556         params->pgd_pa = kvm_mmu_get_httbr();
1557         if (is_protected_kvm_enabled())
1558                 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1559         else
1560                 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1561         params->vttbr = params->vtcr = 0;
1562
1563         /*
1564          * Flush the init params from the data cache because the struct will
1565          * be read while the MMU is off.
1566          */
1567         kvm_flush_dcache_to_poc(params, sizeof(*params));
1568 }
1569
1570 static void hyp_install_host_vector(void)
1571 {
1572         struct kvm_nvhe_init_params *params;
1573         struct arm_smccc_res res;
1574
1575         /* Switch from the HYP stub to our own HYP init vector */
1576         __hyp_set_vectors(kvm_get_idmap_vector());
1577
1578         /*
1579          * Call initialization code, and switch to the full blown HYP code.
1580          * If the cpucaps haven't been finalized yet, something has gone very
1581          * wrong, and hyp will crash and burn when it uses any
1582          * cpus_have_const_cap() wrapper.
1583          */
1584         BUG_ON(!system_capabilities_finalized());
1585         params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1586         arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1587         WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1588 }
1589
1590 static void cpu_init_hyp_mode(void)
1591 {
1592         hyp_install_host_vector();
1593
1594         /*
1595          * Disabling SSBD on a non-VHE system requires us to enable SSBS
1596          * at EL2.
1597          */
1598         if (this_cpu_has_cap(ARM64_SSBS) &&
1599             arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1600                 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1601         }
1602 }
1603
1604 static void cpu_hyp_reset(void)
1605 {
1606         if (!is_kernel_in_hyp_mode())
1607                 __hyp_reset_vectors();
1608 }
1609
1610 /*
1611  * EL2 vectors can be mapped and rerouted in a number of ways,
1612  * depending on the kernel configuration and CPU present:
1613  *
1614  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1615  *   placed in one of the vector slots, which is executed before jumping
1616  *   to the real vectors.
1617  *
1618  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1619  *   containing the hardening sequence is mapped next to the idmap page,
1620  *   and executed before jumping to the real vectors.
1621  *
1622  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1623  *   empty slot is selected, mapped next to the idmap page, and
1624  *   executed before jumping to the real vectors.
1625  *
1626  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1627  * VHE, as we don't have hypervisor-specific mappings. If the system
1628  * is VHE and yet selects this capability, it will be ignored.
1629  */
1630 static void cpu_set_hyp_vector(void)
1631 {
1632         struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1633         void *vector = hyp_spectre_vector_selector[data->slot];
1634
1635         if (!is_protected_kvm_enabled())
1636                 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1637         else
1638                 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1639 }
1640
1641 static void cpu_hyp_init_context(void)
1642 {
1643         kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1644
1645         if (!is_kernel_in_hyp_mode())
1646                 cpu_init_hyp_mode();
1647 }
1648
1649 static void cpu_hyp_init_features(void)
1650 {
1651         cpu_set_hyp_vector();
1652         kvm_arm_init_debug();
1653
1654         if (is_kernel_in_hyp_mode())
1655                 kvm_timer_init_vhe();
1656
1657         if (vgic_present)
1658                 kvm_vgic_init_cpu_hardware();
1659 }
1660
1661 static void cpu_hyp_reinit(void)
1662 {
1663         cpu_hyp_reset();
1664         cpu_hyp_init_context();
1665         cpu_hyp_init_features();
1666 }
1667
1668 static void _kvm_arch_hardware_enable(void *discard)
1669 {
1670         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1671                 cpu_hyp_reinit();
1672                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1673         }
1674 }
1675
1676 int kvm_arch_hardware_enable(void)
1677 {
1678         _kvm_arch_hardware_enable(NULL);
1679         return 0;
1680 }
1681
1682 static void _kvm_arch_hardware_disable(void *discard)
1683 {
1684         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1685                 cpu_hyp_reset();
1686                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1687         }
1688 }
1689
1690 void kvm_arch_hardware_disable(void)
1691 {
1692         if (!is_protected_kvm_enabled())
1693                 _kvm_arch_hardware_disable(NULL);
1694 }
1695
1696 #ifdef CONFIG_CPU_PM
1697 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1698                                     unsigned long cmd,
1699                                     void *v)
1700 {
1701         /*
1702          * kvm_arm_hardware_enabled is left with its old value over
1703          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1704          * re-enable hyp.
1705          */
1706         switch (cmd) {
1707         case CPU_PM_ENTER:
1708                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1709                         /*
1710                          * don't update kvm_arm_hardware_enabled here
1711                          * so that the hardware will be re-enabled
1712                          * when we resume. See below.
1713                          */
1714                         cpu_hyp_reset();
1715
1716                 return NOTIFY_OK;
1717         case CPU_PM_ENTER_FAILED:
1718         case CPU_PM_EXIT:
1719                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1720                         /* The hardware was enabled before suspend. */
1721                         cpu_hyp_reinit();
1722
1723                 return NOTIFY_OK;
1724
1725         default:
1726                 return NOTIFY_DONE;
1727         }
1728 }
1729
1730 static struct notifier_block hyp_init_cpu_pm_nb = {
1731         .notifier_call = hyp_init_cpu_pm_notifier,
1732 };
1733
1734 static void hyp_cpu_pm_init(void)
1735 {
1736         if (!is_protected_kvm_enabled())
1737                 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1738 }
1739 static void hyp_cpu_pm_exit(void)
1740 {
1741         if (!is_protected_kvm_enabled())
1742                 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1743 }
1744 #else
1745 static inline void hyp_cpu_pm_init(void)
1746 {
1747 }
1748 static inline void hyp_cpu_pm_exit(void)
1749 {
1750 }
1751 #endif
1752
1753 static void init_cpu_logical_map(void)
1754 {
1755         unsigned int cpu;
1756
1757         /*
1758          * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1759          * Only copy the set of online CPUs whose features have been checked
1760          * against the finalized system capabilities. The hypervisor will not
1761          * allow any other CPUs from the `possible` set to boot.
1762          */
1763         for_each_online_cpu(cpu)
1764                 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1765 }
1766
1767 #define init_psci_0_1_impl_state(config, what)  \
1768         config.psci_0_1_ ## what ## _implemented = psci_ops.what
1769
1770 static bool init_psci_relay(void)
1771 {
1772         /*
1773          * If PSCI has not been initialized, protected KVM cannot install
1774          * itself on newly booted CPUs.
1775          */
1776         if (!psci_ops.get_version) {
1777                 kvm_err("Cannot initialize protected mode without PSCI\n");
1778                 return false;
1779         }
1780
1781         kvm_host_psci_config.version = psci_ops.get_version();
1782
1783         if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1784                 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1785                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1786                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1787                 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1788                 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1789         }
1790         return true;
1791 }
1792
1793 static int init_subsystems(void)
1794 {
1795         int err = 0;
1796
1797         /*
1798          * Enable hardware so that subsystem initialisation can access EL2.
1799          */
1800         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1801
1802         /*
1803          * Register CPU lower-power notifier
1804          */
1805         hyp_cpu_pm_init();
1806
1807         /*
1808          * Init HYP view of VGIC
1809          */
1810         err = kvm_vgic_hyp_init();
1811         switch (err) {
1812         case 0:
1813                 vgic_present = true;
1814                 break;
1815         case -ENODEV:
1816         case -ENXIO:
1817                 vgic_present = false;
1818                 err = 0;
1819                 break;
1820         default:
1821                 goto out;
1822         }
1823
1824         /*
1825          * Init HYP architected timer support
1826          */
1827         err = kvm_timer_hyp_init(vgic_present);
1828         if (err)
1829                 goto out;
1830
1831         kvm_register_perf_callbacks(NULL);
1832
1833 out:
1834         if (err || !is_protected_kvm_enabled())
1835                 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1836
1837         return err;
1838 }
1839
1840 static void teardown_hyp_mode(void)
1841 {
1842         int cpu;
1843
1844         free_hyp_pgds();
1845         for_each_possible_cpu(cpu) {
1846                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1847                 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1848         }
1849 }
1850
1851 static int do_pkvm_init(u32 hyp_va_bits)
1852 {
1853         void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1854         int ret;
1855
1856         preempt_disable();
1857         cpu_hyp_init_context();
1858         ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1859                                 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1860                                 hyp_va_bits);
1861         cpu_hyp_init_features();
1862
1863         /*
1864          * The stub hypercalls are now disabled, so set our local flag to
1865          * prevent a later re-init attempt in kvm_arch_hardware_enable().
1866          */
1867         __this_cpu_write(kvm_arm_hardware_enabled, 1);
1868         preempt_enable();
1869
1870         return ret;
1871 }
1872
1873 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1874 {
1875         void *addr = phys_to_virt(hyp_mem_base);
1876         int ret;
1877
1878         kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1879         kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1880         kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1881         kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1882         kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
1883         kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1884         kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1885         kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1886
1887         ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1888         if (ret)
1889                 return ret;
1890
1891         ret = do_pkvm_init(hyp_va_bits);
1892         if (ret)
1893                 return ret;
1894
1895         free_hyp_pgds();
1896
1897         return 0;
1898 }
1899
1900 /**
1901  * Inits Hyp-mode on all online CPUs
1902  */
1903 static int init_hyp_mode(void)
1904 {
1905         u32 hyp_va_bits;
1906         int cpu;
1907         int err = -ENOMEM;
1908
1909         /*
1910          * The protected Hyp-mode cannot be initialized if the memory pool
1911          * allocation has failed.
1912          */
1913         if (is_protected_kvm_enabled() && !hyp_mem_base)
1914                 goto out_err;
1915
1916         /*
1917          * Allocate Hyp PGD and setup Hyp identity mapping
1918          */
1919         err = kvm_mmu_init(&hyp_va_bits);
1920         if (err)
1921                 goto out_err;
1922
1923         /*
1924          * Allocate stack pages for Hypervisor-mode
1925          */
1926         for_each_possible_cpu(cpu) {
1927                 unsigned long stack_page;
1928
1929                 stack_page = __get_free_page(GFP_KERNEL);
1930                 if (!stack_page) {
1931                         err = -ENOMEM;
1932                         goto out_err;
1933                 }
1934
1935                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1936         }
1937
1938         /*
1939          * Allocate and initialize pages for Hypervisor-mode percpu regions.
1940          */
1941         for_each_possible_cpu(cpu) {
1942                 struct page *page;
1943                 void *page_addr;
1944
1945                 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1946                 if (!page) {
1947                         err = -ENOMEM;
1948                         goto out_err;
1949                 }
1950
1951                 page_addr = page_address(page);
1952                 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1953                 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1954         }
1955
1956         /*
1957          * Map the Hyp-code called directly from the host
1958          */
1959         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1960                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1961         if (err) {
1962                 kvm_err("Cannot map world-switch code\n");
1963                 goto out_err;
1964         }
1965
1966         err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1967                                   kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1968         if (err) {
1969                 kvm_err("Cannot map .hyp.rodata section\n");
1970                 goto out_err;
1971         }
1972
1973         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1974                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1975         if (err) {
1976                 kvm_err("Cannot map rodata section\n");
1977                 goto out_err;
1978         }
1979
1980         /*
1981          * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1982          * section thanks to an assertion in the linker script. Map it RW and
1983          * the rest of .bss RO.
1984          */
1985         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1986                                   kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1987         if (err) {
1988                 kvm_err("Cannot map hyp bss section: %d\n", err);
1989                 goto out_err;
1990         }
1991
1992         err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1993                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1994         if (err) {
1995                 kvm_err("Cannot map bss section\n");
1996                 goto out_err;
1997         }
1998
1999         /*
2000          * Map the Hyp stack pages
2001          */
2002         for_each_possible_cpu(cpu) {
2003                 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2004                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2005                 unsigned long hyp_addr;
2006
2007                 /*
2008                  * Allocate a contiguous HYP private VA range for the stack
2009                  * and guard page. The allocation is also aligned based on
2010                  * the order of its size.
2011                  */
2012                 err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2013                 if (err) {
2014                         kvm_err("Cannot allocate hyp stack guard page\n");
2015                         goto out_err;
2016                 }
2017
2018                 /*
2019                  * Since the stack grows downwards, map the stack to the page
2020                  * at the higher address and leave the lower guard page
2021                  * unbacked.
2022                  *
2023                  * Any valid stack address now has the PAGE_SHIFT bit as 1
2024                  * and addresses corresponding to the guard page have the
2025                  * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2026                  */
2027                 err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2028                                             __pa(stack_page), PAGE_HYP);
2029                 if (err) {
2030                         kvm_err("Cannot map hyp stack\n");
2031                         goto out_err;
2032                 }
2033
2034                 /*
2035                  * Save the stack PA in nvhe_init_params. This will be needed
2036                  * to recreate the stack mapping in protected nVHE mode.
2037                  * __hyp_pa() won't do the right thing there, since the stack
2038                  * has been mapped in the flexible private VA space.
2039                  */
2040                 params->stack_pa = __pa(stack_page);
2041
2042                 params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2043         }
2044
2045         for_each_possible_cpu(cpu) {
2046                 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
2047                 char *percpu_end = percpu_begin + nvhe_percpu_size();
2048
2049                 /* Map Hyp percpu pages */
2050                 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2051                 if (err) {
2052                         kvm_err("Cannot map hyp percpu region\n");
2053                         goto out_err;
2054                 }
2055
2056                 /* Prepare the CPU initialization parameters */
2057                 cpu_prepare_hyp_mode(cpu);
2058         }
2059
2060         if (is_protected_kvm_enabled()) {
2061                 init_cpu_logical_map();
2062
2063                 if (!init_psci_relay()) {
2064                         err = -ENODEV;
2065                         goto out_err;
2066                 }
2067         }
2068
2069         if (is_protected_kvm_enabled()) {
2070                 err = kvm_hyp_init_protection(hyp_va_bits);
2071                 if (err) {
2072                         kvm_err("Failed to init hyp memory protection\n");
2073                         goto out_err;
2074                 }
2075         }
2076
2077         return 0;
2078
2079 out_err:
2080         teardown_hyp_mode();
2081         kvm_err("error initializing Hyp mode: %d\n", err);
2082         return err;
2083 }
2084
2085 static void _kvm_host_prot_finalize(void *arg)
2086 {
2087         int *err = arg;
2088
2089         if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2090                 WRITE_ONCE(*err, -EINVAL);
2091 }
2092
2093 static int pkvm_drop_host_privileges(void)
2094 {
2095         int ret = 0;
2096
2097         /*
2098          * Flip the static key upfront as that may no longer be possible
2099          * once the host stage 2 is installed.
2100          */
2101         static_branch_enable(&kvm_protected_mode_initialized);
2102         on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2103         return ret;
2104 }
2105
2106 static int finalize_hyp_mode(void)
2107 {
2108         if (!is_protected_kvm_enabled())
2109                 return 0;
2110
2111         /*
2112          * Exclude HYP sections from kmemleak so that they don't get peeked
2113          * at, which would end badly once inaccessible.
2114          */
2115         kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2116         kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
2117         return pkvm_drop_host_privileges();
2118 }
2119
2120 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2121 {
2122         struct kvm_vcpu *vcpu;
2123         unsigned long i;
2124
2125         mpidr &= MPIDR_HWID_BITMASK;
2126         kvm_for_each_vcpu(i, vcpu, kvm) {
2127                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2128                         return vcpu;
2129         }
2130         return NULL;
2131 }
2132
2133 bool kvm_arch_has_irq_bypass(void)
2134 {
2135         return true;
2136 }
2137
2138 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2139                                       struct irq_bypass_producer *prod)
2140 {
2141         struct kvm_kernel_irqfd *irqfd =
2142                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2143
2144         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2145                                           &irqfd->irq_entry);
2146 }
2147 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2148                                       struct irq_bypass_producer *prod)
2149 {
2150         struct kvm_kernel_irqfd *irqfd =
2151                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2152
2153         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2154                                      &irqfd->irq_entry);
2155 }
2156
2157 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2158 {
2159         struct kvm_kernel_irqfd *irqfd =
2160                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2161
2162         kvm_arm_halt_guest(irqfd->kvm);
2163 }
2164
2165 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2166 {
2167         struct kvm_kernel_irqfd *irqfd =
2168                 container_of(cons, struct kvm_kernel_irqfd, consumer);
2169
2170         kvm_arm_resume_guest(irqfd->kvm);
2171 }
2172
2173 /**
2174  * Initialize Hyp-mode and memory mappings on all CPUs.
2175  */
2176 int kvm_arch_init(void *opaque)
2177 {
2178         int err;
2179         bool in_hyp_mode;
2180
2181         if (!is_hyp_mode_available()) {
2182                 kvm_info("HYP mode not available\n");
2183                 return -ENODEV;
2184         }
2185
2186         if (kvm_get_mode() == KVM_MODE_NONE) {
2187                 kvm_info("KVM disabled from command line\n");
2188                 return -ENODEV;
2189         }
2190
2191         err = kvm_sys_reg_table_init();
2192         if (err) {
2193                 kvm_info("Error initializing system register tables");
2194                 return err;
2195         }
2196
2197         in_hyp_mode = is_kernel_in_hyp_mode();
2198
2199         if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2200             cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2201                 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2202                          "Only trusted guests should be used on this system.\n");
2203
2204         err = kvm_set_ipa_limit();
2205         if (err)
2206                 return err;
2207
2208         err = kvm_arm_init_sve();
2209         if (err)
2210                 return err;
2211
2212         err = kvm_arm_vmid_alloc_init();
2213         if (err) {
2214                 kvm_err("Failed to initialize VMID allocator.\n");
2215                 return err;
2216         }
2217
2218         if (!in_hyp_mode) {
2219                 err = init_hyp_mode();
2220                 if (err)
2221                         goto out_err;
2222         }
2223
2224         err = kvm_init_vector_slots();
2225         if (err) {
2226                 kvm_err("Cannot initialise vector slots\n");
2227                 goto out_err;
2228         }
2229
2230         err = init_subsystems();
2231         if (err)
2232                 goto out_hyp;
2233
2234         if (!in_hyp_mode) {
2235                 err = finalize_hyp_mode();
2236                 if (err) {
2237                         kvm_err("Failed to finalize Hyp protection\n");
2238                         goto out_hyp;
2239                 }
2240         }
2241
2242         if (is_protected_kvm_enabled()) {
2243                 kvm_info("Protected nVHE mode initialized successfully\n");
2244         } else if (in_hyp_mode) {
2245                 kvm_info("VHE mode initialized successfully\n");
2246         } else {
2247                 kvm_info("Hyp mode initialized successfully\n");
2248         }
2249
2250         return 0;
2251
2252 out_hyp:
2253         hyp_cpu_pm_exit();
2254         if (!in_hyp_mode)
2255                 teardown_hyp_mode();
2256 out_err:
2257         kvm_arm_vmid_alloc_free();
2258         return err;
2259 }
2260
2261 /* NOP: Compiling as a module not supported */
2262 void kvm_arch_exit(void)
2263 {
2264         kvm_unregister_perf_callbacks();
2265 }
2266
2267 static int __init early_kvm_mode_cfg(char *arg)
2268 {
2269         if (!arg)
2270                 return -EINVAL;
2271
2272         if (strcmp(arg, "none") == 0) {
2273                 kvm_mode = KVM_MODE_NONE;
2274                 return 0;
2275         }
2276
2277         if (!is_hyp_mode_available()) {
2278                 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2279                 return 0;
2280         }
2281
2282         if (strcmp(arg, "protected") == 0) {
2283                 if (!is_kernel_in_hyp_mode())
2284                         kvm_mode = KVM_MODE_PROTECTED;
2285                 else
2286                         pr_warn_once("Protected KVM not available with VHE\n");
2287
2288                 return 0;
2289         }
2290
2291         if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2292                 kvm_mode = KVM_MODE_DEFAULT;
2293                 return 0;
2294         }
2295
2296         return -EINVAL;
2297 }
2298 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2299
2300 enum kvm_mode kvm_get_mode(void)
2301 {
2302         return kvm_mode;
2303 }
2304
2305 static int arm_init(void)
2306 {
2307         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2308         return rc;
2309 }
2310
2311 module_init(arm_init);